g1CollectorPolicy.hpp 38.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector.  Examples include:
//   * choice of collection set.
//   * when to collect.

class HeapRegion;
class CollectionSetChooser;

// Yes, this is a bit unpleasant... but it saves replicating the same thing
// over and over again and introducing subtle problems through small typos and
// cutting and pasting mistakes. The macros below introduces a number
// sequnce into the following two classes and the methods that access it.

#define define_num_seq(name)                                                  \
private:                                                                      \
  NumberSeq _all_##name##_times_ms;                                           \
public:                                                                       \
  void record_##name##_time_ms(double ms) {                                   \
    _all_##name##_times_ms.add(ms);                                           \
  }                                                                           \
  NumberSeq* get_##name##_seq() {                                             \
    return &_all_##name##_times_ms;                                           \
  }

class MainBodySummary;

58
class PauseSummary: public CHeapObj {
59 60 61 62 63 64 65
  define_num_seq(total)
    define_num_seq(other)

public:
  virtual MainBodySummary*    main_body_summary()    { return NULL; }
};

66
class MainBodySummary: public CHeapObj {
67
  define_num_seq(root_region_scan_wait)
68 69
  define_num_seq(parallel) // parallel only
    define_num_seq(ext_root_scan)
70
    define_num_seq(satb_filtering)
71 72 73 74 75
    define_num_seq(update_rs)
    define_num_seq(scan_rs)
    define_num_seq(obj_copy)
    define_num_seq(termination) // parallel only
    define_num_seq(parallel_other) // parallel only
J
johnc 已提交
76
  define_num_seq(clear_ct)
77 78
};

79 80
class Summary: public PauseSummary,
               public MainBodySummary {
81 82 83 84
public:
  virtual MainBodySummary*    main_body_summary()    { return this; }
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// There are three command line options related to the young gen size:
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
// just a short form for NewSize==MaxNewSize). G1 will use its internal
// heuristics to calculate the actual young gen size, so these options
// basically only limit the range within which G1 can pick a young gen
// size. Also, these are general options taking byte sizes. G1 will
// internally work with a number of regions instead. So, some rounding
// will occur.
//
// If nothing related to the the young gen size is set on the command
// line we should allow the young gen to be between
// G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
// heap size. This means that every time the heap size changes the
// limits for the young gen size will be updated.
//
// If only -XX:NewSize is set we should use the specified value as the
// minimum size for young gen. Still using G1DefaultMaxNewGenPercent
// of the heap as maximum.
//
// If only -XX:MaxNewSize is set we should use the specified value as the
// maximum size for young gen. Still using G1DefaultMinNewGenPercent
// of the heap as minimum.
//
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
// No updates when the heap size changes. There is a special case when
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
// different heuristic for calculating the collection set when we do mixed
// collection.
//
// If only -XX:NewRatio is set we should use the specified ratio of the heap
// as both min and max. This will be interpreted as "fixed" just like the
// NewSize==MaxNewSize case above. But we will update the min and max
// everytime the heap size changes.
//
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
class G1YoungGenSizer : public CHeapObj {
private:
  enum SizerKind {
    SizerDefaults,
    SizerNewSizeOnly,
    SizerMaxNewSizeOnly,
    SizerMaxAndNewSize,
    SizerNewRatio
  };
  SizerKind _sizer_kind;
131 132
  uint _min_desired_young_length;
  uint _max_desired_young_length;
133
  bool _adaptive_size;
134 135
  uint calculate_default_min_length(uint new_number_of_heap_regions);
  uint calculate_default_max_length(uint new_number_of_heap_regions);
136 137 138

public:
  G1YoungGenSizer();
139 140
  void heap_size_changed(uint new_number_of_heap_regions);
  uint min_desired_young_length() {
141 142
    return _min_desired_young_length;
  }
143
  uint max_desired_young_length() {
144 145 146 147 148 149 150
    return _max_desired_young_length;
  }
  bool adaptive_young_list_length() {
    return _adaptive_size;
  }
};

151
class G1CollectorPolicy: public CollectorPolicy {
152
private:
153 154 155 156
  // either equal to the number of parallel threads, if ParallelGCThreads
  // has been set, or 1 otherwise
  int _parallel_gc_threads;

157 158 159
  // The number of GC threads currently active.
  uintx _no_of_gc_threads;

160
  enum SomePrivateConstants {
161
    NumPrevPausesForHeuristics = 10
162 163 164 165 166 167 168 169 170 171 172 173
  };

  G1MMUTracker* _mmu_tracker;

  void initialize_flags();

  void initialize_all() {
    initialize_flags();
    initialize_size_info();
    initialize_perm_generation(PermGen::MarkSweepCompact);
  }

174
  CollectionSetChooser* _collectionSetChooser;
175 176 177

  double _cur_collection_start_sec;
  size_t _cur_collection_pause_used_at_start_bytes;
178
  uint   _cur_collection_pause_used_regions_at_start;
179
  double _cur_collection_par_time_ms;
180 181 182

  double _cur_collection_code_root_fixup_time_ms;

183
  double _cur_clear_ct_time_ms;
184 185
  double _cur_ref_proc_time_ms;
  double _cur_ref_enq_time_ms;
186

187 188 189 190 191 192 193 194 195
#ifndef PRODUCT
  // Card Table Count Cache stats
  double _min_clear_cc_time_ms;         // min
  double _max_clear_cc_time_ms;         // max
  double _cur_clear_cc_time_ms;         // clearing time during current pause
  double _cum_clear_cc_time_ms;         // cummulative clearing time
  jlong  _num_cc_clears;                // number of times the card count cache has been cleared
#endif

196 197 198 199 200 201
  // These exclude marking times.
  TruncatedSeq* _recent_gc_times_ms;

  TruncatedSeq* _concurrent_mark_remark_times_ms;
  TruncatedSeq* _concurrent_mark_cleanup_times_ms;

202
  Summary*           _summary;
203 204 205 206 207 208 209 210 211 212 213 214 215

  NumberSeq* _all_pause_times_ms;
  NumberSeq* _all_full_gc_times_ms;
  double _stop_world_start;
  NumberSeq* _all_stop_world_times_ms;
  NumberSeq* _all_yield_times_ms;

  int        _aux_num;
  NumberSeq* _all_aux_times_ms;
  double*    _cur_aux_start_times_ms;
  double*    _cur_aux_times_ms;
  bool*      _cur_aux_times_set;

216
  double* _par_last_gc_worker_start_times_ms;
217
  double* _par_last_ext_root_scan_times_ms;
218
  double* _par_last_satb_filtering_times_ms;
219 220 221 222 223
  double* _par_last_update_rs_times_ms;
  double* _par_last_update_rs_processed_buffers;
  double* _par_last_scan_rs_times_ms;
  double* _par_last_obj_copy_times_ms;
  double* _par_last_termination_times_ms;
224 225
  double* _par_last_termination_attempts;
  double* _par_last_gc_worker_end_times_ms;
226
  double* _par_last_gc_worker_times_ms;
227

J
johnc 已提交
228
  // Each workers 'other' time i.e. the elapsed time of the parallel
229 230
  // code executed by a worker minus the sum of the individual sub-phase
  // times for that worker thread.
J
johnc 已提交
231 232
  double* _par_last_gc_worker_other_times_ms;

233 234
  // indicates whether we are in young or mixed GC mode
  bool _gcs_are_young;
235

236 237
  uint _young_list_target_length;
  uint _young_list_fixed_length;
238
  size_t _prev_eden_capacity; // used for logging
239

240 241
  // The max number of regions we can extend the eden by while the GC
  // locker is active. This should be >= _young_list_target_length;
242
  uint _young_list_max_length;
243

244
  bool                  _last_gc_was_young;
245

246 247
  unsigned              _young_pause_num;
  unsigned              _mixed_pause_num;
248 249 250 251 252 253 254 255 256

  bool                  _during_marking;
  bool                  _in_marking_window;
  bool                  _in_marking_window_im;

  SurvRateGroup*        _short_lived_surv_rate_group;
  SurvRateGroup*        _survivor_surv_rate_group;
  // add here any more surv rate groups

T
tonyp 已提交
257 258
  double                _gc_overhead_perc;

259
  double _reserve_factor;
260
  uint _reserve_regions;
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  bool during_marking() {
    return _during_marking;
  }

private:
  enum PredictionConstants {
    TruncatedSeqLength = 10
  };

  TruncatedSeq* _alloc_rate_ms_seq;
  double        _prev_collection_pause_end_ms;

  TruncatedSeq* _pending_card_diff_seq;
  TruncatedSeq* _rs_length_diff_seq;
  TruncatedSeq* _cost_per_card_ms_seq;
277 278
  TruncatedSeq* _young_cards_per_entry_ratio_seq;
  TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
279
  TruncatedSeq* _cost_per_entry_ms_seq;
280
  TruncatedSeq* _mixed_cost_per_entry_ms_seq;
281 282 283 284 285 286 287 288 289 290
  TruncatedSeq* _cost_per_byte_ms_seq;
  TruncatedSeq* _constant_other_time_ms_seq;
  TruncatedSeq* _young_other_cost_per_region_ms_seq;
  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;

  TruncatedSeq* _pending_cards_seq;
  TruncatedSeq* _rs_lengths_seq;

  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;

291
  G1YoungGenSizer* _young_gen_sizer;
292

293 294 295
  uint _eden_cset_region_length;
  uint _survivor_cset_region_length;
  uint _old_cset_region_length;
296

297 298
  void init_cset_region_lengths(uint eden_cset_region_length,
                                uint survivor_cset_region_length);
299

300 301 302
  uint eden_cset_region_length()     { return _eden_cset_region_length;     }
  uint survivor_cset_region_length() { return _survivor_cset_region_length; }
  uint old_cset_region_length()      { return _old_cset_region_length;      }
303

304
  uint _free_regions_at_end_of_collection;
305 306 307 308 309 310 311 312 313 314 315

  size_t _recorded_rs_lengths;
  size_t _max_rs_lengths;

  double _recorded_young_free_cset_time_ms;
  double _recorded_non_young_free_cset_time_ms;

  double _sigma;

  size_t _rs_lengths_prediction;

316
  double sigma() { return _sigma; }
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

  // A function that prevents us putting too much stock in small sample
  // sets.  Returns a number between 2.0 and 1.0, depending on the number
  // of samples.  5 or more samples yields one; fewer scales linearly from
  // 2.0 at 1 sample to 1.0 at 5.
  double confidence_factor(int samples) {
    if (samples > 4) return 1.0;
    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
  }

  double get_new_neg_prediction(TruncatedSeq* seq) {
    return seq->davg() - sigma() * seq->dsd();
  }

#ifndef PRODUCT
  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT

335 336 337 338
  void adjust_concurrent_refinement(double update_rs_time,
                                    double update_rs_processed_buffers,
                                    double goal_ms);

339 340 341
  uintx no_of_gc_threads() { return _no_of_gc_threads; }
  void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }

342 343 344 345 346 347 348
  double _pause_time_target_ms;
  double _recorded_young_cset_choice_time_ms;
  double _recorded_non_young_cset_choice_time_ms;
  size_t _pending_cards;
  size_t _max_pending_cards;

public:
349
  // Accessors
350

351 352
  void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
    hr->set_young();
353
    hr->install_surv_rate_group(_short_lived_surv_rate_group);
354
    hr->set_young_index_in_cset(young_index_in_cset);
355 356
  }

357 358
  void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
    assert(hr->is_young() && hr->is_survivor(), "pre-condition");
359
    hr->install_surv_rate_group(_survivor_surv_rate_group);
360
    hr->set_young_index_in_cset(young_index_in_cset);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  }

#ifndef PRODUCT
  bool verify_young_ages();
#endif // PRODUCT

  double get_new_prediction(TruncatedSeq* seq) {
    return MAX2(seq->davg() + sigma() * seq->dsd(),
                seq->davg() * confidence_factor(seq->num()));
  }

  void record_max_rs_lengths(size_t rs_lengths) {
    _max_rs_lengths = rs_lengths;
  }

  size_t predict_pending_card_diff() {
    double prediction = get_new_neg_prediction(_pending_card_diff_seq);
378
    if (prediction < 0.00001) {
379
      return 0;
380
    } else {
381
      return (size_t) prediction;
382
    }
383 384 385 386 387 388
  }

  size_t predict_pending_cards() {
    size_t max_pending_card_num = _g1->max_pending_card_num();
    size_t diff = predict_pending_card_diff();
    size_t prediction;
389
    if (diff > max_pending_card_num) {
390
      prediction = max_pending_card_num;
391
    } else {
392
      prediction = max_pending_card_num - diff;
393
    }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

    return prediction;
  }

  size_t predict_rs_length_diff() {
    return (size_t) get_new_prediction(_rs_length_diff_seq);
  }

  double predict_alloc_rate_ms() {
    return get_new_prediction(_alloc_rate_ms_seq);
  }

  double predict_cost_per_card_ms() {
    return get_new_prediction(_cost_per_card_ms_seq);
  }

  double predict_rs_update_time_ms(size_t pending_cards) {
    return (double) pending_cards * predict_cost_per_card_ms();
  }

414 415
  double predict_young_cards_per_entry_ratio() {
    return get_new_prediction(_young_cards_per_entry_ratio_seq);
416 417
  }

418 419 420 421 422 423
  double predict_mixed_cards_per_entry_ratio() {
    if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
      return predict_young_cards_per_entry_ratio();
    } else {
      return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
    }
424 425 426 427
  }

  size_t predict_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
428
                     predict_young_cards_per_entry_ratio());
429 430 431 432
  }

  size_t predict_non_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
433
                     predict_mixed_cards_per_entry_ratio());
434 435 436
  }

  double predict_rs_scan_time_ms(size_t card_num) {
437
    if (gcs_are_young()) {
438
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
439 440 441
    } else {
      return predict_mixed_rs_scan_time_ms(card_num);
    }
442 443
  }

444 445
  double predict_mixed_rs_scan_time_ms(size_t card_num) {
    if (_mixed_cost_per_entry_ms_seq->num() < 3) {
446
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
447 448 449 450
    } else {
      return (double) (card_num *
                       get_new_prediction(_mixed_cost_per_entry_ms_seq));
    }
451 452 453
  }

  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
454 455 456 457
    if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
      return (1.1 * (double) bytes_to_copy) *
              get_new_prediction(_cost_per_byte_ms_seq);
    } else {
458
      return (double) bytes_to_copy *
459 460
             get_new_prediction(_cost_per_byte_ms_during_cm_seq);
    }
461 462 463
  }

  double predict_object_copy_time_ms(size_t bytes_to_copy) {
464
    if (_in_marking_window && !_in_marking_window_im) {
465
      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
466
    } else {
467
      return (double) bytes_to_copy *
468 469
              get_new_prediction(_cost_per_byte_ms_seq);
    }
470 471 472 473 474 475 476
  }

  double predict_constant_other_time_ms() {
    return get_new_prediction(_constant_other_time_ms_seq);
  }

  double predict_young_other_time_ms(size_t young_num) {
477 478
    return (double) young_num *
           get_new_prediction(_young_other_cost_per_region_ms_seq);
479 480 481
  }

  double predict_non_young_other_time_ms(size_t non_young_num) {
482 483
    return (double) non_young_num *
           get_new_prediction(_non_young_other_cost_per_region_ms_seq);
484 485 486 487 488 489 490 491
  }

  double predict_base_elapsed_time_ms(size_t pending_cards);
  double predict_base_elapsed_time_ms(size_t pending_cards,
                                      size_t scanned_cards);
  size_t predict_bytes_to_copy(HeapRegion* hr);
  double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);

492
  void set_recorded_rs_lengths(size_t rs_lengths);
493

494 495 496 497
  uint cset_region_length()       { return young_cset_region_length() +
                                           old_cset_region_length(); }
  uint young_cset_region_length() { return eden_cset_region_length() +
                                           survivor_cset_region_length(); }
498 499 500 501 502 503 504 505 506

  void record_young_free_cset_time_ms(double time_ms) {
    _recorded_young_free_cset_time_ms = time_ms;
  }

  void record_non_young_free_cset_time_ms(double time_ms) {
    _recorded_non_young_free_cset_time_ms = time_ms;
  }

507 508
  double predict_survivor_regions_evac_time();

509
  void cset_regions_freed() {
510
    bool propagate = _last_gc_was_young && !_in_marking_window;
511 512 513 514 515 516 517 518 519
    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
    // also call it on any more surv rate groups
  }

  G1MMUTracker* mmu_tracker() {
    return _mmu_tracker;
  }

520 521 522 523
  double max_pause_time_ms() {
    return _mmu_tracker->max_gc_time() * 1000.0;
  }

524 525 526 527 528 529 530 531 532 533
  double predict_remark_time_ms() {
    return get_new_prediction(_concurrent_mark_remark_times_ms);
  }

  double predict_cleanup_time_ms() {
    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
  }

  // Returns an estimate of the survival rate of the region at yg-age
  // "yg_age".
534 535
  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
    TruncatedSeq* seq = surv_rate_group->get_seq(age);
536 537 538 539 540 541 542 543 544
    if (seq->num() == 0)
      gclog_or_tty->print("BARF! age is %d", age);
    guarantee( seq->num() > 0, "invariant" );
    double pred = get_new_prediction(seq);
    if (pred > 1.0)
      pred = 1.0;
    return pred;
  }

545 546 547 548
  double predict_yg_surv_rate(int age) {
    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
  }

549 550 551 552
  double accum_yg_surv_rate_pred(int age) {
    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
  }

553
private:
554
  void print_stats(int level, const char* str, double value);
555
  void print_stats(int level, const char* str, double value, int workers);
556 557
  void print_stats(int level, const char* str, int value);

558
  void print_par_stats(int level, const char* str, double* data, bool showDecimals = true);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

  void check_other_times(int level,
                         NumberSeq* other_times_ms,
                         NumberSeq* calc_other_times_ms) const;

  void print_summary (PauseSummary* stats) const;

  void print_summary (int level, const char* str, NumberSeq* seq) const;
  void print_summary_sd (int level, const char* str, NumberSeq* seq) const;

  double avg_value (double* data);
  double max_value (double* data);
  double sum_of_values (double* data);
  double max_sum (double* data1, double* data2);

  double _last_pause_time_ms;

  size_t _bytes_in_collection_set_before_gc;
577 578
  size_t _bytes_copied_during_gc;

579 580 581 582 583 584 585 586 587 588
  // Used to count used bytes in CS.
  friend class CountCSClosure;

  // Statistics kept per GC stoppage, pause or full.
  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;

  // Add a new GC of the given duration and end time to the record.
  void update_recent_gc_times(double end_time_sec, double elapsed_ms);

  // The head of the list (via "next_in_collection_set()") representing the
589 590
  // current collection set. Set from the incrementally built collection
  // set at the start of the pause.
591
  HeapRegion* _collection_set;
592 593 594 595

  // The number of bytes in the collection set before the pause. Set from
  // the incrementally built collection set at the start of an evacuation
  // pause.
596 597
  size_t _collection_set_bytes_used_before;

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
  // The associated information that is maintained while the incremental
  // collection set is being built with young regions. Used to populate
  // the recorded info for the evacuation pause.

  enum CSetBuildType {
    Active,             // We are actively building the collection set
    Inactive            // We are not actively building the collection set
  };

  CSetBuildType _inc_cset_build_state;

  // The head of the incrementally built collection set.
  HeapRegion* _inc_cset_head;

  // The tail of the incrementally built collection set.
  HeapRegion* _inc_cset_tail;

  // The number of bytes in the incrementally built collection set.
  // Used to set _collection_set_bytes_used_before at the start of
  // an evacuation pause.
  size_t _inc_cset_bytes_used_before;

  // Used to record the highest end of heap region in collection set
  HeapWord* _inc_cset_max_finger;

623 624 625 626 627
  // The RSet lengths recorded for regions in the CSet. It is updated
  // by the thread that adds a new region to the CSet. We assume that
  // only one thread can be allocating a new CSet region (currently,
  // it does so after taking the Heap_lock) hence no need to
  // synchronize updates to this field.
628 629
  size_t _inc_cset_recorded_rs_lengths;

630 631 632 633 634 635 636 637 638 639 640
  // A concurrent refinement thread periodcially samples the young
  // region RSets and needs to update _inc_cset_recorded_rs_lengths as
  // the RSets grow. Instead of having to syncronize updates to that
  // field we accumulate them in this field and add it to
  // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
  ssize_t _inc_cset_recorded_rs_lengths_diffs;

  // The predicted elapsed time it will take to collect the regions in
  // the CSet. This is updated by the thread that adds a new region to
  // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
  // MT-safety assumptions.
641 642
  double _inc_cset_predicted_elapsed_time_ms;

643 644 645
  // See the comment for _inc_cset_recorded_rs_lengths_diffs.
  double _inc_cset_predicted_elapsed_time_ms_diffs;

646 647 648 649 650 651 652 653 654 655
  // Stash a pointer to the g1 heap.
  G1CollectedHeap* _g1;

  // The ratio of gc time to elapsed time, computed over recent pauses.
  double _recent_avg_pause_time_ratio;

  double recent_avg_pause_time_ratio() {
    return _recent_avg_pause_time_ratio;
  }

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
  // At the end of a pause we check the heap occupancy and we decide
  // whether we will start a marking cycle during the next pause. If
  // we decide that we want to do that, we will set this parameter to
  // true. So, this parameter will stay true between the end of a
  // pause and the beginning of a subsequent pause (not necessarily
  // the next one, see the comments on the next field) when we decide
  // that we will indeed start a marking cycle and do the initial-mark
  // work.
  volatile bool _initiate_conc_mark_if_possible;

  // If initiate_conc_mark_if_possible() is set at the beginning of a
  // pause, it is a suggestion that the pause should start a marking
  // cycle by doing the initial-mark work. However, it is possible
  // that the concurrent marking thread is still finishing up the
  // previous marking cycle (e.g., clearing the next marking
  // bitmap). If that is the case we cannot start a new cycle and
  // we'll have to wait for the concurrent marking thread to finish
  // what it is doing. In this case we will postpone the marking cycle
  // initiation decision for the next pause. When we eventually decide
  // to start a cycle, we will set _during_initial_mark_pause which
  // will stay true until the end of the initial-mark pause and it's
  // the condition that indicates that a pause is doing the
  // initial-mark work.
  volatile bool _during_initial_mark_pause;
680

681
  bool _last_young_gc;
682 683 684 685 686 687

  // This set of variables tracks the collector efficiency, in order to
  // determine whether we should initiate a new marking.
  double _cur_mark_stop_world_time_ms;
  double _mark_remark_start_sec;
  double _mark_cleanup_start_sec;
688
  double _root_region_scan_wait_time_ms;
689

690 691 692 693 694 695 696 697 698 699
  // Update the young list target length either by setting it to the
  // desired fixed value or by calculating it using G1's pause
  // prediction model. If no rs_lengths parameter is passed, predict
  // the RS lengths using the prediction model, otherwise use the
  // given rs_lengths as the prediction.
  void update_young_list_target_length(size_t rs_lengths = (size_t) -1);

  // Calculate and return the minimum desired young list target
  // length. This is the minimum desired young list length according
  // to the user's inputs.
700
  uint calculate_young_list_desired_min_length(uint base_min_length);
701 702 703 704

  // Calculate and return the maximum desired young list target
  // length. This is the maximum desired young list length according
  // to the user's inputs.
705
  uint calculate_young_list_desired_max_length();
706 707 708 709 710 711 712

  // Calculate and return the maximum young list target length that
  // can fit into the pause time goal. The parameters are: rs_lengths
  // represent the prediction of how large the young RSet lengths will
  // be, base_min_length is the alreay existing number of regions in
  // the young list, min_length and max_length are the desired min and
  // max young list length according to the user's inputs.
713 714 715 716
  uint calculate_young_list_target_length(size_t rs_lengths,
                                          uint base_min_length,
                                          uint desired_min_length,
                                          uint desired_max_length);
717 718 719 720 721 722

  // Check whether a given young length (young_length) fits into the
  // given target pause time and whether the prediction for the amount
  // of objects to be copied for the given length will fit into the
  // given free space (expressed by base_free_regions).  It is used by
  // calculate_young_list_target_length().
723 724
  bool predict_will_fit(uint young_length, double base_time_ms,
                        uint base_free_regions, double target_pause_time_ms);
725

726 727 728
  // Count the number of bytes used in the CS.
  void count_CS_bytes_used();

729 730 731 732 733 734 735 736 737 738
public:

  G1CollectorPolicy();

  virtual G1CollectorPolicy* as_g1_policy() { return this; }

  virtual CollectorPolicy::Name kind() {
    return CollectorPolicy::G1CollectorPolicyKind;
  }

739 740 741 742
  // Check the current value of the young list RSet lengths and
  // compare it against the last prediction. If the current value is
  // higher, recalculate the young list target length prediction.
  void revise_young_list_target_length_if_necessary();
743 744 745 746 747 748 749 750 751

  size_t bytes_in_collection_set() {
    return _bytes_in_collection_set_before_gc;
  }

  unsigned calc_gc_alloc_time_stamp() {
    return _all_pause_times_ms->num() + 1;
  }

752
  // This should be called after the heap is resized.
753
  void record_new_heap_size(uint new_number_of_regions);
754

755
  void init();
756

757 758 759
  // Create jstat counters for the policy.
  virtual void initialize_gc_policy_counters();

760 761 762 763 764 765 766 767 768 769 770 771 772
  virtual HeapWord* mem_allocate_work(size_t size,
                                      bool is_tlab,
                                      bool* gc_overhead_limit_was_exceeded);

  // This method controls how a collector handles one or more
  // of its generations being fully allocated.
  virtual HeapWord* satisfy_failed_allocation(size_t size,
                                              bool is_tlab);

  BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }

  GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }

773
  bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
774

775 776 777 778
  // Update the heuristic info to record a collection pause of the given
  // start time, where the given number of bytes were used at the start.
  // This may involve changing the desired size of a collection set.

779
  void record_stop_world_start();
780

781
  void record_collection_pause_start(double start_time_sec, size_t start_used);
782 783

  // Must currently be called while the world is stopped.
784
  void record_concurrent_mark_init_end(double
785 786
                                           mark_init_elapsed_time_ms);

787 788 789 790
  void record_root_region_scan_wait_time(double time_ms) {
    _root_region_scan_wait_time_ms = time_ms;
  }

791 792
  void record_concurrent_mark_remark_start();
  void record_concurrent_mark_remark_end();
793

794
  void record_concurrent_mark_cleanup_start();
795
  void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
796
  void record_concurrent_mark_cleanup_completed();
797

798 799
  void record_concurrent_pause();
  void record_concurrent_pause_end();
800

801
  void record_collection_pause_end(int no_of_gc_threads);
802
  void print_heap_transition();
803 804

  // Record the fact that a full collection occurred.
805 806
  void record_full_collection_start();
  void record_full_collection_end();
807

808 809 810 811
  void record_gc_worker_start_time(int worker_i, double ms) {
    _par_last_gc_worker_start_times_ms[worker_i] = ms;
  }

812 813 814 815
  void record_ext_root_scan_time(int worker_i, double ms) {
    _par_last_ext_root_scan_times_ms[worker_i] = ms;
  }

816 817
  void record_satb_filtering_time(int worker_i, double ms) {
    _par_last_satb_filtering_times_ms[worker_i] = ms;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
  }

  void record_update_rs_time(int thread, double ms) {
    _par_last_update_rs_times_ms[thread] = ms;
  }

  void record_update_rs_processed_buffers (int thread,
                                           double processed_buffers) {
    _par_last_update_rs_processed_buffers[thread] = processed_buffers;
  }

  void record_scan_rs_time(int thread, double ms) {
    _par_last_scan_rs_times_ms[thread] = ms;
  }

  void reset_obj_copy_time(int thread) {
    _par_last_obj_copy_times_ms[thread] = 0.0;
  }

  void reset_obj_copy_time() {
    reset_obj_copy_time(0);
  }

  void record_obj_copy_time(int thread, double ms) {
    _par_last_obj_copy_times_ms[thread] += ms;
  }

845
  void record_termination(int thread, double ms, size_t attempts) {
846
    _par_last_termination_times_ms[thread] = ms;
847
    _par_last_termination_attempts[thread] = (double) attempts;
848 849
  }

850 851
  void record_gc_worker_end_time(int worker_i, double ms) {
    _par_last_gc_worker_end_times_ms[worker_i] = ms;
852 853
  }

854
  void record_pause_time_ms(double ms) {
855 856 857 858 859 860 861 862 863 864 865
    _last_pause_time_ms = ms;
  }

  void record_clear_ct_time(double ms) {
    _cur_clear_ct_time_ms = ms;
  }

  void record_par_time(double ms) {
    _cur_collection_par_time_ms = ms;
  }

866 867 868 869
  void record_code_root_fixup_time(double ms) {
    _cur_collection_code_root_fixup_time_ms = ms;
  }

870 871 872 873 874 875 876 877 878 879 880 881
  void record_aux_start_time(int i) {
    guarantee(i < _aux_num, "should be within range");
    _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
  }

  void record_aux_end_time(int i) {
    guarantee(i < _aux_num, "should be within range");
    double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
    _cur_aux_times_set[i] = true;
    _cur_aux_times_ms[i] += ms;
  }

882 883 884 885 886 887 888 889
  void record_ref_proc_time(double ms) {
    _cur_ref_proc_time_ms = ms;
  }

  void record_ref_enq_time(double ms) {
    _cur_ref_enq_time_ms = ms;
  }

890 891 892 893 894 895 896 897 898 899 900 901
#ifndef PRODUCT
  void record_cc_clear_time(double ms) {
    if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
      _min_clear_cc_time_ms = ms;
    if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
      _max_clear_cc_time_ms = ms;
    _cur_clear_cc_time_ms = ms;
    _cum_clear_cc_time_ms += ms;
    _num_cc_clears++;
  }
#endif

902 903 904 905 906 907 908 909 910 911
  // Record how much space we copied during a GC. This is typically
  // called when a GC alloc region is being retired.
  void record_bytes_copied_during_gc(size_t bytes) {
    _bytes_copied_during_gc += bytes;
  }

  // The amount of space we copied during a GC.
  size_t bytes_copied_during_gc() {
    return _bytes_copied_during_gc;
  }
912

913 914 915
  // Determine whether there are candidate regions so that the
  // next GC should be mixed. The two action strings are used
  // in the ergo output when the method returns true or false.
916 917 918
  bool next_gc_should_be_mixed(const char* true_action_str,
                               const char* false_action_str);

919 920 921
  // Choose a new collection set.  Marks the chosen regions as being
  // "in_collection_set", and links them together.  The head and number of
  // the collection set are available via access methods.
922
  void finalize_cset(double target_pause_time_ms);
923 924 925 926 927

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set.
  HeapRegion* collection_set() { return _collection_set; }

928 929
  void clear_collection_set() { _collection_set = NULL; }

930 931
  // Add old region "hr" to the CSet.
  void add_old_region_to_cset(HeapRegion* hr);
932

933 934 935 936 937 938 939 940 941 942 943
  // Incremental CSet Support

  // The head of the incrementally built collection set.
  HeapRegion* inc_cset_head() { return _inc_cset_head; }

  // The tail of the incrementally built collection set.
  HeapRegion* inc_set_tail() { return _inc_cset_tail; }

  // Initialize incremental collection set info.
  void start_incremental_cset_building();

944 945 946 947
  // Perform any final calculations on the incremental CSet fields
  // before we can use them.
  void finalize_incremental_cset_building();

948 949 950 951 952 953 954 955
  void clear_incremental_cset() {
    _inc_cset_head = NULL;
    _inc_cset_tail = NULL;
  }

  // Stop adding regions to the incremental collection set
  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }

956 957
  // Add information about hr to the aggregated information for the
  // incrementally built collection set.
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);

  // Update information about hr in the aggregated information for
  // the incrementally built collection set.
  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);

private:
  // Update the incremental cset information when adding a region
  // (should not be called directly).
  void add_region_to_incremental_cset_common(HeapRegion* hr);

public:
  // Add hr to the LHS of the incremental collection set.
  void add_region_to_incremental_cset_lhs(HeapRegion* hr);

  // Add hr to the RHS of the incremental collection set.
  void add_region_to_incremental_cset_rhs(HeapRegion* hr);

#ifndef PRODUCT
  void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT

980 981 982 983 984 985 986 987
  bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }

  bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }

988 989 990 991
  // This sets the initiate_conc_mark_if_possible() flag to start a
  // new cycle, as long as we are not already in one. It's best if it
  // is called during a safepoint when the test whether a cycle is in
  // progress or not is stable.
992
  bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
993

994 995 996 997 998 999 1000
  // This is called at the very beginning of an evacuation pause (it
  // has to be the first thing that the pause does). If
  // initiate_conc_mark_if_possible() is true, and the concurrent
  // marking thread has completed its work during the previous cycle,
  // it will set during_initial_mark_pause() to so that the pause does
  // the initial-mark work and start a marking cycle.
  void decide_on_conc_mark_initiation();
1001 1002 1003

  // If an expansion would be appropriate, because recent GC overhead had
  // exceeded the desired limit, return an amount to expand by.
1004
  size_t expansion_amount();
1005 1006 1007 1008 1009 1010 1011

  // Print tracing information.
  void print_tracing_info() const;

  // Print stats on young survival ratio
  void print_yg_surv_rate_info() const;

1012 1013 1014 1015 1016 1017
  void finished_recalculating_age_indexes(bool is_survivors) {
    if (is_survivors) {
      _survivor_surv_rate_group->finished_recalculating_age_indexes();
    } else {
      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
    }
1018 1019 1020
    // do that for any other surv rate groups
  }

1021
  bool is_young_list_full() {
1022 1023
    uint young_list_length = _g1->young_list()->length();
    uint young_list_target_length = _young_list_target_length;
1024 1025
    return young_list_length >= young_list_target_length;
  }
1026

1027
  bool can_expand_young_list() {
1028 1029
    uint young_list_length = _g1->young_list()->length();
    uint young_list_max_length = _young_list_max_length;
1030
    return young_list_length < young_list_max_length;
1031
  }
1032

1033
  uint young_list_max_length() {
1034 1035 1036
    return _young_list_max_length;
  }

1037 1038
  bool gcs_are_young() {
    return _gcs_are_young;
1039
  }
1040 1041
  void set_gcs_are_young(bool gcs_are_young) {
    _gcs_are_young = gcs_are_young;
1042 1043 1044
  }

  bool adaptive_young_list_length() {
1045
    return _young_gen_sizer->adaptive_young_list_length();
1046 1047
  }

1048
private:
1049 1050 1051 1052 1053 1054 1055 1056
  //
  // Survivor regions policy.
  //

  // Current tenuring threshold, set to 0 if the collector reaches the
  // maximum amount of suvivors regions.
  int _tenuring_threshold;

1057
  // The limit on the number of regions allocated for survivors.
1058
  uint _max_survivor_regions;
1059

1060 1061 1062 1063 1064
  // For reporting purposes.
  size_t _eden_bytes_before_gc;
  size_t _survivor_bytes_before_gc;
  size_t _capacity_before_gc;

1065
  // The amount of survor regions after a collection.
1066
  uint _recorded_survivor_regions;
1067 1068 1069 1070 1071 1072
  // List of survivor regions.
  HeapRegion* _recorded_survivor_head;
  HeapRegion* _recorded_survivor_tail;

  ageTable _survivors_age_table;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
public:

  inline GCAllocPurpose
    evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
      if (age < _tenuring_threshold && src_region->is_young()) {
        return GCAllocForSurvived;
      } else {
        return GCAllocForTenured;
      }
  }

  inline bool track_object_age(GCAllocPurpose purpose) {
    return purpose == GCAllocForSurvived;
  }

1088
  static const uint REGIONS_UNLIMITED = (uint) -1;
1089

1090
  uint max_regions(int purpose);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

  // The limit on regions for a particular purpose is reached.
  void note_alloc_region_limit_reached(int purpose) {
    if (purpose == GCAllocForSurvived) {
      _tenuring_threshold = 0;
    }
  }

  void note_start_adding_survivor_regions() {
    _survivor_surv_rate_group->start_adding_regions();
  }

  void note_stop_adding_survivor_regions() {
    _survivor_surv_rate_group->stop_adding_regions();
  }
1106

1107
  void record_survivor_regions(uint regions,
1108 1109 1110 1111 1112 1113 1114
                               HeapRegion* head,
                               HeapRegion* tail) {
    _recorded_survivor_regions = regions;
    _recorded_survivor_head    = head;
    _recorded_survivor_tail    = tail;
  }

1115
  uint recorded_survivor_regions() {
1116 1117 1118
    return _recorded_survivor_regions;
  }

1119
  void record_thread_age_table(ageTable* age_table) {
1120 1121 1122
    _survivors_age_table.merge_par(age_table);
  }

1123
  void update_max_gc_locker_expansion();
1124

1125
  // Calculates survivor space parameters.
1126
  void update_survivors_policy();
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
};

// This should move to some place more general...

// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
  double n_d = (double)n;
  double avg = sum/n_d;
  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}

1141
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP