g1CollectorPolicy.hpp 32.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"

32 33 34 35 36 37 38
// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector.  Examples include:
//   * choice of collection set.
//   * when to collect.

class HeapRegion;
class CollectionSetChooser;
39
class G1GCPhaseTimes;
40

41 42 43
// TraceGen0Time collects data on _both_ young and mixed evacuation pauses
// (the latter may contain non-young regions - i.e. regions that are
// technically in Gen1) while TraceGen1Time collects data about full GCs.
Z
zgu 已提交
44
class TraceGen0TimeData : public CHeapObj<mtGC> {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 private:
  unsigned  _young_pause_num;
  unsigned  _mixed_pause_num;

  NumberSeq _all_stop_world_times_ms;
  NumberSeq _all_yield_times_ms;

  NumberSeq _total;
  NumberSeq _other;
  NumberSeq _root_region_scan_wait;
  NumberSeq _parallel;
  NumberSeq _ext_root_scan;
  NumberSeq _satb_filtering;
  NumberSeq _update_rs;
  NumberSeq _scan_rs;
  NumberSeq _obj_copy;
  NumberSeq _termination;
  NumberSeq _parallel_other;
  NumberSeq _clear_ct;

65 66
  void print_summary(const char* str, const NumberSeq* seq) const;
  void print_summary_sd(const char* str, const NumberSeq* seq) const;
67 68

public:
69 70 71
   TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  void record_start_collection(double time_to_stop_the_world_ms);
  void record_yield_time(double yield_time_ms);
72
  void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
73 74 75
  void increment_young_collection_count();
  void increment_mixed_collection_count();
  void print() const;
76 77
};

Z
zgu 已提交
78
class TraceGen1TimeData : public CHeapObj<mtGC> {
79 80
 private:
  NumberSeq _all_full_gc_times;
81

82 83 84
 public:
  void record_full_collection(double full_gc_time_ms);
  void print() const;
85 86
};

87 88 89 90 91 92 93 94 95 96
// There are three command line options related to the young gen size:
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
// just a short form for NewSize==MaxNewSize). G1 will use its internal
// heuristics to calculate the actual young gen size, so these options
// basically only limit the range within which G1 can pick a young gen
// size. Also, these are general options taking byte sizes. G1 will
// internally work with a number of regions instead. So, some rounding
// will occur.
//
// If nothing related to the the young gen size is set on the command
97 98 99 100
// line we should allow the young gen to be between G1NewSizePercent
// and G1MaxNewSizePercent of the heap size. This means that every time
// the heap size changes, the limits for the young gen size will be
// recalculated.
101 102
//
// If only -XX:NewSize is set we should use the specified value as the
103 104
// minimum size for young gen. Still using G1MaxNewSizePercent of the
// heap as maximum.
105 106
//
// If only -XX:MaxNewSize is set we should use the specified value as the
107 108
// maximum size for young gen. Still using G1NewSizePercent of the heap
// as minimum.
109 110 111 112 113 114 115 116 117 118 119 120 121 122
//
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
// No updates when the heap size changes. There is a special case when
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
// different heuristic for calculating the collection set when we do mixed
// collection.
//
// If only -XX:NewRatio is set we should use the specified ratio of the heap
// as both min and max. This will be interpreted as "fixed" just like the
// NewSize==MaxNewSize case above. But we will update the min and max
// everytime the heap size changes.
//
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
Z
zgu 已提交
123
class G1YoungGenSizer : public CHeapObj<mtGC> {
124 125 126 127 128 129 130 131 132
private:
  enum SizerKind {
    SizerDefaults,
    SizerNewSizeOnly,
    SizerMaxNewSizeOnly,
    SizerMaxAndNewSize,
    SizerNewRatio
  };
  SizerKind _sizer_kind;
133 134
  uint _min_desired_young_length;
  uint _max_desired_young_length;
135
  bool _adaptive_size;
136 137
  uint calculate_default_min_length(uint new_number_of_heap_regions);
  uint calculate_default_max_length(uint new_number_of_heap_regions);
138 139 140

public:
  G1YoungGenSizer();
141 142
  void heap_size_changed(uint new_number_of_heap_regions);
  uint min_desired_young_length() {
143 144
    return _min_desired_young_length;
  }
145
  uint max_desired_young_length() {
146 147 148 149 150 151 152
    return _max_desired_young_length;
  }
  bool adaptive_young_list_length() {
    return _adaptive_size;
  }
};

153
class G1CollectorPolicy: public CollectorPolicy {
154
private:
155 156 157 158
  // either equal to the number of parallel threads, if ParallelGCThreads
  // has been set, or 1 otherwise
  int _parallel_gc_threads;

159 160 161
  // The number of GC threads currently active.
  uintx _no_of_gc_threads;

162
  enum SomePrivateConstants {
163
    NumPrevPausesForHeuristics = 10
164 165 166 167 168 169 170 171 172 173 174
  };

  G1MMUTracker* _mmu_tracker;

  void initialize_flags();

  void initialize_all() {
    initialize_flags();
    initialize_size_info();
  }

175
  CollectionSetChooser* _collectionSetChooser;
176

177
  double _full_collection_start_sec;
178
  uint   _cur_collection_pause_used_regions_at_start;
179

180 181 182 183 184 185
  // These exclude marking times.
  TruncatedSeq* _recent_gc_times_ms;

  TruncatedSeq* _concurrent_mark_remark_times_ms;
  TruncatedSeq* _concurrent_mark_cleanup_times_ms;

186 187
  TraceGen0TimeData _trace_gen0_time_data;
  TraceGen1TimeData _trace_gen1_time_data;
188 189 190

  double _stop_world_start;

191 192
  // indicates whether we are in young or mixed GC mode
  bool _gcs_are_young;
193

194 195
  uint _young_list_target_length;
  uint _young_list_fixed_length;
196

197 198
  // The max number of regions we can extend the eden by while the GC
  // locker is active. This should be >= _young_list_target_length;
199
  uint _young_list_max_length;
200

201
  bool                  _last_gc_was_young;
202 203 204 205 206 207 208 209 210

  bool                  _during_marking;
  bool                  _in_marking_window;
  bool                  _in_marking_window_im;

  SurvRateGroup*        _short_lived_surv_rate_group;
  SurvRateGroup*        _survivor_surv_rate_group;
  // add here any more surv rate groups

T
tonyp 已提交
211 212
  double                _gc_overhead_perc;

213
  double _reserve_factor;
214
  uint _reserve_regions;
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229
  bool during_marking() {
    return _during_marking;
  }

private:
  enum PredictionConstants {
    TruncatedSeqLength = 10
  };

  TruncatedSeq* _alloc_rate_ms_seq;
  double        _prev_collection_pause_end_ms;

  TruncatedSeq* _rs_length_diff_seq;
  TruncatedSeq* _cost_per_card_ms_seq;
230 231
  TruncatedSeq* _young_cards_per_entry_ratio_seq;
  TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
232
  TruncatedSeq* _cost_per_entry_ms_seq;
233
  TruncatedSeq* _mixed_cost_per_entry_ms_seq;
234 235 236 237 238 239 240 241 242 243
  TruncatedSeq* _cost_per_byte_ms_seq;
  TruncatedSeq* _constant_other_time_ms_seq;
  TruncatedSeq* _young_other_cost_per_region_ms_seq;
  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;

  TruncatedSeq* _pending_cards_seq;
  TruncatedSeq* _rs_lengths_seq;

  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;

244
  G1YoungGenSizer* _young_gen_sizer;
245

246 247 248
  uint _eden_cset_region_length;
  uint _survivor_cset_region_length;
  uint _old_cset_region_length;
249

250 251
  void init_cset_region_lengths(uint eden_cset_region_length,
                                uint survivor_cset_region_length);
252

253 254 255
  uint eden_cset_region_length()     { return _eden_cset_region_length;     }
  uint survivor_cset_region_length() { return _survivor_cset_region_length; }
  uint old_cset_region_length()      { return _old_cset_region_length;      }
256

257
  uint _free_regions_at_end_of_collection;
258 259 260 261 262 263 264

  size_t _recorded_rs_lengths;
  size_t _max_rs_lengths;
  double _sigma;

  size_t _rs_lengths_prediction;

265
  double sigma() { return _sigma; }
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

  // A function that prevents us putting too much stock in small sample
  // sets.  Returns a number between 2.0 and 1.0, depending on the number
  // of samples.  5 or more samples yields one; fewer scales linearly from
  // 2.0 at 1 sample to 1.0 at 5.
  double confidence_factor(int samples) {
    if (samples > 4) return 1.0;
    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
  }

  double get_new_neg_prediction(TruncatedSeq* seq) {
    return seq->davg() - sigma() * seq->dsd();
  }

#ifndef PRODUCT
  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT

284 285 286 287
  void adjust_concurrent_refinement(double update_rs_time,
                                    double update_rs_processed_buffers,
                                    double goal_ms);

288 289 290
  uintx no_of_gc_threads() { return _no_of_gc_threads; }
  void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }

291
  double _pause_time_target_ms;
292

293 294 295
  size_t _pending_cards;

public:
296
  // Accessors
297

298 299
  void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
    hr->set_young();
300
    hr->install_surv_rate_group(_short_lived_surv_rate_group);
301
    hr->set_young_index_in_cset(young_index_in_cset);
302 303
  }

304 305
  void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
    assert(hr->is_young() && hr->is_survivor(), "pre-condition");
306
    hr->install_surv_rate_group(_survivor_surv_rate_group);
307
    hr->set_young_index_in_cset(young_index_in_cset);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  }

#ifndef PRODUCT
  bool verify_young_ages();
#endif // PRODUCT

  double get_new_prediction(TruncatedSeq* seq) {
    return MAX2(seq->davg() + sigma() * seq->dsd(),
                seq->davg() * confidence_factor(seq->num()));
  }

  void record_max_rs_lengths(size_t rs_lengths) {
    _max_rs_lengths = rs_lengths;
  }

  size_t predict_rs_length_diff() {
    return (size_t) get_new_prediction(_rs_length_diff_seq);
  }

  double predict_alloc_rate_ms() {
    return get_new_prediction(_alloc_rate_ms_seq);
  }

  double predict_cost_per_card_ms() {
    return get_new_prediction(_cost_per_card_ms_seq);
  }

  double predict_rs_update_time_ms(size_t pending_cards) {
    return (double) pending_cards * predict_cost_per_card_ms();
  }

339 340
  double predict_young_cards_per_entry_ratio() {
    return get_new_prediction(_young_cards_per_entry_ratio_seq);
341 342
  }

343 344 345 346 347 348
  double predict_mixed_cards_per_entry_ratio() {
    if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
      return predict_young_cards_per_entry_ratio();
    } else {
      return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
    }
349 350 351 352
  }

  size_t predict_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
353
                     predict_young_cards_per_entry_ratio());
354 355 356 357
  }

  size_t predict_non_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
358
                     predict_mixed_cards_per_entry_ratio());
359 360 361
  }

  double predict_rs_scan_time_ms(size_t card_num) {
362
    if (gcs_are_young()) {
363
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
364 365 366
    } else {
      return predict_mixed_rs_scan_time_ms(card_num);
    }
367 368
  }

369 370
  double predict_mixed_rs_scan_time_ms(size_t card_num) {
    if (_mixed_cost_per_entry_ms_seq->num() < 3) {
371
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
372 373 374 375
    } else {
      return (double) (card_num *
                       get_new_prediction(_mixed_cost_per_entry_ms_seq));
    }
376 377 378
  }

  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
379 380 381 382
    if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
      return (1.1 * (double) bytes_to_copy) *
              get_new_prediction(_cost_per_byte_ms_seq);
    } else {
383
      return (double) bytes_to_copy *
384 385
             get_new_prediction(_cost_per_byte_ms_during_cm_seq);
    }
386 387 388
  }

  double predict_object_copy_time_ms(size_t bytes_to_copy) {
389
    if (_in_marking_window && !_in_marking_window_im) {
390
      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
391
    } else {
392
      return (double) bytes_to_copy *
393 394
              get_new_prediction(_cost_per_byte_ms_seq);
    }
395 396 397 398 399 400 401
  }

  double predict_constant_other_time_ms() {
    return get_new_prediction(_constant_other_time_ms_seq);
  }

  double predict_young_other_time_ms(size_t young_num) {
402 403
    return (double) young_num *
           get_new_prediction(_young_other_cost_per_region_ms_seq);
404 405 406
  }

  double predict_non_young_other_time_ms(size_t non_young_num) {
407 408
    return (double) non_young_num *
           get_new_prediction(_non_young_other_cost_per_region_ms_seq);
409 410 411 412 413 414
  }

  double predict_base_elapsed_time_ms(size_t pending_cards);
  double predict_base_elapsed_time_ms(size_t pending_cards,
                                      size_t scanned_cards);
  size_t predict_bytes_to_copy(HeapRegion* hr);
415
  double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
416

417
  void set_recorded_rs_lengths(size_t rs_lengths);
418

419 420 421 422
  uint cset_region_length()       { return young_cset_region_length() +
                                           old_cset_region_length(); }
  uint young_cset_region_length() { return eden_cset_region_length() +
                                           survivor_cset_region_length(); }
423

424 425
  double predict_survivor_regions_evac_time();

426
  void cset_regions_freed() {
427
    bool propagate = _last_gc_was_young && !_in_marking_window;
428 429 430 431 432 433 434 435 436
    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
    // also call it on any more surv rate groups
  }

  G1MMUTracker* mmu_tracker() {
    return _mmu_tracker;
  }

437 438 439 440
  double max_pause_time_ms() {
    return _mmu_tracker->max_gc_time() * 1000.0;
  }

441 442 443 444 445 446 447 448 449 450
  double predict_remark_time_ms() {
    return get_new_prediction(_concurrent_mark_remark_times_ms);
  }

  double predict_cleanup_time_ms() {
    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
  }

  // Returns an estimate of the survival rate of the region at yg-age
  // "yg_age".
451 452
  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
    TruncatedSeq* seq = surv_rate_group->get_seq(age);
453 454 455 456 457 458 459 460 461
    if (seq->num() == 0)
      gclog_or_tty->print("BARF! age is %d", age);
    guarantee( seq->num() > 0, "invariant" );
    double pred = get_new_prediction(seq);
    if (pred > 1.0)
      pred = 1.0;
    return pred;
  }

462 463 464 465
  double predict_yg_surv_rate(int age) {
    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
  }

466 467 468 469
  double accum_yg_surv_rate_pred(int age) {
    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
  }

470
private:
471 472 473 474 475 476 477
  // Statistics kept per GC stoppage, pause or full.
  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;

  // Add a new GC of the given duration and end time to the record.
  void update_recent_gc_times(double end_time_sec, double elapsed_ms);

  // The head of the list (via "next_in_collection_set()") representing the
478 479
  // current collection set. Set from the incrementally built collection
  // set at the start of the pause.
480
  HeapRegion* _collection_set;
481 482 483

  // The number of bytes in the collection set before the pause. Set from
  // the incrementally built collection set at the start of an evacuation
484 485
  // pause, and incremented in finalize_cset() when adding old regions
  // (if any) to the collection set.
486 487
  size_t _collection_set_bytes_used_before;

488 489 490
  // The number of bytes copied during the GC.
  size_t _bytes_copied_during_gc;

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  // The associated information that is maintained while the incremental
  // collection set is being built with young regions. Used to populate
  // the recorded info for the evacuation pause.

  enum CSetBuildType {
    Active,             // We are actively building the collection set
    Inactive            // We are not actively building the collection set
  };

  CSetBuildType _inc_cset_build_state;

  // The head of the incrementally built collection set.
  HeapRegion* _inc_cset_head;

  // The tail of the incrementally built collection set.
  HeapRegion* _inc_cset_tail;

  // The number of bytes in the incrementally built collection set.
  // Used to set _collection_set_bytes_used_before at the start of
  // an evacuation pause.
  size_t _inc_cset_bytes_used_before;

  // Used to record the highest end of heap region in collection set
  HeapWord* _inc_cset_max_finger;

516 517 518 519 520
  // The RSet lengths recorded for regions in the CSet. It is updated
  // by the thread that adds a new region to the CSet. We assume that
  // only one thread can be allocating a new CSet region (currently,
  // it does so after taking the Heap_lock) hence no need to
  // synchronize updates to this field.
521 522
  size_t _inc_cset_recorded_rs_lengths;

523 524 525 526 527 528 529 530 531 532 533
  // A concurrent refinement thread periodcially samples the young
  // region RSets and needs to update _inc_cset_recorded_rs_lengths as
  // the RSets grow. Instead of having to syncronize updates to that
  // field we accumulate them in this field and add it to
  // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
  ssize_t _inc_cset_recorded_rs_lengths_diffs;

  // The predicted elapsed time it will take to collect the regions in
  // the CSet. This is updated by the thread that adds a new region to
  // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
  // MT-safety assumptions.
534 535
  double _inc_cset_predicted_elapsed_time_ms;

536 537 538
  // See the comment for _inc_cset_recorded_rs_lengths_diffs.
  double _inc_cset_predicted_elapsed_time_ms_diffs;

539 540 541
  // Stash a pointer to the g1 heap.
  G1CollectedHeap* _g1;

542 543
  G1GCPhaseTimes* _phase_times;

544 545 546 547 548 549 550
  // The ratio of gc time to elapsed time, computed over recent pauses.
  double _recent_avg_pause_time_ratio;

  double recent_avg_pause_time_ratio() {
    return _recent_avg_pause_time_ratio;
  }

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  // At the end of a pause we check the heap occupancy and we decide
  // whether we will start a marking cycle during the next pause. If
  // we decide that we want to do that, we will set this parameter to
  // true. So, this parameter will stay true between the end of a
  // pause and the beginning of a subsequent pause (not necessarily
  // the next one, see the comments on the next field) when we decide
  // that we will indeed start a marking cycle and do the initial-mark
  // work.
  volatile bool _initiate_conc_mark_if_possible;

  // If initiate_conc_mark_if_possible() is set at the beginning of a
  // pause, it is a suggestion that the pause should start a marking
  // cycle by doing the initial-mark work. However, it is possible
  // that the concurrent marking thread is still finishing up the
  // previous marking cycle (e.g., clearing the next marking
  // bitmap). If that is the case we cannot start a new cycle and
  // we'll have to wait for the concurrent marking thread to finish
  // what it is doing. In this case we will postpone the marking cycle
  // initiation decision for the next pause. When we eventually decide
  // to start a cycle, we will set _during_initial_mark_pause which
  // will stay true until the end of the initial-mark pause and it's
  // the condition that indicates that a pause is doing the
  // initial-mark work.
  volatile bool _during_initial_mark_pause;
575

576
  bool _last_young_gc;
577 578 579 580 581 582 583

  // This set of variables tracks the collector efficiency, in order to
  // determine whether we should initiate a new marking.
  double _cur_mark_stop_world_time_ms;
  double _mark_remark_start_sec;
  double _mark_cleanup_start_sec;

584 585 586 587 588 589 590 591 592 593
  // Update the young list target length either by setting it to the
  // desired fixed value or by calculating it using G1's pause
  // prediction model. If no rs_lengths parameter is passed, predict
  // the RS lengths using the prediction model, otherwise use the
  // given rs_lengths as the prediction.
  void update_young_list_target_length(size_t rs_lengths = (size_t) -1);

  // Calculate and return the minimum desired young list target
  // length. This is the minimum desired young list length according
  // to the user's inputs.
594
  uint calculate_young_list_desired_min_length(uint base_min_length);
595 596 597 598

  // Calculate and return the maximum desired young list target
  // length. This is the maximum desired young list length according
  // to the user's inputs.
599
  uint calculate_young_list_desired_max_length();
600 601 602 603 604 605 606

  // Calculate and return the maximum young list target length that
  // can fit into the pause time goal. The parameters are: rs_lengths
  // represent the prediction of how large the young RSet lengths will
  // be, base_min_length is the alreay existing number of regions in
  // the young list, min_length and max_length are the desired min and
  // max young list length according to the user's inputs.
607 608 609 610
  uint calculate_young_list_target_length(size_t rs_lengths,
                                          uint base_min_length,
                                          uint desired_min_length,
                                          uint desired_max_length);
611 612 613 614 615 616

  // Check whether a given young length (young_length) fits into the
  // given target pause time and whether the prediction for the amount
  // of objects to be copied for the given length will fit into the
  // given free space (expressed by base_free_regions).  It is used by
  // calculate_young_list_target_length().
617 618
  bool predict_will_fit(uint young_length, double base_time_ms,
                        uint base_free_regions, double target_pause_time_ms);
619

620 621 622 623 624 625 626 627 628 629 630 631
  // Calculate the minimum number of old regions we'll add to the CSet
  // during a mixed GC.
  uint calc_min_old_cset_length();

  // Calculate the maximum number of old regions we'll add to the CSet
  // during a mixed GC.
  uint calc_max_old_cset_length();

  // Returns the given amount of uncollected reclaimable space
  // as a percentage of the current heap capacity.
  double reclaimable_bytes_perc(size_t reclaimable_bytes);

632 633 634 635 636 637 638 639 640 641
public:

  G1CollectorPolicy();

  virtual G1CollectorPolicy* as_g1_policy() { return this; }

  virtual CollectorPolicy::Name kind() {
    return CollectorPolicy::G1CollectorPolicyKind;
  }

642 643
  G1GCPhaseTimes* phase_times() const { return _phase_times; }

644 645 646 647
  // Check the current value of the young list RSet lengths and
  // compare it against the last prediction. If the current value is
  // higher, recalculate the young list target length prediction.
  void revise_young_list_target_length_if_necessary();
648

649
  // This should be called after the heap is resized.
650
  void record_new_heap_size(uint new_number_of_regions);
651

652
  void init();
653

654 655 656
  // Create jstat counters for the policy.
  virtual void initialize_gc_policy_counters();

657 658 659 660 661 662 663 664 665 666 667 668 669
  virtual HeapWord* mem_allocate_work(size_t size,
                                      bool is_tlab,
                                      bool* gc_overhead_limit_was_exceeded);

  // This method controls how a collector handles one or more
  // of its generations being fully allocated.
  virtual HeapWord* satisfy_failed_allocation(size_t size,
                                              bool is_tlab);

  BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }

  GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }

670
  bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
671

672 673 674
  // Record the start and end of an evacuation pause.
  void record_collection_pause_start(double start_time_sec);
  void record_collection_pause_end(double pause_time_ms);
675

676 677 678
  // Record the start and end of a full collection.
  void record_full_collection_start();
  void record_full_collection_end();
679 680

  // Must currently be called while the world is stopped.
681
  void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
682

683
  // Record start and end of remark.
684 685
  void record_concurrent_mark_remark_start();
  void record_concurrent_mark_remark_end();
686

687
  // Record start, end, and completion of cleanup.
688
  void record_concurrent_mark_cleanup_start();
689
  void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
690
  void record_concurrent_mark_cleanup_completed();
691

692 693
  // Records the information about the heap size for reporting in
  // print_detailed_heap_transition
694
  void record_heap_size_info_at_start(bool full);
695

696
  // Print heap sizing transition (with less and more detail).
697
  void print_heap_transition();
698
  void print_detailed_heap_transition(bool full = false);
699

700 701
  void record_stop_world_start();
  void record_concurrent_pause();
702

703 704 705 706 707 708 709 710 711 712
  // Record how much space we copied during a GC. This is typically
  // called when a GC alloc region is being retired.
  void record_bytes_copied_during_gc(size_t bytes) {
    _bytes_copied_during_gc += bytes;
  }

  // The amount of space we copied during a GC.
  size_t bytes_copied_during_gc() {
    return _bytes_copied_during_gc;
  }
713

714 715 716
  // Determine whether there are candidate regions so that the
  // next GC should be mixed. The two action strings are used
  // in the ergo output when the method returns true or false.
717 718 719
  bool next_gc_should_be_mixed(const char* true_action_str,
                               const char* false_action_str);

720 721 722
  // Choose a new collection set.  Marks the chosen regions as being
  // "in_collection_set", and links them together.  The head and number of
  // the collection set are available via access methods.
723
  void finalize_cset(double target_pause_time_ms);
724 725 726 727 728

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set.
  HeapRegion* collection_set() { return _collection_set; }

729 730
  void clear_collection_set() { _collection_set = NULL; }

731 732
  // Add old region "hr" to the CSet.
  void add_old_region_to_cset(HeapRegion* hr);
733

734 735 736 737 738 739 740 741 742 743 744
  // Incremental CSet Support

  // The head of the incrementally built collection set.
  HeapRegion* inc_cset_head() { return _inc_cset_head; }

  // The tail of the incrementally built collection set.
  HeapRegion* inc_set_tail() { return _inc_cset_tail; }

  // Initialize incremental collection set info.
  void start_incremental_cset_building();

745 746 747 748
  // Perform any final calculations on the incremental CSet fields
  // before we can use them.
  void finalize_incremental_cset_building();

749 750 751 752 753 754 755 756
  void clear_incremental_cset() {
    _inc_cset_head = NULL;
    _inc_cset_tail = NULL;
  }

  // Stop adding regions to the incremental collection set
  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }

757 758
  // Add information about hr to the aggregated information for the
  // incrementally built collection set.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);

  // Update information about hr in the aggregated information for
  // the incrementally built collection set.
  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);

private:
  // Update the incremental cset information when adding a region
  // (should not be called directly).
  void add_region_to_incremental_cset_common(HeapRegion* hr);

public:
  // Add hr to the LHS of the incremental collection set.
  void add_region_to_incremental_cset_lhs(HeapRegion* hr);

  // Add hr to the RHS of the incremental collection set.
  void add_region_to_incremental_cset_rhs(HeapRegion* hr);

#ifndef PRODUCT
  void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT

781 782 783 784 785 786 787 788
  bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }

  bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }

789 790 791 792
  // This sets the initiate_conc_mark_if_possible() flag to start a
  // new cycle, as long as we are not already in one. It's best if it
  // is called during a safepoint when the test whether a cycle is in
  // progress or not is stable.
793
  bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
794

795 796 797 798 799 800 801
  // This is called at the very beginning of an evacuation pause (it
  // has to be the first thing that the pause does). If
  // initiate_conc_mark_if_possible() is true, and the concurrent
  // marking thread has completed its work during the previous cycle,
  // it will set during_initial_mark_pause() to so that the pause does
  // the initial-mark work and start a marking cycle.
  void decide_on_conc_mark_initiation();
802 803 804

  // If an expansion would be appropriate, because recent GC overhead had
  // exceeded the desired limit, return an amount to expand by.
805
  size_t expansion_amount();
806 807 808 809 810 811 812

  // Print tracing information.
  void print_tracing_info() const;

  // Print stats on young survival ratio
  void print_yg_surv_rate_info() const;

813 814 815 816 817 818
  void finished_recalculating_age_indexes(bool is_survivors) {
    if (is_survivors) {
      _survivor_surv_rate_group->finished_recalculating_age_indexes();
    } else {
      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
    }
819 820 821
    // do that for any other surv rate groups
  }

822
  bool is_young_list_full() {
823 824
    uint young_list_length = _g1->young_list()->length();
    uint young_list_target_length = _young_list_target_length;
825 826
    return young_list_length >= young_list_target_length;
  }
827

828
  bool can_expand_young_list() {
829 830
    uint young_list_length = _g1->young_list()->length();
    uint young_list_max_length = _young_list_max_length;
831
    return young_list_length < young_list_max_length;
832
  }
833

834
  uint young_list_max_length() {
835 836 837
    return _young_list_max_length;
  }

838 839
  bool gcs_are_young() {
    return _gcs_are_young;
840
  }
841 842
  void set_gcs_are_young(bool gcs_are_young) {
    _gcs_are_young = gcs_are_young;
843 844 845
  }

  bool adaptive_young_list_length() {
846
    return _young_gen_sizer->adaptive_young_list_length();
847 848
  }

849
private:
850 851 852 853 854
  //
  // Survivor regions policy.
  //

  // Current tenuring threshold, set to 0 if the collector reaches the
855 856
  // maximum amount of survivors regions.
  uint _tenuring_threshold;
857

858
  // The limit on the number of regions allocated for survivors.
859
  uint _max_survivor_regions;
860

861
  // For reporting purposes.
862 863 864 865 866 867 868 869 870 871
  // The value of _heap_bytes_before_gc is also used to calculate
  // the cost of copying.

  size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
  size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
  size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
  size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC

  size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
  size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
872

873
  // The amount of survivor regions after a collection.
874
  uint _recorded_survivor_regions;
875 876 877 878 879 880
  // List of survivor regions.
  HeapRegion* _recorded_survivor_head;
  HeapRegion* _recorded_survivor_tail;

  ageTable _survivors_age_table;

881 882 883
public:

  inline GCAllocPurpose
884
    evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
885 886 887 888 889 890 891 892 893 894 895
      if (age < _tenuring_threshold && src_region->is_young()) {
        return GCAllocForSurvived;
      } else {
        return GCAllocForTenured;
      }
  }

  inline bool track_object_age(GCAllocPurpose purpose) {
    return purpose == GCAllocForSurvived;
  }

896
  static const uint REGIONS_UNLIMITED = (uint) -1;
897

898
  uint max_regions(int purpose);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

  // The limit on regions for a particular purpose is reached.
  void note_alloc_region_limit_reached(int purpose) {
    if (purpose == GCAllocForSurvived) {
      _tenuring_threshold = 0;
    }
  }

  void note_start_adding_survivor_regions() {
    _survivor_surv_rate_group->start_adding_regions();
  }

  void note_stop_adding_survivor_regions() {
    _survivor_surv_rate_group->stop_adding_regions();
  }
914

915
  void record_survivor_regions(uint regions,
916 917 918 919 920 921 922
                               HeapRegion* head,
                               HeapRegion* tail) {
    _recorded_survivor_regions = regions;
    _recorded_survivor_head    = head;
    _recorded_survivor_tail    = tail;
  }

923
  uint recorded_survivor_regions() {
924 925 926
    return _recorded_survivor_regions;
  }

927
  void record_thread_age_table(ageTable* age_table) {
928 929 930
    _survivors_age_table.merge_par(age_table);
  }

931
  void update_max_gc_locker_expansion();
932

933
  // Calculates survivor space parameters.
934
  void update_survivors_policy();
935

936 937 938 939 940 941 942 943 944 945 946 947 948
};

// This should move to some place more general...

// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
  double n_d = (double)n;
  double avg = sum/n_d;
  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}

949
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP