g1CollectorPolicy.hpp 37.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"

32 33 34 35 36 37 38 39
// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector.  Examples include:
//   * choice of collection set.
//   * when to collect.

class HeapRegion;
class CollectionSetChooser;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
// TraceGen0Time collects data on _both_ young and mixed evacuation pauses
// (the latter may contain non-young regions - i.e. regions that are
// technically in Gen1) while TraceGen1Time collects data about full GCs.
class TraceGen0TimeData : public CHeapObj {
 private:
  unsigned  _young_pause_num;
  unsigned  _mixed_pause_num;

  NumberSeq _all_stop_world_times_ms;
  NumberSeq _all_yield_times_ms;

  NumberSeq _total;
  NumberSeq _other;
  NumberSeq _root_region_scan_wait;
  NumberSeq _parallel;
  NumberSeq _ext_root_scan;
  NumberSeq _satb_filtering;
  NumberSeq _update_rs;
  NumberSeq _scan_rs;
  NumberSeq _obj_copy;
  NumberSeq _termination;
  NumberSeq _parallel_other;
  NumberSeq _clear_ct;

  void print_summary (int level, const char* str, const NumberSeq* seq) const;
  void print_summary_sd (int level, const char* str, const NumberSeq* seq) const;
66 67

public:
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
   TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  void record_start_collection(double time_to_stop_the_world_ms);
  void record_yield_time(double yield_time_ms);
  void record_end_collection(
     double total_ms,
     double other_ms,
     double root_region_scan_wait_ms,
     double parallel_ms,
     double ext_root_scan_ms,
     double satb_filtering_ms,
     double update_rs_ms,
     double scan_rs_ms,
     double obj_copy_ms,
     double termination_ms,
     double parallel_other_ms,
     double clear_ct_ms);
  void increment_young_collection_count();
  void increment_mixed_collection_count();
  void print() const;
87 88
};

89 90 91
class TraceGen1TimeData : public CHeapObj {
 private:
  NumberSeq _all_full_gc_times;
92

93 94 95
 public:
  void record_full_collection(double full_gc_time_ms);
  void print() const;
96 97
};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// There are three command line options related to the young gen size:
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
// just a short form for NewSize==MaxNewSize). G1 will use its internal
// heuristics to calculate the actual young gen size, so these options
// basically only limit the range within which G1 can pick a young gen
// size. Also, these are general options taking byte sizes. G1 will
// internally work with a number of regions instead. So, some rounding
// will occur.
//
// If nothing related to the the young gen size is set on the command
// line we should allow the young gen to be between
// G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
// heap size. This means that every time the heap size changes the
// limits for the young gen size will be updated.
//
// If only -XX:NewSize is set we should use the specified value as the
// minimum size for young gen. Still using G1DefaultMaxNewGenPercent
// of the heap as maximum.
//
// If only -XX:MaxNewSize is set we should use the specified value as the
// maximum size for young gen. Still using G1DefaultMinNewGenPercent
// of the heap as minimum.
//
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
// No updates when the heap size changes. There is a special case when
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
// different heuristic for calculating the collection set when we do mixed
// collection.
//
// If only -XX:NewRatio is set we should use the specified ratio of the heap
// as both min and max. This will be interpreted as "fixed" just like the
// NewSize==MaxNewSize case above. But we will update the min and max
// everytime the heap size changes.
//
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
class G1YoungGenSizer : public CHeapObj {
private:
  enum SizerKind {
    SizerDefaults,
    SizerNewSizeOnly,
    SizerMaxNewSizeOnly,
    SizerMaxAndNewSize,
    SizerNewRatio
  };
  SizerKind _sizer_kind;
144 145
  uint _min_desired_young_length;
  uint _max_desired_young_length;
146
  bool _adaptive_size;
147 148
  uint calculate_default_min_length(uint new_number_of_heap_regions);
  uint calculate_default_max_length(uint new_number_of_heap_regions);
149 150 151

public:
  G1YoungGenSizer();
152 153
  void heap_size_changed(uint new_number_of_heap_regions);
  uint min_desired_young_length() {
154 155
    return _min_desired_young_length;
  }
156
  uint max_desired_young_length() {
157 158 159 160 161 162 163
    return _max_desired_young_length;
  }
  bool adaptive_young_list_length() {
    return _adaptive_size;
  }
};

164
class G1CollectorPolicy: public CollectorPolicy {
165
private:
166 167 168 169
  // either equal to the number of parallel threads, if ParallelGCThreads
  // has been set, or 1 otherwise
  int _parallel_gc_threads;

170 171 172
  // The number of GC threads currently active.
  uintx _no_of_gc_threads;

173
  enum SomePrivateConstants {
174
    NumPrevPausesForHeuristics = 10
175 176 177 178 179 180 181 182 183 184 185 186
  };

  G1MMUTracker* _mmu_tracker;

  void initialize_flags();

  void initialize_all() {
    initialize_flags();
    initialize_size_info();
    initialize_perm_generation(PermGen::MarkSweepCompact);
  }

187
  CollectionSetChooser* _collectionSetChooser;
188 189 190

  double _cur_collection_start_sec;
  size_t _cur_collection_pause_used_at_start_bytes;
191
  uint   _cur_collection_pause_used_regions_at_start;
192
  double _cur_collection_par_time_ms;
193 194 195

  double _cur_collection_code_root_fixup_time_ms;

196
  double _cur_clear_ct_time_ms;
197 198
  double _cur_ref_proc_time_ms;
  double _cur_ref_enq_time_ms;
199

200 201 202 203 204 205 206 207 208
#ifndef PRODUCT
  // Card Table Count Cache stats
  double _min_clear_cc_time_ms;         // min
  double _max_clear_cc_time_ms;         // max
  double _cur_clear_cc_time_ms;         // clearing time during current pause
  double _cum_clear_cc_time_ms;         // cummulative clearing time
  jlong  _num_cc_clears;                // number of times the card count cache has been cleared
#endif

209 210 211 212 213 214
  // These exclude marking times.
  TruncatedSeq* _recent_gc_times_ms;

  TruncatedSeq* _concurrent_mark_remark_times_ms;
  TruncatedSeq* _concurrent_mark_cleanup_times_ms;

215 216
  TraceGen0TimeData _trace_gen0_time_data;
  TraceGen1TimeData _trace_gen1_time_data;
217 218 219

  double _stop_world_start;

220
  double* _par_last_gc_worker_start_times_ms;
221
  double* _par_last_ext_root_scan_times_ms;
222
  double* _par_last_satb_filtering_times_ms;
223 224 225 226 227
  double* _par_last_update_rs_times_ms;
  double* _par_last_update_rs_processed_buffers;
  double* _par_last_scan_rs_times_ms;
  double* _par_last_obj_copy_times_ms;
  double* _par_last_termination_times_ms;
228 229
  double* _par_last_termination_attempts;
  double* _par_last_gc_worker_end_times_ms;
230
  double* _par_last_gc_worker_times_ms;
231

J
johnc 已提交
232
  // Each workers 'other' time i.e. the elapsed time of the parallel
233 234
  // code executed by a worker minus the sum of the individual sub-phase
  // times for that worker thread.
J
johnc 已提交
235 236
  double* _par_last_gc_worker_other_times_ms;

237 238
  // indicates whether we are in young or mixed GC mode
  bool _gcs_are_young;
239

240 241
  uint _young_list_target_length;
  uint _young_list_fixed_length;
242
  size_t _prev_eden_capacity; // used for logging
243

244 245
  // The max number of regions we can extend the eden by while the GC
  // locker is active. This should be >= _young_list_target_length;
246
  uint _young_list_max_length;
247

248
  bool                  _last_gc_was_young;
249 250 251 252 253 254 255 256 257

  bool                  _during_marking;
  bool                  _in_marking_window;
  bool                  _in_marking_window_im;

  SurvRateGroup*        _short_lived_surv_rate_group;
  SurvRateGroup*        _survivor_surv_rate_group;
  // add here any more surv rate groups

T
tonyp 已提交
258 259
  double                _gc_overhead_perc;

260
  double _reserve_factor;
261
  uint _reserve_regions;
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  bool during_marking() {
    return _during_marking;
  }

private:
  enum PredictionConstants {
    TruncatedSeqLength = 10
  };

  TruncatedSeq* _alloc_rate_ms_seq;
  double        _prev_collection_pause_end_ms;

  TruncatedSeq* _pending_card_diff_seq;
  TruncatedSeq* _rs_length_diff_seq;
  TruncatedSeq* _cost_per_card_ms_seq;
278 279
  TruncatedSeq* _young_cards_per_entry_ratio_seq;
  TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
280
  TruncatedSeq* _cost_per_entry_ms_seq;
281
  TruncatedSeq* _mixed_cost_per_entry_ms_seq;
282 283 284 285 286 287 288 289 290 291
  TruncatedSeq* _cost_per_byte_ms_seq;
  TruncatedSeq* _constant_other_time_ms_seq;
  TruncatedSeq* _young_other_cost_per_region_ms_seq;
  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;

  TruncatedSeq* _pending_cards_seq;
  TruncatedSeq* _rs_lengths_seq;

  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;

292
  G1YoungGenSizer* _young_gen_sizer;
293

294 295 296
  uint _eden_cset_region_length;
  uint _survivor_cset_region_length;
  uint _old_cset_region_length;
297

298 299
  void init_cset_region_lengths(uint eden_cset_region_length,
                                uint survivor_cset_region_length);
300

301 302 303
  uint eden_cset_region_length()     { return _eden_cset_region_length;     }
  uint survivor_cset_region_length() { return _survivor_cset_region_length; }
  uint old_cset_region_length()      { return _old_cset_region_length;      }
304

305
  uint _free_regions_at_end_of_collection;
306 307 308 309 310 311 312 313 314 315 316

  size_t _recorded_rs_lengths;
  size_t _max_rs_lengths;

  double _recorded_young_free_cset_time_ms;
  double _recorded_non_young_free_cset_time_ms;

  double _sigma;

  size_t _rs_lengths_prediction;

317
  double sigma() { return _sigma; }
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

  // A function that prevents us putting too much stock in small sample
  // sets.  Returns a number between 2.0 and 1.0, depending on the number
  // of samples.  5 or more samples yields one; fewer scales linearly from
  // 2.0 at 1 sample to 1.0 at 5.
  double confidence_factor(int samples) {
    if (samples > 4) return 1.0;
    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
  }

  double get_new_neg_prediction(TruncatedSeq* seq) {
    return seq->davg() - sigma() * seq->dsd();
  }

#ifndef PRODUCT
  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT

336 337 338 339
  void adjust_concurrent_refinement(double update_rs_time,
                                    double update_rs_processed_buffers,
                                    double goal_ms);

340 341 342
  uintx no_of_gc_threads() { return _no_of_gc_threads; }
  void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }

343 344 345 346 347 348 349
  double _pause_time_target_ms;
  double _recorded_young_cset_choice_time_ms;
  double _recorded_non_young_cset_choice_time_ms;
  size_t _pending_cards;
  size_t _max_pending_cards;

public:
350
  // Accessors
351

352 353
  void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
    hr->set_young();
354
    hr->install_surv_rate_group(_short_lived_surv_rate_group);
355
    hr->set_young_index_in_cset(young_index_in_cset);
356 357
  }

358 359
  void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
    assert(hr->is_young() && hr->is_survivor(), "pre-condition");
360
    hr->install_surv_rate_group(_survivor_surv_rate_group);
361
    hr->set_young_index_in_cset(young_index_in_cset);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  }

#ifndef PRODUCT
  bool verify_young_ages();
#endif // PRODUCT

  double get_new_prediction(TruncatedSeq* seq) {
    return MAX2(seq->davg() + sigma() * seq->dsd(),
                seq->davg() * confidence_factor(seq->num()));
  }

  void record_max_rs_lengths(size_t rs_lengths) {
    _max_rs_lengths = rs_lengths;
  }

  size_t predict_pending_card_diff() {
    double prediction = get_new_neg_prediction(_pending_card_diff_seq);
379
    if (prediction < 0.00001) {
380
      return 0;
381
    } else {
382
      return (size_t) prediction;
383
    }
384 385 386 387 388 389
  }

  size_t predict_pending_cards() {
    size_t max_pending_card_num = _g1->max_pending_card_num();
    size_t diff = predict_pending_card_diff();
    size_t prediction;
390
    if (diff > max_pending_card_num) {
391
      prediction = max_pending_card_num;
392
    } else {
393
      prediction = max_pending_card_num - diff;
394
    }
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

    return prediction;
  }

  size_t predict_rs_length_diff() {
    return (size_t) get_new_prediction(_rs_length_diff_seq);
  }

  double predict_alloc_rate_ms() {
    return get_new_prediction(_alloc_rate_ms_seq);
  }

  double predict_cost_per_card_ms() {
    return get_new_prediction(_cost_per_card_ms_seq);
  }

  double predict_rs_update_time_ms(size_t pending_cards) {
    return (double) pending_cards * predict_cost_per_card_ms();
  }

415 416
  double predict_young_cards_per_entry_ratio() {
    return get_new_prediction(_young_cards_per_entry_ratio_seq);
417 418
  }

419 420 421 422 423 424
  double predict_mixed_cards_per_entry_ratio() {
    if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
      return predict_young_cards_per_entry_ratio();
    } else {
      return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
    }
425 426 427 428
  }

  size_t predict_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
429
                     predict_young_cards_per_entry_ratio());
430 431 432 433
  }

  size_t predict_non_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
434
                     predict_mixed_cards_per_entry_ratio());
435 436 437
  }

  double predict_rs_scan_time_ms(size_t card_num) {
438
    if (gcs_are_young()) {
439
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
440 441 442
    } else {
      return predict_mixed_rs_scan_time_ms(card_num);
    }
443 444
  }

445 446
  double predict_mixed_rs_scan_time_ms(size_t card_num) {
    if (_mixed_cost_per_entry_ms_seq->num() < 3) {
447
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
448 449 450 451
    } else {
      return (double) (card_num *
                       get_new_prediction(_mixed_cost_per_entry_ms_seq));
    }
452 453 454
  }

  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
455 456 457 458
    if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
      return (1.1 * (double) bytes_to_copy) *
              get_new_prediction(_cost_per_byte_ms_seq);
    } else {
459
      return (double) bytes_to_copy *
460 461
             get_new_prediction(_cost_per_byte_ms_during_cm_seq);
    }
462 463 464
  }

  double predict_object_copy_time_ms(size_t bytes_to_copy) {
465
    if (_in_marking_window && !_in_marking_window_im) {
466
      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
467
    } else {
468
      return (double) bytes_to_copy *
469 470
              get_new_prediction(_cost_per_byte_ms_seq);
    }
471 472 473 474 475 476 477
  }

  double predict_constant_other_time_ms() {
    return get_new_prediction(_constant_other_time_ms_seq);
  }

  double predict_young_other_time_ms(size_t young_num) {
478 479
    return (double) young_num *
           get_new_prediction(_young_other_cost_per_region_ms_seq);
480 481 482
  }

  double predict_non_young_other_time_ms(size_t non_young_num) {
483 484
    return (double) non_young_num *
           get_new_prediction(_non_young_other_cost_per_region_ms_seq);
485 486 487 488 489 490 491 492
  }

  double predict_base_elapsed_time_ms(size_t pending_cards);
  double predict_base_elapsed_time_ms(size_t pending_cards,
                                      size_t scanned_cards);
  size_t predict_bytes_to_copy(HeapRegion* hr);
  double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);

493
  void set_recorded_rs_lengths(size_t rs_lengths);
494

495 496 497 498
  uint cset_region_length()       { return young_cset_region_length() +
                                           old_cset_region_length(); }
  uint young_cset_region_length() { return eden_cset_region_length() +
                                           survivor_cset_region_length(); }
499 500 501 502 503 504 505 506 507

  void record_young_free_cset_time_ms(double time_ms) {
    _recorded_young_free_cset_time_ms = time_ms;
  }

  void record_non_young_free_cset_time_ms(double time_ms) {
    _recorded_non_young_free_cset_time_ms = time_ms;
  }

508 509
  double predict_survivor_regions_evac_time();

510
  void cset_regions_freed() {
511
    bool propagate = _last_gc_was_young && !_in_marking_window;
512 513 514 515 516 517 518 519 520
    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
    // also call it on any more surv rate groups
  }

  G1MMUTracker* mmu_tracker() {
    return _mmu_tracker;
  }

521 522 523 524
  double max_pause_time_ms() {
    return _mmu_tracker->max_gc_time() * 1000.0;
  }

525 526 527 528 529 530 531 532 533 534
  double predict_remark_time_ms() {
    return get_new_prediction(_concurrent_mark_remark_times_ms);
  }

  double predict_cleanup_time_ms() {
    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
  }

  // Returns an estimate of the survival rate of the region at yg-age
  // "yg_age".
535 536
  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
    TruncatedSeq* seq = surv_rate_group->get_seq(age);
537 538 539 540 541 542 543 544 545
    if (seq->num() == 0)
      gclog_or_tty->print("BARF! age is %d", age);
    guarantee( seq->num() > 0, "invariant" );
    double pred = get_new_prediction(seq);
    if (pred > 1.0)
      pred = 1.0;
    return pred;
  }

546 547 548 549
  double predict_yg_surv_rate(int age) {
    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
  }

550 551 552 553
  double accum_yg_surv_rate_pred(int age) {
    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
  }

554
private:
555
  void print_stats(int level, const char* str, double value);
556
  void print_stats(int level, const char* str, double value, int workers);
557 558
  void print_stats(int level, const char* str, int value);

559
  void print_par_stats(int level, const char* str, double* data, bool showDecimals = true);
560 561 562 563 564 565 566 567 568

  double avg_value (double* data);
  double max_value (double* data);
  double sum_of_values (double* data);
  double max_sum (double* data1, double* data2);

  double _last_pause_time_ms;

  size_t _bytes_in_collection_set_before_gc;
569 570
  size_t _bytes_copied_during_gc;

571 572 573 574 575 576 577 578 579 580
  // Used to count used bytes in CS.
  friend class CountCSClosure;

  // Statistics kept per GC stoppage, pause or full.
  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;

  // Add a new GC of the given duration and end time to the record.
  void update_recent_gc_times(double end_time_sec, double elapsed_ms);

  // The head of the list (via "next_in_collection_set()") representing the
581 582
  // current collection set. Set from the incrementally built collection
  // set at the start of the pause.
583
  HeapRegion* _collection_set;
584 585 586 587

  // The number of bytes in the collection set before the pause. Set from
  // the incrementally built collection set at the start of an evacuation
  // pause.
588 589
  size_t _collection_set_bytes_used_before;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
  // The associated information that is maintained while the incremental
  // collection set is being built with young regions. Used to populate
  // the recorded info for the evacuation pause.

  enum CSetBuildType {
    Active,             // We are actively building the collection set
    Inactive            // We are not actively building the collection set
  };

  CSetBuildType _inc_cset_build_state;

  // The head of the incrementally built collection set.
  HeapRegion* _inc_cset_head;

  // The tail of the incrementally built collection set.
  HeapRegion* _inc_cset_tail;

  // The number of bytes in the incrementally built collection set.
  // Used to set _collection_set_bytes_used_before at the start of
  // an evacuation pause.
  size_t _inc_cset_bytes_used_before;

  // Used to record the highest end of heap region in collection set
  HeapWord* _inc_cset_max_finger;

615 616 617 618 619
  // The RSet lengths recorded for regions in the CSet. It is updated
  // by the thread that adds a new region to the CSet. We assume that
  // only one thread can be allocating a new CSet region (currently,
  // it does so after taking the Heap_lock) hence no need to
  // synchronize updates to this field.
620 621
  size_t _inc_cset_recorded_rs_lengths;

622 623 624 625 626 627 628 629 630 631 632
  // A concurrent refinement thread periodcially samples the young
  // region RSets and needs to update _inc_cset_recorded_rs_lengths as
  // the RSets grow. Instead of having to syncronize updates to that
  // field we accumulate them in this field and add it to
  // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
  ssize_t _inc_cset_recorded_rs_lengths_diffs;

  // The predicted elapsed time it will take to collect the regions in
  // the CSet. This is updated by the thread that adds a new region to
  // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
  // MT-safety assumptions.
633 634
  double _inc_cset_predicted_elapsed_time_ms;

635 636 637
  // See the comment for _inc_cset_recorded_rs_lengths_diffs.
  double _inc_cset_predicted_elapsed_time_ms_diffs;

638 639 640 641 642 643 644 645 646 647
  // Stash a pointer to the g1 heap.
  G1CollectedHeap* _g1;

  // The ratio of gc time to elapsed time, computed over recent pauses.
  double _recent_avg_pause_time_ratio;

  double recent_avg_pause_time_ratio() {
    return _recent_avg_pause_time_ratio;
  }

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  // At the end of a pause we check the heap occupancy and we decide
  // whether we will start a marking cycle during the next pause. If
  // we decide that we want to do that, we will set this parameter to
  // true. So, this parameter will stay true between the end of a
  // pause and the beginning of a subsequent pause (not necessarily
  // the next one, see the comments on the next field) when we decide
  // that we will indeed start a marking cycle and do the initial-mark
  // work.
  volatile bool _initiate_conc_mark_if_possible;

  // If initiate_conc_mark_if_possible() is set at the beginning of a
  // pause, it is a suggestion that the pause should start a marking
  // cycle by doing the initial-mark work. However, it is possible
  // that the concurrent marking thread is still finishing up the
  // previous marking cycle (e.g., clearing the next marking
  // bitmap). If that is the case we cannot start a new cycle and
  // we'll have to wait for the concurrent marking thread to finish
  // what it is doing. In this case we will postpone the marking cycle
  // initiation decision for the next pause. When we eventually decide
  // to start a cycle, we will set _during_initial_mark_pause which
  // will stay true until the end of the initial-mark pause and it's
  // the condition that indicates that a pause is doing the
  // initial-mark work.
  volatile bool _during_initial_mark_pause;
672

673
  bool _last_young_gc;
674 675 676 677 678 679

  // This set of variables tracks the collector efficiency, in order to
  // determine whether we should initiate a new marking.
  double _cur_mark_stop_world_time_ms;
  double _mark_remark_start_sec;
  double _mark_cleanup_start_sec;
680
  double _root_region_scan_wait_time_ms;
681

682 683 684 685 686 687 688 689 690 691
  // Update the young list target length either by setting it to the
  // desired fixed value or by calculating it using G1's pause
  // prediction model. If no rs_lengths parameter is passed, predict
  // the RS lengths using the prediction model, otherwise use the
  // given rs_lengths as the prediction.
  void update_young_list_target_length(size_t rs_lengths = (size_t) -1);

  // Calculate and return the minimum desired young list target
  // length. This is the minimum desired young list length according
  // to the user's inputs.
692
  uint calculate_young_list_desired_min_length(uint base_min_length);
693 694 695 696

  // Calculate and return the maximum desired young list target
  // length. This is the maximum desired young list length according
  // to the user's inputs.
697
  uint calculate_young_list_desired_max_length();
698 699 700 701 702 703 704

  // Calculate and return the maximum young list target length that
  // can fit into the pause time goal. The parameters are: rs_lengths
  // represent the prediction of how large the young RSet lengths will
  // be, base_min_length is the alreay existing number of regions in
  // the young list, min_length and max_length are the desired min and
  // max young list length according to the user's inputs.
705 706 707 708
  uint calculate_young_list_target_length(size_t rs_lengths,
                                          uint base_min_length,
                                          uint desired_min_length,
                                          uint desired_max_length);
709 710 711 712 713 714

  // Check whether a given young length (young_length) fits into the
  // given target pause time and whether the prediction for the amount
  // of objects to be copied for the given length will fit into the
  // given free space (expressed by base_free_regions).  It is used by
  // calculate_young_list_target_length().
715 716
  bool predict_will_fit(uint young_length, double base_time_ms,
                        uint base_free_regions, double target_pause_time_ms);
717

718 719 720
  // Count the number of bytes used in the CS.
  void count_CS_bytes_used();

721 722 723 724 725 726 727 728 729 730
public:

  G1CollectorPolicy();

  virtual G1CollectorPolicy* as_g1_policy() { return this; }

  virtual CollectorPolicy::Name kind() {
    return CollectorPolicy::G1CollectorPolicyKind;
  }

731 732 733 734
  // Check the current value of the young list RSet lengths and
  // compare it against the last prediction. If the current value is
  // higher, recalculate the young list target length prediction.
  void revise_young_list_target_length_if_necessary();
735 736 737 738 739

  size_t bytes_in_collection_set() {
    return _bytes_in_collection_set_before_gc;
  }

740
  // This should be called after the heap is resized.
741
  void record_new_heap_size(uint new_number_of_regions);
742

743
  void init();
744

745 746 747
  // Create jstat counters for the policy.
  virtual void initialize_gc_policy_counters();

748 749 750 751 752 753 754 755 756 757 758 759 760
  virtual HeapWord* mem_allocate_work(size_t size,
                                      bool is_tlab,
                                      bool* gc_overhead_limit_was_exceeded);

  // This method controls how a collector handles one or more
  // of its generations being fully allocated.
  virtual HeapWord* satisfy_failed_allocation(size_t size,
                                              bool is_tlab);

  BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }

  GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }

761
  bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
762

763 764 765 766
  // Update the heuristic info to record a collection pause of the given
  // start time, where the given number of bytes were used at the start.
  // This may involve changing the desired size of a collection set.

767
  void record_stop_world_start();
768

769
  void record_collection_pause_start(double start_time_sec, size_t start_used);
770 771

  // Must currently be called while the world is stopped.
772
  void record_concurrent_mark_init_end(double
773 774
                                           mark_init_elapsed_time_ms);

775 776 777 778
  void record_root_region_scan_wait_time(double time_ms) {
    _root_region_scan_wait_time_ms = time_ms;
  }

779 780
  void record_concurrent_mark_remark_start();
  void record_concurrent_mark_remark_end();
781

782
  void record_concurrent_mark_cleanup_start();
783
  void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
784
  void record_concurrent_mark_cleanup_completed();
785

786 787
  void record_concurrent_pause();
  void record_concurrent_pause_end();
788

789
  void record_collection_pause_end(int no_of_gc_threads);
790
  void print_heap_transition();
791 792

  // Record the fact that a full collection occurred.
793 794
  void record_full_collection_start();
  void record_full_collection_end();
795

796 797 798 799
  void record_gc_worker_start_time(int worker_i, double ms) {
    _par_last_gc_worker_start_times_ms[worker_i] = ms;
  }

800 801 802 803
  void record_ext_root_scan_time(int worker_i, double ms) {
    _par_last_ext_root_scan_times_ms[worker_i] = ms;
  }

804 805
  void record_satb_filtering_time(int worker_i, double ms) {
    _par_last_satb_filtering_times_ms[worker_i] = ms;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
  }

  void record_update_rs_time(int thread, double ms) {
    _par_last_update_rs_times_ms[thread] = ms;
  }

  void record_update_rs_processed_buffers (int thread,
                                           double processed_buffers) {
    _par_last_update_rs_processed_buffers[thread] = processed_buffers;
  }

  void record_scan_rs_time(int thread, double ms) {
    _par_last_scan_rs_times_ms[thread] = ms;
  }

  void reset_obj_copy_time(int thread) {
    _par_last_obj_copy_times_ms[thread] = 0.0;
  }

  void reset_obj_copy_time() {
    reset_obj_copy_time(0);
  }

  void record_obj_copy_time(int thread, double ms) {
    _par_last_obj_copy_times_ms[thread] += ms;
  }

833
  void record_termination(int thread, double ms, size_t attempts) {
834
    _par_last_termination_times_ms[thread] = ms;
835
    _par_last_termination_attempts[thread] = (double) attempts;
836 837
  }

838 839
  void record_gc_worker_end_time(int worker_i, double ms) {
    _par_last_gc_worker_end_times_ms[worker_i] = ms;
840 841
  }

842
  void record_pause_time_ms(double ms) {
843 844 845 846 847 848 849 850 851 852 853
    _last_pause_time_ms = ms;
  }

  void record_clear_ct_time(double ms) {
    _cur_clear_ct_time_ms = ms;
  }

  void record_par_time(double ms) {
    _cur_collection_par_time_ms = ms;
  }

854 855 856 857
  void record_code_root_fixup_time(double ms) {
    _cur_collection_code_root_fixup_time_ms = ms;
  }

858 859 860 861 862 863 864 865
  void record_ref_proc_time(double ms) {
    _cur_ref_proc_time_ms = ms;
  }

  void record_ref_enq_time(double ms) {
    _cur_ref_enq_time_ms = ms;
  }

866 867 868 869 870 871 872 873 874 875 876 877
#ifndef PRODUCT
  void record_cc_clear_time(double ms) {
    if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
      _min_clear_cc_time_ms = ms;
    if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
      _max_clear_cc_time_ms = ms;
    _cur_clear_cc_time_ms = ms;
    _cum_clear_cc_time_ms += ms;
    _num_cc_clears++;
  }
#endif

878 879 880 881 882 883 884 885 886 887
  // Record how much space we copied during a GC. This is typically
  // called when a GC alloc region is being retired.
  void record_bytes_copied_during_gc(size_t bytes) {
    _bytes_copied_during_gc += bytes;
  }

  // The amount of space we copied during a GC.
  size_t bytes_copied_during_gc() {
    return _bytes_copied_during_gc;
  }
888

889 890 891
  // Determine whether there are candidate regions so that the
  // next GC should be mixed. The two action strings are used
  // in the ergo output when the method returns true or false.
892 893 894
  bool next_gc_should_be_mixed(const char* true_action_str,
                               const char* false_action_str);

895 896 897
  // Choose a new collection set.  Marks the chosen regions as being
  // "in_collection_set", and links them together.  The head and number of
  // the collection set are available via access methods.
898
  void finalize_cset(double target_pause_time_ms);
899 900 901 902 903

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set.
  HeapRegion* collection_set() { return _collection_set; }

904 905
  void clear_collection_set() { _collection_set = NULL; }

906 907
  // Add old region "hr" to the CSet.
  void add_old_region_to_cset(HeapRegion* hr);
908

909 910 911 912 913 914 915 916 917 918 919
  // Incremental CSet Support

  // The head of the incrementally built collection set.
  HeapRegion* inc_cset_head() { return _inc_cset_head; }

  // The tail of the incrementally built collection set.
  HeapRegion* inc_set_tail() { return _inc_cset_tail; }

  // Initialize incremental collection set info.
  void start_incremental_cset_building();

920 921 922 923
  // Perform any final calculations on the incremental CSet fields
  // before we can use them.
  void finalize_incremental_cset_building();

924 925 926 927 928 929 930 931
  void clear_incremental_cset() {
    _inc_cset_head = NULL;
    _inc_cset_tail = NULL;
  }

  // Stop adding regions to the incremental collection set
  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }

932 933
  // Add information about hr to the aggregated information for the
  // incrementally built collection set.
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);

  // Update information about hr in the aggregated information for
  // the incrementally built collection set.
  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);

private:
  // Update the incremental cset information when adding a region
  // (should not be called directly).
  void add_region_to_incremental_cset_common(HeapRegion* hr);

public:
  // Add hr to the LHS of the incremental collection set.
  void add_region_to_incremental_cset_lhs(HeapRegion* hr);

  // Add hr to the RHS of the incremental collection set.
  void add_region_to_incremental_cset_rhs(HeapRegion* hr);

#ifndef PRODUCT
  void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT

956 957 958 959 960 961 962 963
  bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }

  bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }

964 965 966 967
  // This sets the initiate_conc_mark_if_possible() flag to start a
  // new cycle, as long as we are not already in one. It's best if it
  // is called during a safepoint when the test whether a cycle is in
  // progress or not is stable.
968
  bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
969

970 971 972 973 974 975 976
  // This is called at the very beginning of an evacuation pause (it
  // has to be the first thing that the pause does). If
  // initiate_conc_mark_if_possible() is true, and the concurrent
  // marking thread has completed its work during the previous cycle,
  // it will set during_initial_mark_pause() to so that the pause does
  // the initial-mark work and start a marking cycle.
  void decide_on_conc_mark_initiation();
977 978 979

  // If an expansion would be appropriate, because recent GC overhead had
  // exceeded the desired limit, return an amount to expand by.
980
  size_t expansion_amount();
981 982 983 984 985 986 987

  // Print tracing information.
  void print_tracing_info() const;

  // Print stats on young survival ratio
  void print_yg_surv_rate_info() const;

988 989 990 991 992 993
  void finished_recalculating_age_indexes(bool is_survivors) {
    if (is_survivors) {
      _survivor_surv_rate_group->finished_recalculating_age_indexes();
    } else {
      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
    }
994 995 996
    // do that for any other surv rate groups
  }

997
  bool is_young_list_full() {
998 999
    uint young_list_length = _g1->young_list()->length();
    uint young_list_target_length = _young_list_target_length;
1000 1001
    return young_list_length >= young_list_target_length;
  }
1002

1003
  bool can_expand_young_list() {
1004 1005
    uint young_list_length = _g1->young_list()->length();
    uint young_list_max_length = _young_list_max_length;
1006
    return young_list_length < young_list_max_length;
1007
  }
1008

1009
  uint young_list_max_length() {
1010 1011 1012
    return _young_list_max_length;
  }

1013 1014
  bool gcs_are_young() {
    return _gcs_are_young;
1015
  }
1016 1017
  void set_gcs_are_young(bool gcs_are_young) {
    _gcs_are_young = gcs_are_young;
1018 1019 1020
  }

  bool adaptive_young_list_length() {
1021
    return _young_gen_sizer->adaptive_young_list_length();
1022 1023
  }

1024
private:
1025 1026 1027 1028 1029 1030 1031 1032
  //
  // Survivor regions policy.
  //

  // Current tenuring threshold, set to 0 if the collector reaches the
  // maximum amount of suvivors regions.
  int _tenuring_threshold;

1033
  // The limit on the number of regions allocated for survivors.
1034
  uint _max_survivor_regions;
1035

1036 1037 1038 1039 1040
  // For reporting purposes.
  size_t _eden_bytes_before_gc;
  size_t _survivor_bytes_before_gc;
  size_t _capacity_before_gc;

1041
  // The amount of survor regions after a collection.
1042
  uint _recorded_survivor_regions;
1043 1044 1045 1046 1047 1048
  // List of survivor regions.
  HeapRegion* _recorded_survivor_head;
  HeapRegion* _recorded_survivor_tail;

  ageTable _survivors_age_table;

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
public:

  inline GCAllocPurpose
    evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
      if (age < _tenuring_threshold && src_region->is_young()) {
        return GCAllocForSurvived;
      } else {
        return GCAllocForTenured;
      }
  }

  inline bool track_object_age(GCAllocPurpose purpose) {
    return purpose == GCAllocForSurvived;
  }

1064
  static const uint REGIONS_UNLIMITED = (uint) -1;
1065

1066
  uint max_regions(int purpose);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

  // The limit on regions for a particular purpose is reached.
  void note_alloc_region_limit_reached(int purpose) {
    if (purpose == GCAllocForSurvived) {
      _tenuring_threshold = 0;
    }
  }

  void note_start_adding_survivor_regions() {
    _survivor_surv_rate_group->start_adding_regions();
  }

  void note_stop_adding_survivor_regions() {
    _survivor_surv_rate_group->stop_adding_regions();
  }
1082

1083
  void record_survivor_regions(uint regions,
1084 1085 1086 1087 1088 1089 1090
                               HeapRegion* head,
                               HeapRegion* tail) {
    _recorded_survivor_regions = regions;
    _recorded_survivor_head    = head;
    _recorded_survivor_tail    = tail;
  }

1091
  uint recorded_survivor_regions() {
1092 1093 1094
    return _recorded_survivor_regions;
  }

1095
  void record_thread_age_table(ageTable* age_table) {
1096 1097 1098
    _survivors_age_table.merge_par(age_table);
  }

1099
  void update_max_gc_locker_expansion();
1100

1101
  // Calculates survivor space parameters.
1102
  void update_survivors_policy();
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
};

// This should move to some place more general...

// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
  double n_d = (double)n;
  double avg = sum/n_d;
  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}

1117
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP