concurrentMark.cpp 163.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
39 40 41 42 43 44
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
Z
zgu 已提交
45
#include "services/memTracker.hpp"
46

47
// Concurrent marking bit map wrapper
48

49 50
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
51
  _shifter(shifter) {
52 53
  _bmStartWord = 0;
  _bmWordSize = 0;
54 55 56 57 58 59 60 61
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
62 63 64
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
65 66 67 68 69 70 71 72 73 74 75 76
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
77 78 79
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
95
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
96
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
97
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
98
         "size inconsistency");
99 100
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
101 102 103
}
#endif

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

175 176 177 178 179 180
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
181
  }
182 183 184 185 186 187 188 189 190 191 192 193
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
194
  _saved_index = -1;
195
  _should_expand = false;
196
  NOT_PRODUCT(_max_depth = 0);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
243 244 245
}

CMMarkStack::~CMMarkStack() {
246
  if (_base != NULL) {
247 248
    _base = NULL;
    _virtual_space.release();
249
  }
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
289
        int  ind = index + i;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
312
    assert(ind < _capacity, "By overflow test above.");
313 314
    _base[ind] = ptr_arr[i];
  }
315
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
316 317 318 319 320 321 322 323 324 325
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
326
    jint  new_ind = index - k;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
352 353
      res = false;
      break;
354 355 356 357 358 359
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

377
void CMMarkStack::oops_do(OopClosure* f) {
378 379 380
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
381 382 383 384 385
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
386
  return _g1h->is_obj_ill(obj);
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

467 468 469 470
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

471 472
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
473 474
}

475 476 477 478
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
  _markBitMap1(MinObjAlignment - 1),
  _markBitMap2(MinObjAlignment - 1),
479 480

  _parallel_marking_threads(0),
481
  _max_parallel_marking_threads(0),
482 483 484 485
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
486
  _cleanup_list("Cleanup List"),
487 488 489 490
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
491

492 493 494 495 496 497
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

498
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
499 500
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
501 502
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
503 504 505

  _has_overflown(false),
  _concurrent(false),
506 507 508
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
509 510 511 512 513 514 515 516

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
517 518 519 520

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
521 522
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
523 524
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
525
    verbose_level = no_verbose;
526 527
  }
  if (verbose_level > high_verbose) {
528
    verbose_level = high_verbose;
529
  }
530 531
  _verbose_level = verbose_level;

532
  if (verbose_low()) {
533 534
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
535
  }
536

537 538 539 540 541 542 543 544
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
545 546

  // Create & start a ConcurrentMark thread.
547 548 549 550
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

551
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
552 553
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
554 555

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
556
  satb_qs.set_buffer_size(G1SATBBufferSize);
557

558 559
  _root_regions.init(_g1h, this);

560
  if (ConcGCThreads > ParallelGCThreads) {
561 562 563 564
    warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
            "than ParallelGCThreads (" UINT32_FORMAT ").",
            ConcGCThreads, ParallelGCThreads);
    return;
565 566 567 568
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
569 570 571 572
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
573
  } else {
574 575
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
576 577 578
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
579
    } else if (G1MarkingOverheadPercent > 0) {
580 581
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
582
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
583
      double overall_cm_overhead =
J
johnc 已提交
584 585
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
586 587 588 589 590 591 592 593
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

594
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
595 596 597
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
598 599 600 601
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
602 603 604 605
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

606 607 608 609
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

610
    if (parallel_marking_threads() > 1) {
611
      _cleanup_task_overhead = 1.0;
612
    } else {
613
      _cleanup_task_overhead = marking_task_overhead();
614
    }
615 616 617 618 619 620 621 622 623 624 625
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

626
    guarantee(parallel_marking_threads() > 0, "peace of mind");
627
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
628
         _max_parallel_marking_threads, false, true);
629
    if (_parallel_workers == NULL) {
630
      vm_exit_during_initialization("Failed necessary allocation.");
631 632 633
    } else {
      _parallel_workers->initialize_workers();
    }
634 635
  }

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
              mark_stack_size, 1, MarkStackSizeMax);
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
                  MarkStackSize, 1, MarkStackSizeMax);
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

712
  // so that the call below can read a sensible value
713
  _heap_start = (HeapWord*) heap_rs.base();
714
  set_non_marking_state();
715
  _completed_initialization = true;
716 717 718 719
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
720
  // update _heap_end.
721
  if (!concurrent_marking_in_progress() && !force) return;
722 723

  MemRegion committed = _g1h->g1_committed();
724
  assert(committed.start() == _heap_start, "start shouldn't change");
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

746 747 748 749
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
750

751 752
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
753

754
  if (verbose_low()) {
755
    gclog_or_tty->print_cr("[global] resetting");
756
  }
757 758 759 760

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
761
  for (uint i = 0; i < _max_worker_id; ++i) {
762
    _tasks[i]->reset(_nextMarkBitMap);
763
  }
764 765 766 767 768 769

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

787
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
788
  assert(active_tasks <= _max_worker_id, "we should not have more");
789 790 791 792 793 794 795 796 797 798

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
799
  for (uint i = 0; i < _max_worker_id; ++i)
800 801 802 803 804 805 806 807
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
808 809
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
810 811 812 813 814 815 816
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
817
  reset_marking_state();
818 819 820 821 822
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
823 824
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
825 826 827
}

void ConcurrentMark::clearNextBitmap() {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
850
    if (next > end) {
851
      next = end;
852
    }
853 854 855 856 857 858 859 860 861 862 863 864 865
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

866 867 868
  // Clear the liveness counting data
  clear_all_count_data();

869 870 871
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
872 873 874 875 876 877
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
878
      r->note_start_of_marking();
879 880 881 882 883 884 885 886 887 888 889
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

890
#ifndef PRODUCT
891
  if (G1PrintReachableAtInitialMark) {
892
    print_reachable("at-cycle-start",
893
                    VerifyOption_G1UsePrevMarking, true /* all */);
894
  }
895
#endif
896 897 898

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
899 900 901 902

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
903 904 905 906 907 908
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

909 910 911 912 913 914 915 916
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

917 918 919 920
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
921
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
922 923

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
924 925 926 927
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
928

929 930
  _root_regions.prepare_for_scan();

931 932 933 934 935 936 937
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
957

958
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
959
  if (verbose_low()) {
960
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
961
  }
962

963 964 965
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
966
  _first_overflow_barrier_sync.enter();
967 968 969
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
970 971 972
  // at this point everyone should have synced up and not be doing any
  // more work

973
  if (verbose_low()) {
974
    gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
975
  }
976

977 978
  // let the task associated with with worker 0 do this
  if (worker_id == 0) {
979
    // task 0 is responsible for clearing the global data structures
980 981 982 983
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
984
    reset_marking_state(concurrent() /* clear_overflow */);
985
    force_overflow()->update();
986

987
    if (G1Log::fine()) {
988 989 990 991 992 993 994 995 996 997
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

998
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
999
  if (verbose_low()) {
1000
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1001
  }
1002

1003 1004 1005
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
1006
  _second_overflow_barrier_sync.enter();
1007 1008 1009
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
1010 1011
  // at this point everything should be re-initialised and ready to go

1012
  if (verbose_low()) {
1013
    gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1014
  }
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1043 1044 1045 1046 1047 1048
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1049
  void work(uint worker_id) {
1050 1051
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1052
    ResourceMark rm;
1053 1054 1055 1056 1057

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1058 1059
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1060 1061 1062 1063 1064
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1065 1066 1067 1068 1069 1070
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

1071 1072 1073 1074 1075 1076
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1077
        bool ret = _cm->do_yield_check(worker_id);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1101
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1102 1103 1104 1105

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
1106
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1107 1108 1109 1110 1111 1112 1113 1114 1115
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1116 1117
// Calculates the number of active workers for a concurrent
// phase.
1118
uint ConcurrentMark::calc_parallel_marking_threads() {
1119
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1120
    uint n_conc_workers = 0;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1135 1136
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1137
  }
1138 1139 1140 1141
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1142 1143
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1193
    if (use_parallel_marking_threads()) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1207 1208 1209 1210 1211 1212 1213 1214 1215
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1216
  force_overflow_conc()->init();
1217 1218 1219 1220 1221 1222

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1223
  uint active_workers = MAX2(1U, parallel_marking_threads());
1224 1225 1226

  // Parallel task terminator is set in "set_phase()"
  set_phase(active_workers, true /* concurrent */);
1227 1228

  CMConcurrentMarkingTask markingTask(this, cmThread());
1229
  if (use_parallel_marking_threads()) {
1230 1231 1232 1233
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1234
    _parallel_workers->run_task(&markingTask);
1235
  } else {
1236
    markingTask.work(0);
1237
  }
1238 1239 1240 1241 1242 1243 1244
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1245

1246 1247 1248 1249 1250 1251 1252 1253
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1254 1255
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1256 1257 1258 1259
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1260 1261
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
1262 1263
  }

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1278 1279 1280
    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1281
    if (G1TraceMarkStackOverflow) {
1282
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1283
    }
1284
  } else {
1285 1286 1287 1288
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1289
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1290
    // We're done with marking.
1291 1292
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1293 1294
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1295 1296

    if (VerifyDuringGC) {
1297 1298 1299
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1300 1301
      Universe::verify(/* silent */ false,
                       /* option */ VerifyOption_G1UseNextMarking);
1302
    }
1303
    assert(!restart_for_overflow(), "sanity");
1304 1305
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1306 1307
  }

1308 1309 1310 1311 1312
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1313 1314 1315 1316 1317 1318 1319 1320 1321
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

1322 1323 1324 1325
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1326
  G1CollectedHeap* _g1h;
1327
  ConcurrentMark* _cm;
1328 1329
  CardTableModRefBS* _ct_bs;

1330 1331 1332
  BitMap* _region_bm;
  BitMap* _card_bm;

1333
  // Takes a region that's not empty (i.e., it has at least one
1334 1335 1336 1337 1338 1339 1340
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1341
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1342 1343
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1344
      _region_bm->par_at_put(index, true);
1345 1346
    } else {
      // Starts humongous case: calculate how many regions are part of
1347
      // this humongous region and then set the bit range.
1348
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1349
      _region_bm->par_at_put_range(index, end_index, true);
1350 1351 1352
    }
  }

1353
public:
1354
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1355
                         BitMap* region_bm, BitMap* card_bm):
1356 1357 1358
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1359 1360 1361 1362 1363 1364 1365 1366 1367
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1368
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1369
                         BitMap* region_bm, BitMap* card_bm) :
1370
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1371 1372
    _bm(bm), _region_marked_bytes(0) { }

1373 1374
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1375
    if (hr->continuesHumongous()) {
1376 1377 1378 1379 1380 1381 1382
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1383 1384
      return false;
    }
1385

1386 1387
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1388

1389
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1390
           err_msg("Preconditions not met - "
1391 1392
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, ntams, hr->end()));
1393

1394
    // Find the first marked object at or after "start".
1395
    start = _bm->getNextMarkedWordAddress(start, ntams);
1396

1397 1398
    size_t marked_bytes = 0;

1399
    while (start < ntams) {
1400 1401
      oop obj = oop(start);
      int obj_sz = obj->size();
1402
      HeapWord* obj_end = start + obj_sz;
1403

1404
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1416

1417 1418
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1419 1420

      // Add the size of this object to the number of marked bytes.
1421
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1422

1423
      // Find the next marked object after this one.
1424
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1425
    }
1426 1427 1428

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1443 1444 1445

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1446 1447 1448 1449
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1450
      set_bit_for_region(hr);
1451
    }
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1469
  G1CollectedHeap* _g1h;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1482
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1483 1484 1485 1486 1487
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1488 1489
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1527
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1538
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1539 1540 1541 1542 1543

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1544 1545 1546 1547
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1565 1566 1567 1568
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1569
        }
1570
        failures += 1;
1571 1572 1573
      }
    }

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1584
    // find the first violating region by returning true.
1585 1586
    return false;
  }
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1636
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1653

1654
  int failures() const { return _failures; }
1655 1656
};

1657 1658 1659 1660 1661 1662
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1663

1664
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1665
 public:
1666
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1667 1668
                              BitMap* region_bm,
                              BitMap* card_bm) :
1669
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1687
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1688 1689 1690 1691 1692 1693

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1716
    }
1717 1718 1719 1720 1721 1722 1723 1724 1725

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1726 1727 1728 1729

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1730 1731 1732 1733
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1734
  uint    _n_workers;
1735

1736
public:
1737 1738 1739 1740 1741
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1742
    // Use the value already set as the number of active threads
1743
    // in the call to run_task().
1744 1745 1746 1747
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1748
    } else {
1749
      _n_workers = 1;
1750
    }
1751 1752
  }

1753
  void work(uint worker_id) {
1754 1755
    assert(worker_id < _n_workers, "invariant");

1756
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1757 1758 1759
                                                _actual_region_bm,
                                                _actual_card_bm);

1760
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1761 1762 1763
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1764
                                            HeapRegion::FinalCountClaimValue);
1765
    } else {
1766
      _g1h->heap_region_iterate(&final_update_cl);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1777
  uint _regions_claimed;
1778
  size_t _freed_bytes;
T
tonyp 已提交
1779
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1780
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1781 1782
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1783 1784 1785 1786 1787
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1788 1789
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1790
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1791
                             HumongousRegionSet* humongous_proxy_set,
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1802 1803
  size_t freed_bytes() { return _freed_bytes; }

1804
  bool doHeapRegion(HeapRegion *hr) {
1805 1806 1807
    if (hr->continuesHumongous()) {
      return false;
    }
1808 1809
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
    _g1->free_region_if_empty(hr,
                              &_freed_bytes,
                              _local_cleanup_list,
                              _old_proxy_set,
                              _humongous_proxy_set,
                              _hrrs_cleanup_task,
                              true /* par */);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1826 1827 1828
    }
    return false;
  }
1829 1830

  size_t max_live_bytes() { return _max_live_bytes; }
1831
  uint regions_claimed() { return _regions_claimed; }
1832 1833 1834 1835 1836 1837
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1838

1839 1840 1841 1842
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1843 1844
  FreeRegionList* _cleanup_list;

1845 1846
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1847
                   FreeRegionList* cleanup_list) :
1848
    AbstractGangTask("G1 note end"), _g1h(g1h),
1849
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1850

1851
  void work(uint worker_id) {
1852
    double start = os::elapsedTime();
T
tonyp 已提交
1853
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1854
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1855 1856
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1857
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1858
                                           &old_proxy_set,
T
tonyp 已提交
1859 1860
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1861
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1862
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1863
                                            _g1h->workers()->active_workers(),
1864
                                            HeapRegion::NoteEndClaimValue);
1865 1866 1867 1868 1869
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1870 1871 1872
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1873
                                            &old_proxy_set,
T
tonyp 已提交
1874
                                            &humongous_proxy_set,
1875
                                            true /* par */);
1876 1877 1878 1879
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1898 1899 1900 1901
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1917
    _region_bm(region_bm), _card_bm(card_bm) { }
1918

1919
  void work(uint worker_id) {
1920
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1921
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1922
                       HeapRegion::ScrubRemSetClaimValue);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1942
  HRSPhaseSetter x(HRSPhaseCleanup);
1943 1944
  g1h->verify_region_sets_optional();

1945 1946 1947 1948
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1949 1950
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
1951 1952
  }

1953 1954 1955 1956 1957
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1958 1959
  HeapRegionRemSet::reset_for_cleanup_tasks();

1960
  uint n_workers;
1961

1962
  // Do counting once more with the world stopped for good measure.
1963 1964
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1965
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1966
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1967 1968
           "sanity check");

1969 1970
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1971
    assert(g1h->n_par_threads() == n_workers,
1972
           "Should not have been reset");
1973
    g1h->workers()->run_task(&g1_par_count_task);
1974
    // Done with the parallel phase so reset to 0.
1975
    g1h->set_par_threads(0);
1976

1977
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1978
           "sanity check");
1979
  } else {
1980
    n_workers = 1;
1981 1982 1983
    g1_par_count_task.work(0);
  }

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2013 2014 2015 2016 2017 2018 2019
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2020 2021 2022 2023 2024
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2025 2026 2027 2028 2029 2030
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2031
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2032
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2033
    g1h->set_par_threads((int)n_workers);
2034 2035
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2036 2037 2038

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2039 2040 2041
  } else {
    g1_par_note_end_task.work(0);
  }
2042
  g1h->check_gc_time_stamps();
2043 2044 2045 2046 2047 2048 2049

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2050 2051 2052 2053 2054 2055

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2056
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2057
      g1h->set_par_threads((int)n_workers);
2058 2059
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2060 2061 2062 2063

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2075
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2076 2077 2078 2079 2080

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2081
  if (G1Log::fine()) {
2082 2083 2084 2085 2086 2087
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2088 2089 2090 2091
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2092 2093 2094 2095
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2096 2097 2098 2099
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2100
  if (VerifyDuringGC) {
2101 2102 2103
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
2104 2105
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
2106
  }
2107 2108

  g1h->verify_region_sets_optional();
2109 2110 2111 2112 2113
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2114 2115 2116
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
2117
  FreeRegionList tmp_free_list("Tmp Free List");
2118 2119 2120

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2121
                           "cleanup list has %u entries",
2122 2123 2124 2125 2126 2127 2128 2129
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
2130
    hr->par_clear();
T
tonyp 已提交
2131
    tmp_free_list.add_as_tail(hr);
2132 2133 2134 2135 2136 2137 2138

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2139
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2140 2141 2142
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2143 2144
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2145
                               tmp_free_list.length(),
2146 2147 2148 2149 2150
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2151
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2152 2153 2154 2155 2156 2157 2158
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2159 2160 2161
      }
    }
  }
T
tonyp 已提交
2162
  assert(tmp_free_list.is_empty(), "post-condition");
2163 2164
}

2165 2166
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2167

2168 2169 2170 2171 2172
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2187 2188 2189 2190 2191
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2192 2193
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval) {
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2204
      if (_cm->verbose_high()) {
2205
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2206
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2207
                               _task->worker_id(), p, (void*) obj);
2208
      }
2209 2210 2211 2212 2213

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2230 2231 2232 2233 2234 2235 2236 2237 2238
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2239
      if (_cm->verbose_high()) {
2240
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2241
      }
2242 2243 2244 2245
    }
  }
};

2246 2247 2248 2249 2250 2251 2252 2253
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2254
  ConcurrentMark* _cm;
2255 2256 2257
  CMTask*         _task;
  bool            _do_stealing;
  bool            _do_termination;
2258
 public:
2259 2260 2261 2262 2263 2264 2265 2266 2267
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_par) :
    _cm(cm), _task(task) {
    assert(is_par || _task->worker_id() == 0,
           "Only task for worker 0 should be used if ref processing is single threaded");
    // We only allow stealing and only enter the termination protocol
    // in CMTask::do_marking_step() if this closure is being instantiated
    // for parallel reference processing.
    _do_stealing = _do_termination = is_par;
  }
2268 2269 2270

  void do_void() {
    do {
2271
      if (_cm->verbose_high()) {
2272 2273 2274 2275 2276
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - "
                               "stealing: %s, termination: %s",
                               _task->worker_id(),
                               BOOL_TO_STR(_do_stealing),
                               BOOL_TO_STR(_do_termination));
2277
      }
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2295 2296

      _task->do_marking_step(1000000000.0 /* something very large */,
2297 2298
                             _do_stealing,
                             _do_termination);
2299 2300 2301 2302
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2303 2304 2305 2306
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2307 2308 2309 2310 2311 2312 2313
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2314
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2315 2316 2317
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2318 2319
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2320 2321 2322 2323 2324 2325

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2326
class G1CMRefProcTaskProxy: public AbstractGangTask {
2327 2328 2329 2330
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
2331
  bool             _processing_is_mt;
2332 2333

public:
2334
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2335
                     G1CollectedHeap* g1h,
2336
                     ConcurrentMark* cm) :
2337
    AbstractGangTask("Process reference objects in parallel"),
2338 2339 2340 2341
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
      ReferenceProcessor* rp = _g1h->ref_processor_cm();
      _processing_is_mt = rp->processing_is_mt();
    }
2342

2343 2344
  virtual void work(uint worker_id) {
    CMTask* marking_task = _cm->task(worker_id);
2345
    G1CMIsAliveClosure g1_is_alive(_g1h);
2346 2347
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, marking_task, _processing_is_mt);
2348

2349
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2350 2351 2352
  }
};

2353
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2354
  assert(_workers != NULL, "Need parallel worker threads.");
2355
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2356

2357
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2358 2359 2360 2361 2362 2363 2364 2365 2366

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2367
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2368 2369 2370 2371
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2372
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2373
    AbstractGangTask("Enqueue reference objects in parallel"),
2374
    _enq_task(enq_task) { }
2375

2376 2377
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2378 2379 2380
  }
};

2381
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2382
  assert(_workers != NULL, "Need parallel worker threads.");
2383
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2384

2385
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2386 2387 2388 2389 2390 2391

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2392 2393 2394 2395
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2396 2397 2398 2399 2400 2401 2402 2403
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2404
    if (G1Log::finer()) {
2405 2406
      gclog_or_tty->put(' ');
    }
2407
    TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2408

2409
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2410

2411 2412
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2413

2414
    // Set the soft reference policy
2415 2416
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2417

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    // Non-MT instances 'Keep Alive' and 'Complete GC' oop closures.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0));
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), false);

    // We need at least one active thread. If reference processing is
    // not multi-threaded we use the current (ConcurrentMarkThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and we
    // utilize all the worker threads we can.
    uint active_workers = (rp->processing_is_mt() && g1h->workers() != NULL
                                ? g1h->workers()->active_workers()
                                : 1U);
2429

2430
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2431

2432
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2433
                                              g1h->workers(), active_workers);
2434

2435 2436 2437
    AbstractRefProcTaskExecutor* executor = (rp->processing_is_mt()
                                                ? &par_task_executor
                                                : NULL);
2438

2439 2440 2441 2442 2443 2444 2445 2446
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
    rp->process_discovered_references(&g1_is_alive,
2447 2448
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
2449
                                      executor);
2450

2451 2452 2453
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2454

2455 2456 2457
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
2458
      // This should have been done already when we tried to push an
2459 2460 2461
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2462

2463 2464 2465
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2466

2467
    rp->verify_no_references_recorded();
2468
    assert(!rp->discovery_enabled(), "Post condition");
2469 2470
  }

2471
  // Now clean up stale oops in StringTable
2472
  StringTable::unlink(&g1_is_alive);
2473 2474
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
2488
  void work(uint worker_id) {
2489 2490
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2491 2492
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2493 2494
      task->record_start_time();
      do {
2495 2496 2497
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2498 2499 2500 2501 2502 2503 2504
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2505
  CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2506
    AbstractGangTask("Par Remark"), _cm(cm) {
2507
    _cm->terminator()->reset_for_reuse(active_workers);
2508
  }
2509 2510 2511 2512 2513 2514 2515 2516 2517
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2518
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2519
    G1CollectedHeap::StrongRootsScope srs(g1h);
2520
    // this is remark, so we'll use up all active threads
2521
    uint active_workers = g1h->workers()->active_workers();
2522 2523
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2524
      active_workers = (uint) ParallelGCThreads;
2525 2526
      g1h->workers()->set_active_workers(active_workers);
    }
2527
    set_phase(active_workers, false /* concurrent */);
2528 2529 2530 2531
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2532

2533
    CMRemarkTask remarkTask(this, active_workers);
2534
    g1h->set_par_threads(active_workers);
2535 2536 2537
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2538
    G1CollectedHeap::StrongRootsScope srs(g1h);
2539
    // this is remark, so we'll use up all available threads
2540
    uint active_workers = 1;
2541
    set_phase(active_workers, false /* concurrent */);
2542

2543
    CMRemarkTask remarkTask(this, active_workers);
2544 2545 2546 2547 2548
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2549 2550
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2551 2552 2553 2554

  print_stats();
}

2555 2556
#ifndef PRODUCT

2557
class PrintReachableOopClosure: public OopClosure {
2558 2559 2560
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2561
  VerifyOption     _vo;
2562
  bool             _all;
2563 2564

public:
2565 2566
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2567
                           bool          all) :
2568
    _g1h(G1CollectedHeap::heap()),
2569
    _out(out), _vo(vo), _all(all) { }
2570

2571 2572
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2573

2574 2575
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2576 2577 2578
    const char* str = NULL;
    const char* str2 = "";

2579 2580 2581 2582 2583
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2584
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2585
      guarantee(hr != NULL, "invariant");
2586 2587
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2588 2589

      if (over_tams) {
2590 2591
        str = " >";
        if (marked) {
2592
          str2 = " AND MARKED";
2593
        }
2594 2595
      } else if (marked) {
        str = " M";
2596
      } else {
2597
        str = " NOT";
2598
      }
2599 2600
    }

2601
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2602 2603 2604 2605
                   p, (void*) obj, str, str2);
  }
};

2606
class PrintReachableObjectClosure : public ObjectClosure {
2607
private:
2608 2609 2610 2611 2612
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2613 2614

public:
2615 2616
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2617 2618
                              bool          all,
                              HeapRegion*   hr) :
2619 2620
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2621

2622
  void do_object(oop o) {
2623 2624
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2625 2626 2627 2628 2629
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2630
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2631
      o->oop_iterate_no_header(&oopCl);
2632
    }
2633 2634 2635
  }
};

2636
class PrintReachableRegionClosure : public HeapRegionClosure {
2637
private:
2638 2639 2640 2641
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2642 2643 2644 2645 2646 2647

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2648
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2649
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2650
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2651 2652 2653 2654 2655 2656 2657 2658
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2659
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2660 2661 2662
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2663 2664 2665 2666

    return false;
  }

2667 2668
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2669
                              bool          all) :
2670
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2671 2672
};

2673
void ConcurrentMark::print_reachable(const char* str,
2674
                                     VerifyOption vo,
2675 2676 2677
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2701
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2702 2703
  out->cr();

2704
  out->print_cr("--- ITERATING OVER REGIONS");
2705
  out->cr();
2706
  PrintReachableRegionClosure rcl(out, vo, all);
2707
  _g1h->heap_region_iterate(&rcl);
2708
  out->cr();
2709

2710
  gclog_or_tty->print_cr("  done");
2711
  gclog_or_tty->flush();
2712 2713
}

2714 2715
#endif // PRODUCT

2716
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2717 2718 2719
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2720 2721 2722
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2723 2724 2725
  _nextMarkBitMap->clearRange(mr);
}

2726 2727 2728 2729 2730
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2731
HeapRegion*
2732
ConcurrentMark::claim_region(uint worker_id) {
2733 2734 2735 2736 2737 2738
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2739
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2765 2766 2767 2768
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2769
    if (verbose_low()) {
2770
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2771 2772
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2773
                             worker_id, curr_region, bottom, end, limit);
2774
    }
2775

2776 2777
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2778 2779 2780 2781 2782
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2783
      assert(_finger >= end, "the finger should have moved forward");
2784

2785
      if (verbose_low()) {
2786 2787
        gclog_or_tty->print_cr("[%u] we were successful with region = "
                               PTR_FORMAT, worker_id, curr_region);
2788
      }
2789 2790

      if (limit > bottom) {
2791
        if (verbose_low()) {
2792 2793
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
                                 "returning it ", worker_id, curr_region);
2794
        }
2795 2796
        return curr_region;
      } else {
2797 2798
        assert(limit == bottom,
               "the region limit should be at bottom");
2799
        if (verbose_low()) {
2800 2801
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
                                 "returning NULL", worker_id, curr_region);
2802
        }
2803 2804 2805 2806 2807
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2808
      assert(_finger > finger, "the finger should have moved forward");
2809
      if (verbose_low()) {
2810
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2811 2812
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
2813
                               worker_id, _finger, finger);
2814
      }
2815 2816 2817 2818 2819 2820 2821 2822 2823

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2873

2874 2875
  virtual void do_object(oop obj) {
    do_object_work(obj);
2876
  }
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2889

2890 2891 2892 2893 2894 2895
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
2896
    for (uint i = 0; i < _max_worker_id; i += 1) {
2897
      cl.set_phase(VerifyNoCSetOopsQueues, i);
2898
      CMTaskQueue* queue = _task_queues->queue(i);
2899 2900
      queue->oops_do(&cl);
    }
2901 2902
  }

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
2935
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
2949
}
2950
#endif // PRODUCT
2951

2952 2953 2954
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
2955
  G1CollectedHeap* _g1h;
2956
  ConcurrentMark* _cm;
2957
  CardTableModRefBS* _ct_bs;
2958
  BitMap* _cm_card_bm;
2959
  uint _max_worker_id;
2960 2961

 public:
2962
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2963
                              BitMap* cm_card_bm,
2964
                              uint max_worker_id) :
2965 2966
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
2967
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

2998 2999 3000 3001
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3002 3003 3004 3005 3006

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3007 3008 3009 3010 3011 3012 3013 3014
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3015 3016 3017 3018 3019 3020
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3021
    uint hrs_index = hr->hrs_index();
3022 3023
    size_t marked_bytes = 0;

3024
    for (uint i = 0; i < _max_worker_id; i += 1) {
3025 3026 3027 3028 3029 3030 3031
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3032
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3043
        // parameter. It does, however, have an early exit if
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3064
  uint _max_worker_id;
3065 3066 3067 3068 3069 3070
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3071
                           uint max_worker_id,
3072 3073 3074
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3075
    _max_worker_id(max_worker_id),
3076 3077 3078
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3079
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3098
                                           _max_worker_id, n_workers);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3126
  uint max_regions = _g1h->max_regions();
3127
  assert(_max_worker_id > 0, "uninitialized");
3128

3129
  for (uint i = 0; i < _max_worker_id; i += 1) {
3130 3131 3132 3133 3134 3135
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3136
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3137 3138 3139 3140
    task_card_bm->clear();
  }
}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3155 3156
  // Clear the liveness counting data
  clear_all_count_data();
3157
  // Empty mark stack
3158
  reset_marking_state();
3159
  for (uint i = 0; i < _max_worker_id; ++i) {
3160
    _tasks[i]->clear_region_fields();
3161
  }
3162 3163 3164 3165
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3166 3167 3168 3169 3170
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3209
                "(%8.2f s marking).",
3210
                cmThread()->vtime_accum(),
3211
                cmThread()->vtime_mark_accum());
3212 3213
}

T
tonyp 已提交
3214
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3215 3216 3217
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3218 3219
}

3220
// We take a break if someone is trying to stop the world.
3221
bool ConcurrentMark::do_yield_check(uint worker_id) {
3222
  if (should_yield()) {
3223
    if (worker_id == 0) {
3224
      _g1h->g1_policy()->record_concurrent_pause();
3225
    }
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
    cmThread()->yield();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3244 3245
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3246 3247 3248 3249 3250 3251 3252
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
3253 3254
  for (uint i = 0; i < _max_worker_id; ++i) {
    gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3255 3256 3257 3258 3259
  }
  gclog_or_tty->print_cr("");
}
#endif

3260 3261 3262 3263
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3264 3265
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
                           _worker_id, (void*) obj);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3276 3277 3278 3279 3280 3281 3282 3283 3284
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3285 3286
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3287 3288 3289

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3290 3291
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3292

3293 3294 3295 3296 3297
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3324 3325 3326 3327 3328
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3329

3330
  if (G1UseConcMarkReferenceProcessing) {
3331
    _ref_processor = g1h->ref_processor_cm();
3332
    assert(_ref_processor != NULL, "should not be NULL");
3333
  }
3334
}
3335 3336

void CMTask::setup_for_region(HeapRegion* hr) {
3337 3338 3339 3340 3341
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3342

3343
  if (_cm->verbose_low()) {
3344 3345
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
                           _worker_id, hr);
3346
  }
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3359
    if (_cm->verbose_low()) {
3360
      gclog_or_tty->print_cr("[%u] found an empty region "
3361
                             "["PTR_FORMAT", "PTR_FORMAT")",
3362
                             _worker_id, bottom, limit);
3363
    }
3364 3365 3366 3367 3368 3369 3370
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3371
    assert(limit >= _finger, "peace of mind");
3372
  } else {
3373
    assert(limit < _region_limit, "only way to get here");
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3391
  assert(_curr_region != NULL, "invariant");
3392
  if (_cm->verbose_low()) {
3393 3394
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
                           _worker_id, _curr_region);
3395
  }
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3407 3408 3409 3410 3411 3412 3413 3414 3415
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3416
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3417
  guarantee(nextMarkBitMap != NULL, "invariant");
3418

3419
  if (_cm->verbose_low()) {
3420
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3421
  }
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3465 3466 3467
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3468 3469 3470 3471
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3472
  if (has_aborted()) return;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3489
  if (!concurrent()) return;
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3502
  if (_words_scanned >= _words_scanned_limit) {
3503
    ++_clock_due_to_scanning;
3504 3505
  }
  if (_refs_reached >= _refs_reached_limit) {
3506
    ++_clock_due_to_marking;
3507
  }
3508 3509 3510 3511 3512 3513

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3514
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3515
                        "scanned = %d%s, refs reached = %d%s",
3516
                        _worker_id, last_interval_ms,
3517 3518 3519 3520
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3538
    _has_timed_out = true;
3539 3540 3541 3542 3543 3544 3545 3546
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3547
    if (_cm->verbose_low()) {
3548 3549
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3550
    }
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3573
  if (_cm->verbose_medium()) {
3574
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3575
  }
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3601
      if (_cm->verbose_low()) {
3602 3603
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3604
      }
3605 3606 3607 3608
      set_has_aborted();
    } else {
      // the transfer was successful

3609
      if (_cm->verbose_medium()) {
3610 3611
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3612
      }
3613
      statsOnly( int tmp_size = _cm->mark_stack_size();
3614
                 if (tmp_size > _global_max_size) {
3615
                   _global_max_size = tmp_size;
3616
                 }
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3631 3632
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3633 3634 3635 3636
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3637
    if (_cm->verbose_medium()) {
3638 3639
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3640
    }
3641 3642 3643 3644
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3645
      assert(success, "invariant");
3646 3647 3648
    }

    statsOnly( int tmp_size = _task_queue->size();
3649
               if (tmp_size > _local_max_size) {
3650
                 _local_max_size = tmp_size;
3651
               }
3652 3653 3654 3655 3656 3657 3658 3659
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3660
  if (has_aborted()) return;
3661 3662 3663 3664 3665

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3666
  if (partially) {
3667
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3668
  } else {
3669
    target_size = 0;
3670
  }
3671 3672

  if (_task_queue->size() > target_size) {
3673
    if (_cm->verbose_high()) {
3674 3675
      gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
                             _worker_id, target_size);
3676
    }
3677 3678 3679 3680 3681 3682

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3683
      if (_cm->verbose_high()) {
3684
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3685
                               (void*) obj);
3686
      }
3687

3688
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3689
      assert(!_g1h->is_on_master_free_list(
3690
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3691 3692 3693

      scan_object(obj);

3694
      if (_task_queue->size() <= target_size || has_aborted()) {
3695
        ret = false;
3696
      } else {
3697
        ret = _task_queue->pop_local(obj);
3698
      }
3699 3700
    }

3701
    if (_cm->verbose_high()) {
3702 3703
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3704
    }
3705 3706 3707 3708
  }
}

void CMTask::drain_global_stack(bool partially) {
3709
  if (has_aborted()) return;
3710 3711 3712

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3713
  assert(partially || _task_queue->size() == 0, "invariant");
3714 3715 3716 3717 3718 3719 3720 3721

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3722
  if (partially) {
3723
    target_size = _cm->partial_mark_stack_size_target();
3724
  } else {
3725
    target_size = 0;
3726
  }
3727 3728

  if (_cm->mark_stack_size() > target_size) {
3729
    if (_cm->verbose_low()) {
3730 3731
      gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
                             _worker_id, target_size);
3732
    }
3733 3734 3735 3736 3737 3738

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3739
    if (_cm->verbose_low()) {
3740 3741
      gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
                             _worker_id, _cm->mark_stack_size());
3742
    }
3743 3744 3745 3746 3747 3748 3749 3750
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3751
  if (has_aborted()) return;
3752 3753 3754 3755 3756 3757 3758 3759 3760

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3761
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3762
    satb_mq_set.set_par_closure(_worker_id, &oc);
3763
  } else {
3764
    satb_mq_set.set_closure(&oc);
3765
  }
3766 3767 3768

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3769
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3770
    while (!has_aborted() &&
3771
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3772
      if (_cm->verbose_medium()) {
3773
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3774
      }
3775 3776 3777 3778 3779 3780
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3781
      if (_cm->verbose_medium()) {
3782
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3783
      }
3784 3785 3786 3787 3788 3789 3790
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3791
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3792
      satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3793
    } else {
3794
      satb_mq_set.iterate_closure_all_threads();
3795
    }
3796 3797 3798 3799
  }

  _draining_satb_buffers = false;

3800 3801 3802
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3803

3804
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3805
    satb_mq_set.set_par_closure(_worker_id, NULL);
3806
  } else {
3807
    satb_mq_set.set_closure(NULL);
3808
  }
3809 3810 3811 3812 3813 3814 3815

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
3816 3817
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3843
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3902
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3914 3915 3916 3917 3918 3919
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
      (local queues, stacks, fingers etc.)  are re-initialised so that
      when do_marking_step() completes, the marking phase can
      immediately restart.
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

3956 3957 3958
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
3959 3960
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
3961 3962

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3963 3964
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
3965
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3966

3967 3968
  assert(!_claimed,
         "only one thread should claim this task at any one time");
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
3991
  _has_timed_out = false;
3992 3993 3994 3995
  _draining_satb_buffers = false;

  ++_calls;

3996
  if (_cm->verbose_low()) {
3997
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
3998
                           "target = %1.2lfms >>>>>>>>>>",
3999
                           _worker_id, _calls, _time_target_ms);
4000
  }
4001 4002 4003 4004 4005

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4006 4007
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4008 4009

  if (_cm->has_overflown()) {
4010 4011 4012 4013
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4029 4030
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4046
      if (_cm->verbose_low()) {
4047
        gclog_or_tty->print_cr("[%u] we're scanning part "
4048
                               "["PTR_FORMAT", "PTR_FORMAT") "
4049 4050 4051
                               "of region "HR_FORMAT,
                               _worker_id, _finger, _region_limit,
                               HR_FORMAT_PARAMS(_curr_region));
4052
      }
4053

4054 4055
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4056

4057 4058 4059 4060 4061 4062 4063
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4064
      // If the iteration is successful, give up the region.
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4079 4080 4081
        giveup_current_region();
        regular_clock_call();
      } else {
4082
        assert(has_aborted(), "currently the only way to do so");
4083 4084 4085 4086 4087
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4088
        assert(_finger != NULL, "invariant");
4089 4090 4091 4092 4093 4094 4095 4096

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4097 4098 4099 4100
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4101
          giveup_current_region();
4102
        } else {
4103
          move_finger_to(new_finger);
4104
        }
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4122 4123 4124 4125
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4126
      if (_cm->verbose_low()) {
4127
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4128
      }
4129
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4130 4131 4132 4133
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4134
        if (_cm->verbose_low()) {
4135
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4136
                                 "region "PTR_FORMAT,
4137
                                 _worker_id, claimed_region);
4138
        }
4139 4140

        setup_for_region(claimed_region);
4141
        assert(_curr_region == claimed_region, "invariant");
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4152 4153
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4154 4155 4156 4157 4158
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4159
    // tasks might be pushing objects to it concurrently.
4160 4161
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4162

4163
    if (_cm->verbose_low()) {
4164
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4165
    }
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4178
  if (do_stealing && !has_aborted()) {
4179 4180 4181 4182
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4183
    // tasks might be pushing objects to it concurrently.
4184 4185
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4186

4187
    if (_cm->verbose_low()) {
4188
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4189
    }
4190 4191 4192 4193 4194

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4195
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4196
        if (_cm->verbose_medium()) {
4197 4198
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
                                 _worker_id, (void*) obj);
4199
        }
4200 4201 4202

        statsOnly( ++_steals );

4203 4204
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4217 4218 4219 4220 4221 4222 4223 4224 4225
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4226 4227
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4228
  if (do_termination && !has_aborted()) {
4229
    // We cannot check whether the global stack is empty, since other
4230
    // tasks might be concurrently pushing objects on it.
4231 4232 4233
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4234

4235
    if (_cm->verbose_low()) {
4236
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4237
    }
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4251
      if (_worker_id == 0) {
4252 4253
        // let's allow task 0 to do this
        if (concurrent()) {
4254
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4255 4256 4257 4258 4259 4260 4261 4262
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4263 4264 4265 4266 4267 4268 4269 4270
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4271

4272
      if (_cm->verbose_low()) {
4273
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4274
      }
4275 4276 4277 4278
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4279
      if (_cm->verbose_low()) {
4280 4281
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4282
      }
4283 4284 4285 4286 4287 4288 4289 4290 4291

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4292
  set_cm_oop_closure(NULL);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4303
    if (_has_timed_out) {
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4319
      if (_cm->verbose_low()) {
4320
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4321
      }
4322

4323
      _cm->enter_first_sync_barrier(_worker_id);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
4335
      _cm->enter_second_sync_barrier(_worker_id);
4336 4337 4338 4339 4340
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4341
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4342
                             "elapsed = %1.2lfms <<<<<<<<<<",
4343
                             _worker_id, _time_target_ms, elapsed_time_ms);
4344
      if (_cm->has_aborted()) {
4345 4346
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4347
      }
4348 4349
    }
  } else {
4350
    if (_cm->verbose_low()) {
4351
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4352
                             "elapsed = %1.2lfms <<<<<<<<<<",
4353
                             _worker_id, _time_target_ms, elapsed_time_ms);
4354
    }
4355 4356 4357 4358 4359
  }

  _claimed = false;
}

4360
CMTask::CMTask(uint worker_id,
4361
               ConcurrentMark* cm,
4362 4363
               size_t* marked_bytes,
               BitMap* card_bm,
4364 4365 4366
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4367
    _worker_id(worker_id), _cm(cm),
4368 4369 4370 4371
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4372
    _cm_oop_closure(NULL),
4373 4374
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4375 4376
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4377 4378 4379 4380 4381 4382

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4437
                 HeapRegion::GrainBytes);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4448 4449 4450 4451 4452 4453 4454 4455 4456
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4468
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}