concurrentMark.cpp 171.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
33
#include "gc_implementation/g1/g1RemSet.hpp"
34
#include "gc_implementation/g1/heapRegion.inline.hpp"
35 36
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
37
#include "gc_implementation/shared/vmGCOperations.hpp"
38 39 40 41 42 43
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
44 45 46 47

//
// CMS Bit Map Wrapper

48
CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  _bm((uintptr_t*)NULL,0),
  _shifter(shifter) {
  _bmStartWord = (HeapWord*)(rs.base());
  _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));

  guarantee(brs.is_reserved(), "couldn't allocate CMS bit map");
  // For now we'll just commit all of the bit map up fromt.
  // Later on we'll try to be more parsimonious with swap.
  guarantee(_virtual_space.initialize(brs, brs.size()),
            "couldn't reseve backing store for CMS bit map");
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of CMS bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
75 76 77
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
78 79 80 81 82 83 84 85 86 87 88 89
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
90 91 92
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
                                             size_t    from_start_index,
                                             HeapWord* to_start_word,
                                             size_t    word_num) {
  _bm.mostly_disjoint_range_union(from_bitmap,
                                  from_start_index,
                                  heapWordToOffset(to_start_word),
                                  word_num);
}

#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
120
  assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
         "size inconsistency");
  return _bmStartWord == (HeapWord*)(rs.base()) &&
         _bmWordSize  == rs.size()>>LogHeapWordSize;
}
#endif

void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

void CMMarkStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(oop, size);
175
  if (_base == NULL) {
176
    vm_exit_during_initialization("Failed to allocate CM region mark stack");
177
  }
178 179
  _index = 0;
  _capacity = (jint) size;
180
  _saved_index = -1;
181 182 183 184
  NOT_PRODUCT(_max_depth = 0);
}

CMMarkStack::~CMMarkStack() {
185 186 187
  if (_base != NULL) {
    FREE_C_HEAP_ARRAY(oop, _base);
  }
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
        int ind = index + i;
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}


void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
251
    assert(ind < _capacity, "By overflow test above.");
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    _base[ind] = ptr_arr[i];
  }
}


bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
    jint new_ind = index - k;
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

CMRegionStack::CMRegionStack() : _base(NULL) {}

void CMRegionStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(MemRegion, size);
279 280 281
  if (_base == NULL) {
    vm_exit_during_initialization("Failed to allocate CM region mark stack");
  }
282 283 284 285 286
  _index = 0;
  _capacity = (jint) size;
}

CMRegionStack::~CMRegionStack() {
287 288 289
  if (_base != NULL) {
    FREE_C_HEAP_ARRAY(oop, _base);
  }
290 291
}

292
void CMRegionStack::push_lock_free(MemRegion mr) {
293 294
  guarantee(false, "push_lock_free(): don't call this any more");

295 296
  assert(mr.word_size() > 0, "Precondition");
  while (true) {
297 298 299
    jint index = _index;

    if (index >= _capacity) {
300 301 302 303 304 305 306 307 308 309 310 311 312 313
      _overflow = true;
      return;
    }
    // Otherwise...
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = mr;
      return;
    }
    // Otherwise, we need to try again.
  }
}

314 315 316 317
// Lock-free pop of the region stack. Called during the concurrent
// marking / remark phases. Should only be called in tandem with
// other lock-free pops.
MemRegion CMRegionStack::pop_lock_free() {
318 319
  guarantee(false, "pop_lock_free(): don't call this any more");

320 321 322 323 324 325
  while (true) {
    jint index = _index;

    if (index == 0) {
      return MemRegion();
    }
326
    // Otherwise...
327 328 329 330 331
    jint next_index = index-1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      MemRegion mr = _base[next_index];
      if (mr.start() != NULL) {
332 333
        assert(mr.end() != NULL, "invariant");
        assert(mr.word_size() > 0, "invariant");
334 335 336
        return mr;
      } else {
        // that entry was invalidated... let's skip it
337
        assert(mr.end() == NULL, "invariant");
338 339 340 341 342
      }
    }
    // Otherwise, we need to try again.
  }
}
343 344 345 346 347

#if 0
// The routines that manipulate the region stack with a lock are
// not currently used. They should be retained, however, as a
// diagnostic aid.
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

void CMRegionStack::push_with_lock(MemRegion mr) {
  assert(mr.word_size() > 0, "Precondition");
  MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);

  if (isFull()) {
    _overflow = true;
    return;
  }

  _base[_index] = mr;
  _index += 1;
}

MemRegion CMRegionStack::pop_with_lock() {
  MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);

  while (true) {
    if (_index == 0) {
      return MemRegion();
    }
    _index -= 1;

    MemRegion mr = _base[_index];
    if (mr.start() != NULL) {
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
      return mr;
    } else {
      // that entry was invalidated... let's skip it
      assert(mr.end() == NULL, "invariant");
    }
  }
}
382
#endif
383 384

bool CMRegionStack::invalidate_entries_into_cset() {
385 386
  guarantee(false, "invalidate_entries_into_cset(): don't call this any more");

387 388 389 390 391
  bool result = false;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  for (int i = 0; i < _oops_do_bound; ++i) {
    MemRegion mr = _base[i];
    if (mr.start() != NULL) {
392 393
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
394
      HeapRegion* hr = g1h->heap_region_containing(mr.start());
395
      assert(hr != NULL, "invariant");
396 397 398 399 400 401 402
      if (hr->in_collection_set()) {
        // The region points into the collection set
        _base[i] = MemRegion();
        result = true;
      }
    } else {
      // that entry was invalidated... let's skip it
403
      assert(mr.end() == NULL, "invariant");
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    }
  }
  return result;
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    // iterate over the oops in this oop, marking and pushing
    // the ones in CMS generation.
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
427 428
      res = false;
      break;
429 430 431 432 433 434
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

452
void CMMarkStack::oops_do(OopClosure* f) {
453 454 455
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
456 457 458 459 460 461 462 463 464 465 466 467 468 469
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
  return (_g1h->is_obj_ill(obj)
          || (_g1h->is_in_permanent(obj)
              && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
}

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

470 471
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
472 473
}

474 475 476 477 478 479
ConcurrentMark::ConcurrentMark(ReservedSpace rs,
                               int max_regions) :
  _markBitMap1(rs, MinObjAlignment - 1),
  _markBitMap2(rs, MinObjAlignment - 1),

  _parallel_marking_threads(0),
480
  _max_parallel_marking_threads(0),
481 482 483 484
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
485
  _cleanup_list("Cleanup List"),
486 487 488 489 490 491 492 493 494 495 496 497
  _region_bm(max_regions, false /* in_resource_area*/),
  _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
           CardTableModRefBS::card_shift,
           false /* in_resource_area*/),
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),
  _at_least_one_mark_complete(false),

  _markStack(this),
  _regionStack(),
  // _finger set in set_non_marking_state

498
  _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
499 500 501 502 503 504 505
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
  _task_queues(new CMTaskQueueSet((int) _max_task_num)),
  _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),

  _has_overflown(false),
  _concurrent(false),
506 507 508 509
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
  _should_gray_objects(false),
510 511 512 513 514 515 516 517

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
518 519 520
  _parallel_workers(NULL) {
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
521
    verbose_level = no_verbose;
522 523
  }
  if (verbose_level > high_verbose) {
524
    verbose_level = high_verbose;
525
  }
526 527
  _verbose_level = verbose_level;

528
  if (verbose_low()) {
529 530
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
531
  }
532

533
  _markStack.allocate(MarkStackSize);
J
johnc 已提交
534
  _regionStack.allocate(G1MarkRegionStackSize);
535 536

  // Create & start a ConcurrentMark thread.
537 538 539 540
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

541 542 543 544 545 546
  _g1h = G1CollectedHeap::heap();
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
  assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
547
  satb_qs.set_buffer_size(G1SATBBufferSize);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_task_num;
  for (int i = 0; i < (int) _max_task_num; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _tasks[i] = new CMTask(i, this, task_queue, _task_queues);
    _accum_task_vtime[i] = 0.0;
  }

563 564
  if (ConcGCThreads > ParallelGCThreads) {
    vm_exit_during_initialization("Can't have more ConcGCThreads "
565 566 567 568 569
                                  "than ParallelGCThreads.");
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
570 571 572 573
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
574
  } else {
575 576
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
577 578
      // if both are set

579
      _parallel_marking_threads = (uint) ConcGCThreads;
580
      _max_parallel_marking_threads = _parallel_marking_threads;
581 582
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
583
    } else if (G1MarkingOverheadPercent > 0) {
584 585 586 587
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
588
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
589
      double overall_cm_overhead =
J
johnc 已提交
590 591
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
592 593 594 595 596 597 598 599
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

600
      _parallel_marking_threads = (uint) marking_thread_num;
601
      _max_parallel_marking_threads = _parallel_marking_threads;
602 603 604
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
605
      _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
606
      _max_parallel_marking_threads = _parallel_marking_threads;
607 608 609 610
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

611
    if (parallel_marking_threads() > 1) {
612
      _cleanup_task_overhead = 1.0;
613
    } else {
614
      _cleanup_task_overhead = marking_task_overhead();
615
    }
616 617 618 619 620 621 622 623 624 625 626
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

627
    guarantee(parallel_marking_threads() > 0, "peace of mind");
628
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
629
         _max_parallel_marking_threads, false, true);
630
    if (_parallel_workers == NULL) {
631
      vm_exit_during_initialization("Failed necessary allocation.");
632 633 634
    } else {
      _parallel_workers->initialize_workers();
    }
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  }

  // so that the call below can read a sensible value
  _heap_start = (HeapWord*) rs.base();
  set_non_marking_state();
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
  // update _heap_end. This has a subtle and important
  // side-effect. Imagine that two evacuation pauses happen between
  // marking completion and remark. The first one can grow the
  // heap (hence now the finger is below the heap end). Then, the
  // second one could unnecessarily push regions on the region
  // stack. This causes the invariant that the region stack is empty
  // at the beginning of remark to be false. By ensuring that we do
  // not observe heap expansions after marking is complete, then we do
  // not have this problem.
653
  if (!concurrent_marking_in_progress() && !force) return;
654 655

  MemRegion committed = _g1h->g1_committed();
656
  assert(committed.start() == _heap_start, "start shouldn't change");
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

678 679 680 681
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
682 683 684 685

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

686
  if (verbose_low()) {
687
    gclog_or_tty->print_cr("[global] resetting");
688
  }
689 690 691 692

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
693
  for (int i = 0; i < (int) _max_task_num; ++i) {
694
    _tasks[i]->reset(_nextMarkBitMap);
695
  }
696 697 698 699 700 701

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

702
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
703
  assert(active_tasks <= _max_task_num, "we should not have more");
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
723 724
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
725 726 727 728 729 730 731 732 733 734 735 736 737
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
738 739
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
740 741 742 743 744 745 746 747
}

// This closure is used to mark refs into the g1 generation
// from external roots in the CMS bit map.
// Called at the first checkpoint.
//

void ConcurrentMark::clearNextBitmap() {
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
770
    if (next > end) {
771
      next = end;
772
    }
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
789 790 791 792 793 794
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
795
      r->note_start_of_marking();
796 797 798 799 800 801 802 803 804 805 806
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

807
#ifndef PRODUCT
808
  if (G1PrintReachableAtInitialMark) {
809
    print_reachable("at-cycle-start",
810
                    VerifyOption_G1UsePrevMarking, true /* all */);
811
  }
812
#endif
813 814 815

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
816 817 818 819

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
820 821 822 823 824 825
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

826 827 828 829 830 831 832 833
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

834 835 836 837
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
838
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
839 840

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
841 842 843 844
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
845 846 847 848 849 850 851 852

  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
872 873

void ConcurrentMark::enter_first_sync_barrier(int task_num) {
874
  if (verbose_low()) {
875
    gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
876
  }
877

878 879 880
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
881
  _first_overflow_barrier_sync.enter();
882 883 884
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
885 886 887
  // at this point everyone should have synced up and not be doing any
  // more work

888
  if (verbose_low()) {
889
    gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
890
  }
891 892 893 894

  // let task 0 do this
  if (task_num == 0) {
    // task 0 is responsible for clearing the global data structures
895 896 897 898 899 900
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
    clear_marking_state(concurrent() /* clear_overflow */);
    force_overflow()->update();
901 902 903 904 905 906 907 908 909 910 911 912 913

    if (PrintGC) {
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

void ConcurrentMark::enter_second_sync_barrier(int task_num) {
914
  if (verbose_low()) {
915
    gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
916
  }
917

918 919 920
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
921
  _second_overflow_barrier_sync.enter();
922 923 924
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
925 926
  // at this point everything should be re-initialised and ready to go

927
  if (verbose_low()) {
928
    gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
929
  }
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

958
void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
959 960
  guarantee(false, "grayRegionIfNecessary(): don't call this any more");

961 962 963 964
  // The objects on the region have already been marked "in bulk" by
  // the caller. We only need to decide whether to push the region on
  // the region stack or not.

965
  if (!concurrent_marking_in_progress() || !_should_gray_objects) {
966 967 968
    // We're done with marking and waiting for remark. We do not need to
    // push anything else on the region stack.
    return;
969
  }
970 971 972

  HeapWord* finger = _finger;

973
  if (verbose_low()) {
974 975 976
    gclog_or_tty->print_cr("[global] attempting to push "
                           "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
                           PTR_FORMAT, mr.start(), mr.end(), finger);
977
  }
978 979 980 981

  if (mr.start() < finger) {
    // The finger is always heap region aligned and it is not possible
    // for mr to span heap regions.
982 983 984 985 986 987 988 989 990
    assert(mr.end() <= finger, "invariant");

    // Separated the asserts so that we know which one fires.
    assert(mr.start() <= mr.end(),
           "region boundaries should fall within the committed space");
    assert(_heap_start <= mr.start(),
           "region boundaries should fall within the committed space");
    assert(mr.end() <= _heap_end,
           "region boundaries should fall within the committed space");
991
    if (verbose_low()) {
992 993 994
      gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
                             "below the finger, pushing it",
                             mr.start(), mr.end());
995
    }
996

997
    if (!region_stack_push_lock_free(mr)) {
998
      if (verbose_low()) {
999
        gclog_or_tty->print_cr("[global] region stack has overflown.");
1000
      }
1001 1002 1003 1004 1005
    }
  }
}

void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
1006 1007
  guarantee(false, "markAndGrayObjectIfNecessary(): don't call this any more");

1008 1009 1010 1011 1012 1013 1014 1015
  // The object is not marked by the caller. We need to at least mark
  // it and maybe push in on the stack.

  HeapWord* addr = (HeapWord*)p;
  if (!_nextMarkBitMap->isMarked(addr)) {
    // We definitely need to mark it, irrespective whether we bail out
    // because we're done with marking.
    if (_nextMarkBitMap->parMark(addr)) {
1016
      if (!concurrent_marking_in_progress() || !_should_gray_objects) {
1017 1018 1019
        // If we're done with concurrent marking and we're waiting for
        // remark, then we're not pushing anything on the stack.
        return;
1020
      }
1021 1022 1023 1024 1025 1026 1027

      // No OrderAccess:store_load() is needed. It is implicit in the
      // CAS done in parMark(addr) above
      HeapWord* finger = _finger;

      if (addr < finger) {
        if (!mark_stack_push(oop(addr))) {
1028
          if (verbose_low()) {
1029 1030
            gclog_or_tty->print_cr("[global] global stack overflow "
                                   "during parMark");
1031
          }
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        }
      }
    }
  }
}

class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1044
  void work(uint worker_id) {
1045 1046
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1047
    ResourceMark rm;
1048 1049 1050 1051 1052

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1053 1054
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1055 1056 1057 1058 1059
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1060 1061 1062 1063 1064 1065
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

1066 1067 1068 1069 1070 1071
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1072
        bool ret = _cm->do_yield_check(worker_id);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1096
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1097 1098 1099 1100

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
1101
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1102 1103 1104 1105 1106 1107 1108 1109 1110
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1111 1112
// Calculates the number of active workers for a concurrent
// phase.
1113
uint ConcurrentMark::calc_parallel_marking_threads() {
1114
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1115
    uint n_conc_workers = 0;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1130 1131
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1132
  }
1133 1134 1135 1136
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1137 1138
}

1139 1140 1141 1142 1143 1144 1145 1146 1147
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1148
  force_overflow_conc()->init();
1149 1150 1151 1152 1153 1154

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1155
  uint active_workers = MAX2(1U, parallel_marking_threads());
1156 1157 1158

  // Parallel task terminator is set in "set_phase()"
  set_phase(active_workers, true /* concurrent */);
1159 1160

  CMConcurrentMarkingTask markingTask(this, cmThread());
1161
  if (parallel_marking_threads() > 0) {
1162 1163 1164 1165
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1166
    _parallel_workers->run_task(&markingTask);
1167
  } else {
1168
    markingTask.work(0);
1169
  }
1170 1171 1172 1173 1174 1175 1176
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1177

1178 1179 1180 1181 1182 1183 1184 1185
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1186 1187
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1188 1189 1190 1191
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1192 1193 1194
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1195 1196
  }

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
1213
    if (G1TraceMarkStackOverflow) {
1214
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1215
    }
1216
  } else {
1217
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1218
    // We're done with marking.
1219 1220
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1221 1222
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1223 1224

    if (VerifyDuringGC) {
1225 1226 1227
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1228 1229 1230
      Universe::verify(/* allow dirty */ true,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UseNextMarking);
1231
    }
1232 1233 1234 1235 1236 1237
    assert(!restart_for_overflow(), "sanity");
  }

  // Reset the marking state if marking completed
  if (!restart_for_overflow()) {
    set_non_marking_state();
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

#define CARD_BM_TEST_MODE 0

class CalcLiveObjectsClosure: public HeapRegionClosure {

  CMBitMapRO* _bm;
  ConcurrentMark* _cm;
  bool _changed;
  bool _yield;
  size_t _words_done;
  size_t _tot_live;
  size_t _tot_used;
  size_t _regions_done;
  double _start_vtime_sec;

  BitMap* _region_bm;
  BitMap* _card_bm;
  intptr_t _bottom_card_num;
  bool _final;

  void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
    for (intptr_t i = start_card_num; i <= last_card_num; i++) {
#if CARD_BM_TEST_MODE
1276
      guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
1277 1278 1279 1280 1281 1282 1283 1284 1285
#else
      _card_bm->par_at_put(i - _bottom_card_num, 1);
#endif
    }
  }

public:
  CalcLiveObjectsClosure(bool final,
                         CMBitMapRO *bm, ConcurrentMark *cm,
1286
                         BitMap* region_bm, BitMap* card_bm) :
1287 1288
    _bm(bm), _cm(cm), _changed(false), _yield(true),
    _words_done(0), _tot_live(0), _tot_used(0),
1289
    _region_bm(region_bm), _card_bm(card_bm),_final(final),
1290 1291 1292 1293 1294 1295 1296
    _regions_done(0), _start_vtime_sec(0.0)
  {
    _bottom_card_num =
      intptr_t(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >>
               CardTableModRefBS::card_shift);
  }

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

    size_t index = hr->hrs_index();
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
      _region_bm->par_at_put((BitMap::idx_t) index, true);
    } else {
      // Starts humongous case: calculate how many regions are part of
      // this humongous region and then set the bit range. It might
      // have been a bit more efficient to look at the object that
      // spans these humongous regions to calculate their number from
      // the object's size. However, it's a good idea to calculate
      // this based on the metadata itself, and not the region
      // contents, so that this code is not aware of what goes into
      // the humongous regions (in case this changes in the future).
      G1CollectedHeap* g1h = G1CollectedHeap::heap();
      size_t end_index = index + 1;
1320 1321
      while (end_index < g1h->n_regions()) {
        HeapRegion* chr = g1h->region_at(end_index);
1322
        if (!chr->continuesHumongous()) break;
1323 1324 1325 1326 1327 1328 1329
        end_index += 1;
      }
      _region_bm->par_at_put_range((BitMap::idx_t) index,
                                   (BitMap::idx_t) end_index, true);
    }
  }

1330
  bool doHeapRegion(HeapRegion* hr) {
1331
    if (!_final && _regions_done == 0) {
1332
      _start_vtime_sec = os::elapsedVTime();
1333
    }
1334

I
iveresov 已提交
1335
    if (hr->continuesHumongous()) {
1336 1337 1338 1339 1340 1341 1342
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1343 1344
      return false;
    }
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

    HeapWord* nextTop = hr->next_top_at_mark_start();
    HeapWord* start   = hr->top_at_conc_mark_count();
    assert(hr->bottom() <= start && start <= hr->end() &&
           hr->bottom() <= nextTop && nextTop <= hr->end() &&
           start <= nextTop,
           "Preconditions.");
    // Otherwise, record the number of word's we'll examine.
    size_t words_done = (nextTop - start);
    // Find the first marked object at or after "start".
    start = _bm->getNextMarkedWordAddress(start, nextTop);
    size_t marked_bytes = 0;

    // Below, the term "card num" means the result of shifting an address
    // by the card shift -- address 0 corresponds to card number 0.  One
    // must subtract the card num of the bottom of the heap to obtain a
    // card table index.
    // The first card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t start_card_num = -1;
    // The last card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t last_card_num = -1;

    while (start < nextTop) {
      if (_yield && _cm->do_yield_check()) {
        // We yielded.  It might be for a full collection, in which case
        // all bets are off; terminate the traversal.
        if (_cm->has_aborted()) {
          _changed = false;
          return true;
        } else {
          // Otherwise, it might be a collection pause, and the region
          // we're looking at might be in the collection set.  We'll
          // abandon this region.
          return false;
        }
      }
      oop obj = oop(start);
      int obj_sz = obj->size();
      // The card num of the start of the current object.
      intptr_t obj_card_num =
        intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);

      HeapWord* obj_last = start + obj_sz - 1;
      intptr_t obj_last_card_num =
        intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);

      if (obj_card_num != last_card_num) {
        if (start_card_num == -1) {
          assert(last_card_num == -1, "Both or neither.");
          start_card_num = obj_card_num;
        } else {
          assert(last_card_num != -1, "Both or neither.");
          assert(obj_card_num >= last_card_num, "Inv");
          if ((obj_card_num - last_card_num) > 1) {
            // Mark the last run, and start a new one.
            mark_card_num_range(start_card_num, last_card_num);
            start_card_num = obj_card_num;
          }
        }
#if CARD_BM_TEST_MODE
        /*
        gclog_or_tty->print_cr("Setting bits from %d/%d.",
                               obj_card_num - _bottom_card_num,
                               obj_last_card_num - _bottom_card_num);
        */
        for (intptr_t j = obj_card_num; j <= obj_last_card_num; j++) {
          _card_bm->par_at_put(j - _bottom_card_num, 1);
        }
#endif
      }
      // In any case, we set the last card num.
      last_card_num = obj_last_card_num;

1420
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1421 1422 1423 1424 1425
      // Find the next marked object after this one.
      start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
      _changed = true;
    }
    // Handle the last range, if any.
1426
    if (start_card_num != -1) {
1427
      mark_card_num_range(start_card_num, last_card_num);
1428
    }
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    if (_final) {
      // Mark the allocated-since-marking portion...
      HeapWord* tp = hr->top();
      if (nextTop < tp) {
        start_card_num =
          intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
        last_card_num =
          intptr_t(uintptr_t(tp) >> CardTableModRefBS::card_shift);
        mark_card_num_range(start_card_num, last_card_num);
        // This definitely means the region has live objects.
1439
        set_bit_for_region(hr);
1440 1441 1442 1443 1444 1445
      }
    }

    hr->add_to_marked_bytes(marked_bytes);
    // Update the live region bitmap.
    if (marked_bytes > 0) {
1446
      set_bit_for_region(hr);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    }
    hr->set_top_at_conc_mark_count(nextTop);
    _tot_live += hr->next_live_bytes();
    _tot_used += hr->used();
    _words_done = words_done;

    if (!_final) {
      ++_regions_done;
      if (_regions_done % 10 == 0) {
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - _start_vtime_sec;
        if (elapsed_vtime_sec > (10.0 / 1000.0)) {
          jlong sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
          os::sleep(Thread::current(), sleep_time_ms, false);
          _start_vtime_sec = end_vtime_sec;
        }
      }
    }

    return false;
  }

  bool changed() { return _changed;  }
  void reset()   { _changed = false; _words_done = 0; }
  void no_yield() { _yield = false; }
  size_t words_done() { return _words_done; }
  size_t tot_live() { return _tot_live; }
  size_t tot_used() { return _tot_used; }
};


void ConcurrentMark::calcDesiredRegions() {
  _region_bm.clear();
  _card_bm.clear();
  CalcLiveObjectsClosure calccl(false /*final*/,
                                nextMarkBitMap(), this,
1484
                                &_region_bm, &_card_bm);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
  G1CollectedHeap *g1h = G1CollectedHeap::heap();
  g1h->heap_region_iterate(&calccl);

  do {
    calccl.reset();
    g1h->heap_region_iterate(&calccl);
  } while (calccl.changed());
}

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  CMBitMap* _bm;
1498
  uint    _n_workers;
1499 1500 1501 1502 1503 1504
  size_t *_live_bytes;
  size_t *_used_bytes;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
1505 1506
                      BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"), _g1h(g1h),
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    _bm(bm), _region_bm(region_bm), _card_bm(card_bm),
    _n_workers(0)
  {
    // Use the value already set as the number of active threads
    // in the call to run_task().  Needed for the allocation of
    // _live_bytes and _used_bytes.
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1517
    } else {
1518
      _n_workers = 1;
1519
    }
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529
    _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
    _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  }

  ~G1ParFinalCountTask() {
    FREE_C_HEAP_ARRAY(size_t, _live_bytes);
    FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  }

1530
  void work(uint worker_id) {
1531 1532
    CalcLiveObjectsClosure calccl(true /*final*/,
                                  _bm, _g1h->concurrent_mark(),
1533
                                  _region_bm, _card_bm);
1534
    calccl.no_yield();
1535
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1536
      _g1h->heap_region_par_iterate_chunked(&calccl, worker_id,
1537
                                            (int) _n_workers,
1538
                                            HeapRegion::FinalCountClaimValue);
1539 1540 1541 1542 1543
    } else {
      _g1h->heap_region_iterate(&calccl);
    }
    assert(calccl.complete(), "Shouldn't have yielded!");

1544 1545 1546
    assert(worker_id < _n_workers, "invariant");
    _live_bytes[worker_id] = calccl.tot_live();
    _used_bytes[worker_id] = calccl.tot_used();
1547 1548 1549
  }
  size_t live_bytes()  {
    size_t live_bytes = 0;
1550
    for (uint i = 0; i < _n_workers; ++i)
1551 1552 1553 1554 1555
      live_bytes += _live_bytes[i];
    return live_bytes;
  }
  size_t used_bytes()  {
    size_t used_bytes = 0;
1556
    for (uint i = 0; i < _n_workers; ++i)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
      used_bytes += _used_bytes[i];
    return used_bytes;
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
  size_t _regions_claimed;
  size_t _freed_bytes;
T
tonyp 已提交
1570
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1571
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1572 1573
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1574 1575 1576 1577 1578
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1579 1580
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1581
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1582
                             HumongousRegionSet* humongous_proxy_set,
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1593 1594
  size_t freed_bytes() { return _freed_bytes; }

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
  bool doHeapRegion(HeapRegion *hr) {
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
    hr->reset_gc_time_stamp();
    if (!hr->continuesHumongous()) {
      double start = os::elapsedTime();
      _regions_claimed++;
      hr->note_end_of_marking();
      _max_live_bytes += hr->max_live_bytes();
      _g1->free_region_if_empty(hr,
                                &_freed_bytes,
                                _local_cleanup_list,
                                _old_proxy_set,
                                _humongous_proxy_set,
                                _hrrs_cleanup_task,
                                true /* par */);
      double region_time = (os::elapsedTime() - start);
      _claimed_region_time += region_time;
      if (region_time > _max_region_time) {
        _max_region_time = region_time;
      }
    }
    return false;
  }
1619 1620 1621 1622 1623 1624 1625 1626 1627

  size_t max_live_bytes() { return _max_live_bytes; }
  size_t regions_claimed() { return _regions_claimed; }
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1628

1629 1630 1631 1632
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1633 1634
  FreeRegionList* _cleanup_list;

1635 1636
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1637
                   FreeRegionList* cleanup_list) :
1638
    AbstractGangTask("G1 note end"), _g1h(g1h),
1639
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1640

1641
  void work(uint worker_id) {
1642
    double start = os::elapsedTime();
T
tonyp 已提交
1643
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1644
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1645 1646
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1647
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1648
                                           &old_proxy_set,
T
tonyp 已提交
1649 1650
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1651
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1652
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1653
                                            _g1h->workers()->active_workers(),
1654
                                            HeapRegion::NoteEndClaimValue);
1655 1656 1657 1658 1659
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1660 1661 1662
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1663
                                            &old_proxy_set,
T
tonyp 已提交
1664
                                            &humongous_proxy_set,
1665
                                            true /* par */);
1666 1667 1668 1669
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1688 1689 1690 1691
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1692 1693 1694 1695
    }
    double end = os::elapsedTime();
    if (G1PrintParCleanupStats) {
      gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
1696 1697
                          "claimed %u regions (tot = %8.3f ms, max = %8.3f ms).\n",
                          worker_id, start, end, (end-start)*1000.0,
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
                          g1_note_end.regions_claimed(),
                          g1_note_end.claimed_region_time_sec()*1000.0,
                          g1_note_end.max_region_time_sec()*1000.0);
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
    _region_bm(region_bm), _card_bm(card_bm)
  {}

1719
  void work(uint worker_id) {
1720
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1721
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1722
                       HeapRegion::ScrubRemSetClaimValue);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1742
  HRSPhaseSetter x(HRSPhaseCleanup);
1743 1744
  g1h->verify_region_sets_optional();

1745 1746 1747 1748
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1749 1750 1751
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1752 1753
  }

1754 1755 1756 1757 1758
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1759 1760
  HeapRegionRemSet::reset_for_cleanup_tasks();

1761
  uint n_workers;
1762

1763 1764 1765
  // Do counting once more with the world stopped for good measure.
  G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
                                        &_region_bm, &_card_bm);
1766
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1767 1768 1769 1770
    assert(g1h->check_heap_region_claim_values(
                                               HeapRegion::InitialClaimValue),
           "sanity check");

1771 1772
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1773
    assert(g1h->n_par_threads() == n_workers,
1774
           "Should not have been reset");
1775
    g1h->workers()->run_task(&g1_par_count_task);
1776
    // Done with the parallel phase so reset to 0.
1777
    g1h->set_par_threads(0);
1778 1779 1780 1781

    assert(g1h->check_heap_region_claim_values(
                                             HeapRegion::FinalCountClaimValue),
           "sanity check");
1782
  } else {
1783
    n_workers = 1;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    g1_par_count_task.work(0);
  }

  size_t known_garbage_bytes =
    g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
  g1p->set_known_garbage_bytes(known_garbage_bytes);

  size_t start_used_bytes = g1h->used();
  _at_least_one_mark_complete = true;
  g1h->set_marking_complete();

1795 1796 1797 1798 1799 1800 1801 1802 1803
  ergo_verbose4(ErgoConcCycles,
           "finish cleanup",
           ergo_format_byte("occupancy")
           ergo_format_byte("capacity")
           ergo_format_byte_perc("known garbage"),
           start_used_bytes, g1h->capacity(),
           known_garbage_bytes,
           ((double) known_garbage_bytes / (double) g1h->capacity()) * 100.0);

1804 1805 1806 1807 1808 1809 1810 1811 1812
  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("Cleanup:");
    gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
                           this_final_counting_time*1000.0);
  }
  _total_counting_time += this_final_counting_time;

1813 1814 1815 1816 1817
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

1818 1819 1820 1821 1822 1823 1824
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
  double note_end_start = os::elapsedTime();
1825
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
1826
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1827
    g1h->set_par_threads((int)n_workers);
1828 1829
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
1830 1831 1832

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
1833 1834 1835
  } else {
    g1_par_note_end_task.work(0);
  }
1836 1837 1838 1839 1840 1841 1842

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
  double note_end_end = os::elapsedTime();
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
                           (note_end_end - note_end_start)*1000.0);
  }

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
1854
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1855
      g1h->set_par_threads((int)n_workers);
1856 1857
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
1858 1859 1860 1861

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
1873
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

  if (PrintGC || PrintGCDetails) {
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

  size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  g1p->decrease_known_garbage_bytes(cleaned_up_bytes);

1889 1890 1891 1892
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

1893 1894 1895 1896
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

J
johnc 已提交
1897
  if (VerifyDuringGC) {
1898 1899 1900
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
1901 1902 1903
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1904
  }
1905 1906

  g1h->verify_region_sets_optional();
1907 1908 1909 1910 1911
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

1912 1913 1914
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
1915
  FreeRegionList tmp_free_list("Tmp Free List");
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
                           "cleanup list has "SIZE_FORMAT" entries",
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
1928
    hr->par_clear();
T
tonyp 已提交
1929
    tmp_free_list.add_as_tail(hr);
1930 1931 1932 1933 1934 1935 1936

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
1937
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1938 1939 1940 1941 1942 1943
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
                               "appending "SIZE_FORMAT" entries to the "
                               "secondary_free_list, clean list still has "
                               SIZE_FORMAT" entries",
T
tonyp 已提交
1944
                               tmp_free_list.length(),
1945 1946 1947 1948 1949
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
1950
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
1951 1952 1953 1954 1955 1956 1957
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
1958 1959 1960
      }
    }
  }
T
tonyp 已提交
1961
  assert(tmp_free_list.is_empty(), "post-condition");
1962 1963
}

1964 1965
// Support closures for reference procssing in G1

1966 1967 1968 1969 1970
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

class G1CMKeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
  CMBitMap*        _bitMap;
 public:
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
                       CMBitMap* bitMap) :
    _g1(g1), _cm(cm),
    _bitMap(bitMap) {}

1982 1983
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
1984

1985
  template <class T> void do_oop_work(T* p) {
1986 1987 1988
    oop obj = oopDesc::load_decode_heap_oop(p);
    HeapWord* addr = (HeapWord*)obj;

1989
    if (_cm->verbose_high()) {
1990
      gclog_or_tty->print_cr("\t[0] we're looking at location "
1991 1992 1993
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             p, (void*) obj);
    }
1994 1995

    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
1996
      _bitMap->mark(addr);
1997
      _cm->mark_stack_push(obj);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
  CMMarkStack*                  _markStack;
  CMBitMap*                     _bitMap;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
  G1CMDrainMarkingStackClosure(CMBitMap* bitMap, CMMarkStack* markStack,
                               G1CMKeepAliveClosure* oopClosure) :
    _bitMap(bitMap),
    _markStack(markStack),
    _oopClosure(oopClosure)
  {}

  void do_void() {
    _markStack->drain((OopClosure*)_oopClosure, _bitMap, false);
  }
};

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2038 2039 2040
  G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task),
    _ref_counter_limit(G1RefProcDrainInterval) {
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2051
      if (_cm->verbose_high()) {
2052 2053 2054
        gclog_or_tty->print_cr("\t[%d] we're looking at location "
                               "*"PTR_FORMAT" = "PTR_FORMAT,
                               _task->task_id(), p, (void*) obj);
2055
      }
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
        // We have dealt with _ref_counter_limit references, pushing them and objects
        // reachable from them on to the local stack (and possibly the global stack).
        // Call do_marking_step() to process these entries. We call the routine in a
        // loop, which we'll exit if there's nothing more to do (i.e. we're done
        // with the entries that we've pushed as a result of the deal_with_reference
        // calls above) or we overflow.
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
        // while there may still be some work to do. (See the comment at the
        // beginning of CMTask::do_marking_step() for those conditions - one of which
        // is reaching the specified time target.) It is only when
        // CMTask::do_marking_step() returns without setting the has_aborted() flag
        // that the marking has completed.
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2082
      if (_cm->verbose_high()) {
2083
         gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2084
      }
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
    }
  }
};

class G1CMParDrainMarkingStackClosure: public VoidClosure {
  ConcurrentMark* _cm;
  CMTask* _task;
 public:
  G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task)
  {}

  void do_void() {
    do {
2099 2100 2101 2102
      if (_cm->verbose_high()) {
        gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
                               _task->task_id());
      }
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

      // We call CMTask::do_marking_step() to completely drain the local and
      // global marking stacks. The routine is called in a loop, which we'll
      // exit if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a result of applying the
      // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
      // lists above) or we overflow the global marking stack.
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
      // while there may still be some work to do. (See the comment at the
      // beginning of CMTask::do_marking_step() for those conditions - one of which
      // is reaching the specified time target.) It is only when
      // CMTask::do_marking_step() returns without setting the has_aborted() flag
      // that the marking has completed.

      _task->do_marking_step(1000000000.0 /* something very large */,
                             true /* do_stealing    */,
                             true /* do_termination */);
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2124 2125 2126 2127
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2128 2129 2130 2131 2132 2133 2134
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2135
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2136 2137 2138
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2139 2140
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2141 2142 2143 2144 2145 2146

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2147
class G1CMRefProcTaskProxy: public AbstractGangTask {
2148 2149 2150 2151 2152 2153
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2154
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2155
                     G1CollectedHeap* g1h,
2156
                     ConcurrentMark* cm) :
2157
    AbstractGangTask("Process reference objects in parallel"),
2158
    _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2159

2160 2161
  virtual void work(uint worker_id) {
    CMTask* marking_task = _cm->task(worker_id);
2162
    G1CMIsAliveClosure g1_is_alive(_g1h);
2163
    G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2164 2165
    G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);

2166
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2167 2168 2169
  }
};

2170
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2171 2172
  assert(_workers != NULL, "Need parallel worker threads.");

2173
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2174 2175 2176 2177 2178 2179 2180 2181 2182

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2183
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2184 2185 2186 2187
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2188
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2189
    AbstractGangTask("Enqueue reference objects in parallel"),
2190
    _enq_task(enq_task) { }
2191

2192 2193
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2194 2195 2196
  }
};

2197
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2198 2199
  assert(_workers != NULL, "Need parallel worker threads.");

2200
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2201 2202 2203 2204 2205 2206

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2207 2208 2209 2210
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
    bool verbose = PrintGC && PrintGCDetails;
    if (verbose) {
      gclog_or_tty->put(' ');
    }
    TraceTime t("GC ref-proc", verbose, false, gclog_or_tty);
2224

2225
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2226

2227 2228
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2229

2230 2231 2232
    // Process weak references.
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2233

2234 2235 2236
    G1CMKeepAliveClosure g1_keep_alive(g1h, this, nextMarkBitMap());
    G1CMDrainMarkingStackClosure
      g1_drain_mark_stack(nextMarkBitMap(), &_markStack, &g1_keep_alive);
2237

2238 2239
    // We use the work gang from the G1CollectedHeap and we utilize all
    // the worker threads.
2240 2241
    uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
    active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
2242

2243
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2244
                                              g1h->workers(), active_workers);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

    if (rp->processing_is_mt()) {
      // Set the degree of MT here.  If the discovery is done MT, there
      // may have been a different number of threads doing the discovery
      // and a different number of discovered lists may have Ref objects.
      // That is OK as long as the Reference lists are balanced (see
      // balance_all_queues() and balance_queues()).
      rp->set_active_mt_degree(active_workers);

      rp->process_discovered_references(&g1_is_alive,
2255 2256 2257 2258
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
                                      &par_task_executor);

2259 2260 2261 2262 2263 2264 2265 2266 2267
      // The work routines of the parallel keep_alive and drain_marking_stack
      // will set the has_overflown flag if we overflow the global marking
      // stack.
    } else {
      rp->process_discovered_references(&g1_is_alive,
                                        &g1_keep_alive,
                                        &g1_drain_mark_stack,
                                        NULL);
    }
2268

2269 2270 2271 2272 2273 2274 2275
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
      // Should have been done already when we tried to push an
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2276

2277 2278 2279 2280 2281 2282
    if (rp->processing_is_mt()) {
      assert(rp->num_q() == active_workers, "why not");
      rp->enqueue_discovered_references(&par_task_executor);
    } else {
      rp->enqueue_discovered_references();
    }
2283

2284
    rp->verify_no_references_recorded();
2285
    assert(!rp->discovery_enabled(), "Post condition");
2286 2287
  }

2288
  // Now clean up stale oops in StringTable
2289
  StringTable::unlink(&g1_is_alive);
2290 2291
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
2305
  void work(uint worker_id) {
2306 2307
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2308 2309
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2310 2311
      task->record_start_time();
      do {
2312 2313 2314
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2315 2316 2317 2318 2319 2320 2321
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2322
  CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2323
    AbstractGangTask("Par Remark"), _cm(cm) {
2324
    _cm->terminator()->reset_for_reuse(active_workers);
2325
  }
2326 2327 2328 2329 2330 2331 2332 2333 2334
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2335
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2336
    G1CollectedHeap::StrongRootsScope srs(g1h);
2337
    // this is remark, so we'll use up all active threads
2338
    uint active_workers = g1h->workers()->active_workers();
2339 2340
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2341
      active_workers = (uint) ParallelGCThreads;
2342 2343
      g1h->workers()->set_active_workers(active_workers);
    }
2344
    set_phase(active_workers, false /* concurrent */);
2345 2346 2347 2348
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2349

2350
    CMRemarkTask remarkTask(this, active_workers);
2351
    g1h->set_par_threads(active_workers);
2352 2353 2354
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2355
    G1CollectedHeap::StrongRootsScope srs(g1h);
2356
    // this is remark, so we'll use up all available threads
2357
    uint active_workers = 1;
2358
    set_phase(active_workers, false /* concurrent */);
2359

2360
    CMRemarkTask remarkTask(this, active_workers);
2361 2362 2363 2364 2365
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2366 2367
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

  print_stats();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

2383 2384
#ifndef PRODUCT

2385
class PrintReachableOopClosure: public OopClosure {
2386 2387 2388
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2389
  VerifyOption     _vo;
2390
  bool             _all;
2391 2392

public:
2393 2394
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2395
                           bool          all) :
2396
    _g1h(G1CollectedHeap::heap()),
2397
    _out(out), _vo(vo), _all(all) { }
2398

2399 2400
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2401

2402 2403
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2404 2405 2406
    const char* str = NULL;
    const char* str2 = "";

2407 2408 2409 2410 2411
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2412
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2413
      guarantee(hr != NULL, "invariant");
2414
      bool over_tams = false;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
      bool marked = false;

      switch (_vo) {
        case VerifyOption_G1UsePrevMarking:
          over_tams = hr->obj_allocated_since_prev_marking(obj);
          marked = _g1h->isMarkedPrev(obj);
          break;
        case VerifyOption_G1UseNextMarking:
          over_tams = hr->obj_allocated_since_next_marking(obj);
          marked = _g1h->isMarkedNext(obj);
          break;
        case VerifyOption_G1UseMarkWord:
          marked = obj->is_gc_marked();
          break;
        default:
          ShouldNotReachHere();
2431 2432 2433
      }

      if (over_tams) {
2434 2435
        str = " >";
        if (marked) {
2436
          str2 = " AND MARKED";
2437
        }
2438 2439
      } else if (marked) {
        str = " M";
2440
      } else {
2441
        str = " NOT";
2442
      }
2443 2444
    }

2445
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2446 2447 2448 2449
                   p, (void*) obj, str, str2);
  }
};

2450
class PrintReachableObjectClosure : public ObjectClosure {
2451
private:
2452 2453 2454 2455 2456
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2457 2458

public:
2459 2460
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2461 2462
                              bool          all,
                              HeapRegion*   hr) :
2463 2464
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2465

2466
  void do_object(oop o) {
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    bool over_tams = false;
    bool marked = false;

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        over_tams = _hr->obj_allocated_since_prev_marking(o);
        marked = _g1h->isMarkedPrev(o);
        break;
      case VerifyOption_G1UseNextMarking:
        over_tams = _hr->obj_allocated_since_next_marking(o);
        marked = _g1h->isMarkedNext(o);
        break;
      case VerifyOption_G1UseMarkWord:
        marked = o->is_gc_marked();
        break;
      default:
        ShouldNotReachHere();
2484 2485 2486 2487 2488 2489
    }
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2490
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2491 2492
      o->oop_iterate(&oopCl);
    }
2493 2494 2495
  }
};

2496
class PrintReachableRegionClosure : public HeapRegionClosure {
2497 2498
private:
  outputStream* _out;
2499
  VerifyOption  _vo;
2500
  bool          _all;
2501 2502 2503 2504 2505 2506

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2507
    HeapWord* p = NULL;
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        p = hr->prev_top_at_mark_start();
        break;
      case VerifyOption_G1UseNextMarking:
        p = hr->next_top_at_mark_start();
        break;
      case VerifyOption_G1UseMarkWord:
        // When we are verifying marking using the mark word
        // TAMS has no relevance.
        assert(p == NULL, "post-condition");
        break;
      default:
        ShouldNotReachHere();
2523
    }
2524
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2525
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2526 2527 2528 2529 2530 2531 2532 2533
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2534
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2535 2536 2537
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2538 2539 2540 2541

    return false;
  }

2542 2543
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2544
                              bool          all) :
2545
    _out(out), _vo(vo), _all(all) { }
2546 2547
};

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
static const char* verify_option_to_tams(VerifyOption vo) {
  switch (vo) {
    case VerifyOption_G1UsePrevMarking:
      return "PTAMS";
    case VerifyOption_G1UseNextMarking:
      return "NTAMS";
    default:
      return "NONE";
  }
}

2559
void ConcurrentMark::print_reachable(const char* str,
2560
                                     VerifyOption vo,
2561 2562 2563
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2587
  out->print_cr("-- USING %s", verify_option_to_tams(vo));
2588 2589
  out->cr();

2590
  out->print_cr("--- ITERATING OVER REGIONS");
2591
  out->cr();
2592
  PrintReachableRegionClosure rcl(out, vo, all);
2593
  _g1h->heap_region_iterate(&rcl);
2594
  out->cr();
2595

2596
  gclog_or_tty->print_cr("  done");
2597
  gclog_or_tty->flush();
2598 2599
}

2600 2601
#endif // PRODUCT

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
// This note is for drainAllSATBBuffers and the code in between.
// In the future we could reuse a task to do this work during an
// evacuation pause (since now tasks are not active and can be claimed
// during an evacuation pause). This was a late change to the code and
// is currently not being taken advantage of.

class CMGlobalObjectClosure : public ObjectClosure {
private:
  ConcurrentMark* _cm;

public:
  void do_object(oop obj) {
    _cm->deal_with_reference(obj);
  }

  CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
};

void ConcurrentMark::deal_with_reference(oop obj) {
2621
  if (verbose_high()) {
2622 2623
    gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
                           (void*) obj);
2624
  }
2625 2626

  HeapWord* objAddr = (HeapWord*) obj;
2627
  assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
2628
  if (_g1h->is_in_g1_reserved(objAddr)) {
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
    assert(obj != NULL, "null check is implicit");
    if (!_nextMarkBitMap->isMarked(objAddr)) {
      // Only get the containing region if the object is not marked on the
      // bitmap (otherwise, it's a waste of time since we won't do
      // anything with it).
      HeapRegion* hr = _g1h->heap_region_containing_raw(obj);
      if (!hr->obj_allocated_since_next_marking(obj)) {
        if (verbose_high()) {
          gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
                                 "marked", (void*) obj);
        }

        // we need to mark it first
        if (_nextMarkBitMap->parMark(objAddr)) {
          // No OrderAccess:store_load() is needed. It is implicit in the
          // CAS done in parMark(objAddr) above
          HeapWord* finger = _finger;
          if (objAddr < finger) {
            if (verbose_high()) {
              gclog_or_tty->print_cr("[global] below the global finger "
                                     "("PTR_FORMAT"), pushing it", finger);
            }
            if (!mark_stack_push(obj)) {
              if (verbose_low()) {
                gclog_or_tty->print_cr("[global] global stack overflow during "
                                       "deal_with_reference");
              }
            }
2657 2658 2659 2660 2661 2662 2663 2664
          }
        }
      }
    }
  }
}

void ConcurrentMark::drainAllSATBBuffers() {
2665 2666
  guarantee(false, "drainAllSATBBuffers(): don't call this any more");

2667 2668 2669 2670 2671
  CMGlobalObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.set_closure(&oc);

  while (satb_mq_set.apply_closure_to_completed_buffer()) {
2672
    if (verbose_medium()) {
2673
      gclog_or_tty->print_cr("[global] processed an SATB buffer");
2674
    }
2675 2676 2677 2678 2679 2680 2681
  }

  // no need to check whether we should do this, as this is only
  // called during an evacuation pause
  satb_mq_set.iterate_closure_all_threads();

  satb_mq_set.set_closure(NULL);
2682
  assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
}

void ConcurrentMark::clear(oop p) {
  assert(p != NULL && p->is_oop(), "expected an oop");
  HeapWord* addr = (HeapWord*)p;
  assert(addr >= _nextMarkBitMap->startWord() ||
         addr < _nextMarkBitMap->endWord(), "in a region");

  _nextMarkBitMap->clear(addr);
}

2694
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2695 2696 2697
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2698 2699 2700
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2701 2702 2703
  _nextMarkBitMap->clearRange(mr);
}

2704 2705 2706 2707 2708
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2709 2710 2711 2712 2713 2714 2715 2716
HeapRegion*
ConcurrentMark::claim_region(int task_num) {
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2717
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2743 2744 2745 2746
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2747
    if (verbose_low()) {
2748 2749 2750 2751
      gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
                             task_num, curr_region, bottom, end, limit);
2752
    }
2753

2754 2755
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2756 2757 2758 2759 2760
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2761
      assert(_finger >= end, "the finger should have moved forward");
2762

2763
      if (verbose_low()) {
2764 2765
        gclog_or_tty->print_cr("[%d] we were successful with region = "
                               PTR_FORMAT, task_num, curr_region);
2766
      }
2767 2768

      if (limit > bottom) {
2769
        if (verbose_low()) {
2770 2771
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
                                 "returning it ", task_num, curr_region);
2772
        }
2773 2774
        return curr_region;
      } else {
2775 2776
        assert(limit == bottom,
               "the region limit should be at bottom");
2777
        if (verbose_low()) {
2778 2779
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
                                 "returning NULL", task_num, curr_region);
2780
        }
2781 2782 2783 2784 2785
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2786
      assert(_finger > finger, "the finger should have moved forward");
2787
      if (verbose_low()) {
2788 2789 2790 2791
        gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
                               task_num, _finger, finger);
2792
      }
2793 2794 2795 2796 2797 2798 2799 2800 2801

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2802
bool ConcurrentMark::invalidate_aborted_regions_in_cset() {
2803 2804 2805
  guarantee(false, "invalidate_aborted_regions_in_cset(): "
                   "don't call this any more");

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
  bool result = false;
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* the_task = _tasks[i];
    MemRegion mr = the_task->aborted_region();
    if (mr.start() != NULL) {
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
      HeapRegion* hr = _g1h->heap_region_containing(mr.start());
      assert(hr != NULL, "invariant");
      if (hr->in_collection_set()) {
        // The region points into the collection set
        the_task->set_aborted_region(MemRegion());
        result = true;
      }
    }
  }
  return result;
}

bool ConcurrentMark::has_aborted_regions() {
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* the_task = _tasks[i];
    MemRegion mr = the_task->aborted_region();
    if (mr.start() != NULL) {
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
      return true;
    }
  }
  return false;
}

2838
void ConcurrentMark::oops_do(OopClosure* cl) {
2839
  if (_markStack.size() > 0 && verbose_low()) {
2840 2841
    gclog_or_tty->print_cr("[global] scanning the global marking stack, "
                           "size = %d", _markStack.size());
2842
  }
2843 2844 2845 2846 2847 2848
  // we first iterate over the contents of the mark stack...
  _markStack.oops_do(cl);

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue((int)i);

2849
    if (queue->size() > 0 && verbose_low()) {
2850 2851
      gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
                             "size = %d", i, queue->size());
2852
    }
2853 2854 2855 2856

    // ...then over the contents of the all the task queues.
    queue->oops_do(cl);
  }
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
}

#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2908

2909 2910
  virtual void do_object(oop obj) {
    do_object_work(obj);
2911
  }
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
    for (int i = 0; i < (int) _max_task_num; i += 1) {
      cl.set_phase(VerifyNoCSetOopsQueues, i);
      OopTaskQueue* queue = _task_queues->queue(i);
      queue->oops_do(&cl);
    }
2936 2937
  }

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
    assert(parallel_marking_threads() <= _max_task_num, "sanity");
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
2984
}
2985
#endif // PRODUCT
2986

2987
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2988 2989 2990 2991
  _markStack.setEmpty();
  _markStack.clear_overflow();
  _regionStack.setEmpty();
  _regionStack.clear_overflow();
2992 2993 2994 2995 2996
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
2997 2998 2999 3000 3001
  _finger = _heap_start;

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
3002 3003
    // Clear any partial regions from the CMTasks
    _tasks[i]->clear_aborted_region();
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
  }
}

void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

3017 3018 3019 3020
// Closures used by ConcurrentMark::complete_marking_in_collection_set().

class CSetMarkOopClosure: public OopClosure {
  friend class CSetMarkBitMapClosure;
3021 3022 3023 3024 3025 3026 3027 3028 3029

  G1CollectedHeap* _g1h;
  CMBitMap*        _bm;
  ConcurrentMark*  _cm;
  oop*             _ms;
  jint*            _array_ind_stack;
  int              _ms_size;
  int              _ms_ind;
  int              _array_increment;
3030
  uint             _worker_id;
3031 3032 3033 3034 3035 3036 3037

  bool push(oop obj, int arr_ind = 0) {
    if (_ms_ind == _ms_size) {
      gclog_or_tty->print_cr("Mark stack is full.");
      return false;
    }
    _ms[_ms_ind] = obj;
3038 3039 3040
    if (obj->is_objArray()) {
      _array_ind_stack[_ms_ind] = arr_ind;
    }
3041 3042 3043 3044 3045
    _ms_ind++;
    return true;
  }

  oop pop() {
3046 3047 3048
    if (_ms_ind == 0) {
      return NULL;
    } else {
3049 3050 3051 3052 3053
      _ms_ind--;
      return _ms[_ms_ind];
    }
  }

3054
  template <class T> bool drain() {
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
    while (_ms_ind > 0) {
      oop obj = pop();
      assert(obj != NULL, "Since index was non-zero.");
      if (obj->is_objArray()) {
        jint arr_ind = _array_ind_stack[_ms_ind];
        objArrayOop aobj = objArrayOop(obj);
        jint len = aobj->length();
        jint next_arr_ind = arr_ind + _array_increment;
        if (next_arr_ind < len) {
          push(obj, next_arr_ind);
        }
        // Now process this portion of this one.
        int lim = MIN2(next_arr_ind, len);
        for (int j = arr_ind; j < lim; j++) {
3069
          do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
        }
      } else {
        obj->oop_iterate(this);
      }
      if (abort()) return false;
    }
    return true;
  }

public:
3080
  CSetMarkOopClosure(ConcurrentMark* cm, int ms_size, uint worker_id) :
3081 3082 3083 3084 3085 3086
    _g1h(G1CollectedHeap::heap()),
    _cm(cm),
    _bm(cm->nextMarkBitMap()),
    _ms_size(ms_size), _ms_ind(0),
    _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
    _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
3087
    _array_increment(MAX2(ms_size/8, 16)),
3088
    _worker_id(worker_id) { }
3089

3090
  ~CSetMarkOopClosure() {
3091 3092 3093 3094
    FREE_C_HEAP_ARRAY(oop, _ms);
    FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
  }

3095 3096
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
3097

3098 3099 3100 3101
  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (oopDesc::is_null(heap_oop)) return;
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    if (obj->is_forwarded()) {
      // If the object has already been forwarded, we have to make sure
      // that it's marked.  So follow the forwarding pointer.  Note that
      // this does the right thing for self-forwarding pointers in the
      // evacuation failure case.
      obj = obj->forwardee();
    }
    HeapRegion* hr = _g1h->heap_region_containing(obj);
    if (hr != NULL) {
      if (hr->in_collection_set()) {
        if (_g1h->is_obj_ill(obj)) {
3113 3114 3115 3116 3117
          if (_bm->parMark((HeapWord*)obj)) {
            if (!push(obj)) {
              gclog_or_tty->print_cr("Setting abort in CSetMarkOopClosure because push failed.");
              set_abort();
            }
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
          }
        }
      } else {
        // Outside the collection set; we need to gray it
        _cm->deal_with_reference(obj);
      }
    }
  }
};

3128 3129 3130 3131 3132
class CSetMarkBitMapClosure: public BitMapClosure {
  G1CollectedHeap*   _g1h;
  CMBitMap*          _bitMap;
  ConcurrentMark*    _cm;
  CSetMarkOopClosure _oop_cl;
3133
  uint               _worker_id;
3134

3135
public:
3136
  CSetMarkBitMapClosure(ConcurrentMark* cm, int ms_size, int worker_id) :
3137 3138
    _g1h(G1CollectedHeap::heap()),
    _bitMap(cm->nextMarkBitMap()),
3139 3140
    _oop_cl(cm, ms_size, worker_id),
    _worker_id(worker_id) { }
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

  bool do_bit(size_t offset) {
    // convert offset into a HeapWord*
    HeapWord* addr = _bitMap->offsetToHeapWord(offset);
    assert(_bitMap->endWord() && addr < _bitMap->endWord(),
           "address out of range");
    assert(_bitMap->isMarked(addr), "tautology");
    oop obj = oop(addr);
    if (!obj->is_forwarded()) {
      if (!_oop_cl.push(obj)) return false;
3151 3152 3153 3154 3155
      if (UseCompressedOops) {
        if (!_oop_cl.drain<narrowOop>()) return false;
      } else {
        if (!_oop_cl.drain<oop>()) return false;
      }
3156 3157 3158 3159 3160 3161
    }
    // Otherwise...
    return true;
  }
};

3162 3163 3164
class CompleteMarkingInCSetHRClosure: public HeapRegionClosure {
  CMBitMap*             _bm;
  CSetMarkBitMapClosure _bit_cl;
3165
  uint                  _worker_id;
3166 3167 3168 3169

  enum SomePrivateConstants {
    MSSize = 1000
  };
3170

3171
public:
3172
  CompleteMarkingInCSetHRClosure(ConcurrentMark* cm, int worker_id) :
3173
    _bm(cm->nextMarkBitMap()),
3174 3175
    _bit_cl(cm, MSSize, worker_id),
    _worker_id(worker_id) { }
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
  bool doHeapRegion(HeapRegion* hr) {
    if (hr->claimHeapRegion(HeapRegion::CompleteMarkCSetClaimValue)) {
      // The current worker has successfully claimed the region.
      if (!hr->evacuation_failed()) {
        MemRegion mr = MemRegion(hr->bottom(), hr->next_top_at_mark_start());
        if (!mr.is_empty()) {
          bool done = false;
          while (!done) {
            done = _bm->iterate(&_bit_cl, mr);
          }
3187 3188 3189 3190 3191 3192 3193
        }
      }
    }
    return false;
  }
};

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
class G1ParCompleteMarkInCSetTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
  G1ParCompleteMarkInCSetTask(G1CollectedHeap* g1h,
                              ConcurrentMark* cm) :
    AbstractGangTask("Complete Mark in CSet"),
    _g1h(g1h), _cm(cm) { }

3205 3206 3207
  void work(uint worker_id) {
    CompleteMarkingInCSetHRClosure cmplt(_cm, worker_id);
    HeapRegion* hr = _g1h->start_cset_region_for_worker(worker_id);
3208 3209 3210 3211
    _g1h->collection_set_iterate_from(hr, &cmplt);
  }
};

3212
void ConcurrentMark::complete_marking_in_collection_set() {
3213 3214 3215
  guarantee(false, "complete_marking_in_collection_set(): "
                   "don't call this any more");

3216 3217 3218 3219 3220 3221 3222 3223
  G1CollectedHeap* g1h =  G1CollectedHeap::heap();

  if (!g1h->mark_in_progress()) {
    g1h->g1_policy()->record_mark_closure_time(0.0);
    return;
  }

  double start = os::elapsedTime();
3224 3225 3226 3227 3228
  G1ParCompleteMarkInCSetTask complete_mark_task(g1h, this);

  assert(g1h->check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");

  if (G1CollectedHeap::use_parallel_gc_threads()) {
3229
    int n_workers = g1h->workers()->active_workers();
3230 3231 3232 3233 3234
    g1h->set_par_threads(n_workers);
    g1h->workers()->run_task(&complete_mark_task);
    g1h->set_par_threads(0);
  } else {
    complete_mark_task.work(0);
3235 3236
  }

3237 3238
  assert(g1h->check_cset_heap_region_claim_values(HeapRegion::CompleteMarkCSetClaimValue), "sanity");

3239 3240
  // Reset the claim values in the regions in the collection set.
  g1h->reset_cset_heap_region_claim_values();
3241 3242

  assert(g1h->check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
3243 3244 3245 3246

  double end_time = os::elapsedTime();
  double elapsed_time_ms = (end_time - start) * 1000.0;
  g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
}

// The next two methods deal with the following optimisation. Some
// objects are gray by being marked and located above the finger. If
// they are copied, during an evacuation pause, below the finger then
// the need to be pushed on the stack. The observation is that, if
// there are no regions in the collection set located above the
// finger, then the above cannot happen, hence we do not need to
// explicitly gray any objects when copying them to below the
// finger. The global stack will be scanned to ensure that, if it
// points to objects being copied, it will update their
// location. There is a tricky situation with the gray objects in
// region stack that are being coped, however. See the comment in
// newCSet().

void ConcurrentMark::newCSet() {
3263 3264
  guarantee(false, "newCSet(): don't call this any more");

3265
  if (!concurrent_marking_in_progress()) {
3266 3267
    // nothing to do if marking is not in progress
    return;
3268
  }
3269 3270 3271 3272 3273 3274

  // find what the lowest finger is among the global and local fingers
  _min_finger = _finger;
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* task = _tasks[i];
    HeapWord* task_finger = task->finger();
3275
    if (task_finger != NULL && task_finger < _min_finger) {
3276
      _min_finger = task_finger;
3277
    }
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
  }

  _should_gray_objects = false;

  // This fixes a very subtle and fustrating bug. It might be the case
  // that, during en evacuation pause, heap regions that contain
  // objects that are gray (by being in regions contained in the
  // region stack) are included in the collection set. Since such gray
  // objects will be moved, and because it's not easy to redirect
  // region stack entries to point to a new location (because objects
  // in one region might be scattered to multiple regions after they
  // are copied), one option is to ensure that all marked objects
  // copied during a pause are pushed on the stack. Notice, however,
  // that this problem can only happen when the region stack is not
  // empty during an evacuation pause. So, we make the fix a bit less
  // conservative and ensure that regions are pushed on the stack,
  // irrespective whether all collection set regions are below the
  // finger, if the region stack is not empty. This is expected to be
  // a rare case, so I don't think it's necessary to be smarted about it.
3297
  if (!region_stack_empty() || has_aborted_regions()) {
3298
    _should_gray_objects = true;
3299
  }
3300 3301 3302
}

void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
3303 3304
  guarantee(false, "registerCSetRegion(): don't call this any more");

3305
  if (!concurrent_marking_in_progress()) return;
3306 3307

  HeapWord* region_end = hr->end();
3308
  if (region_end > _min_finger) {
3309
    _should_gray_objects = true;
3310
  }
3311 3312
}

3313 3314 3315
// Resets the region fields of active CMTasks whose values point
// into the collection set.
void ConcurrentMark::reset_active_task_region_fields_in_cset() {
3316 3317 3318
  guarantee(false, "reset_active_task_region_fields_in_cset(): "
                   "don't call this any more");

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
  assert(SafepointSynchronize::is_at_safepoint(), "should be in STW");
  assert(parallel_marking_threads() <= _max_task_num, "sanity");

  for (int i = 0; i < (int)parallel_marking_threads(); i += 1) {
    CMTask* task = _tasks[i];
    HeapWord* task_finger = task->finger();
    if (task_finger != NULL) {
      assert(_g1h->is_in_g1_reserved(task_finger), "not in heap");
      HeapRegion* finger_region = _g1h->heap_region_containing(task_finger);
      if (finger_region->in_collection_set()) {
        // The task's current region is in the collection set.
        // This region will be evacuated in the current GC and
        // the region fields in the task will be stale.
        task->giveup_current_region();
      }
    }
  }
}

3338 3339 3340 3341 3342 3343
// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
  // Empty mark stack
  clear_marking_state();
3344
  for (int i = 0; i < (int)_max_task_num; ++i) {
3345
    _tasks[i]->clear_region_fields();
3346
  }
3347 3348 3349 3350
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3351 3352 3353 3354 3355
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
                "(%8.2f s marking, %8.2f s counting).",
                cmThread()->vtime_accum(),
                cmThread()->vtime_mark_accum(),
                cmThread()->vtime_count_accum());
}

T
tonyp 已提交
3400 3401 3402 3403
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

3404 3405 3406 3407 3408 3409 3410 3411
// Closures
// XXX: there seems to be a lot of code  duplication here;
// should refactor and consolidate the shared code.

// This closure is used to mark refs into the CMS generation in
// the CMS bit map. Called at the first checkpoint.

// We take a break if someone is trying to stop the world.
3412
bool ConcurrentMark::do_yield_check(uint worker_id) {
3413
  if (should_yield()) {
3414
    if (worker_id == 0) {
3415
      _g1h->g1_policy()->record_concurrent_pause();
3416
    }
3417
    cmThread()->yield();
3418
    if (worker_id == 0) {
3419
      _g1h->g1_policy()->record_concurrent_pause_end();
3420
    }
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3438 3439
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
  for (int i = 0; i < (int) _max_task_num; ++i) {
    gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  }
  gclog_or_tty->print_cr("");
}
#endif

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
    gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
                           _task_id, (void*) obj);
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;
  // true if we're scanning a heap region claimed by the task (so that
  // we move the finger along), false if we're not, i.e. currently when
  // scanning a heap region popped from the region stack (so that we
  // do not move the task finger along; it'd be a mistake if we did so).
  bool                        _scanning_heap_region;

public:
  CMBitMapClosure(CMTask *task,
                  ConcurrentMark* cm,
                  CMBitMap* nextMarkBitMap)
    :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }

  void set_scanning_heap_region(bool scanning_heap_region) {
    _scanning_heap_region = scanning_heap_region;
  }

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3495 3496
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3497 3498 3499

    if (_scanning_heap_region) {
      statsOnly( _task->increase_objs_found_on_bitmap() );
3500
      assert(addr >= _task->finger(), "invariant");
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
      // We move that task's local finger along.
      _task->move_finger_to(addr);
    } else {
      // We move the task's region finger along.
      _task->move_region_finger_to(addr);
    }

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3533 3534 3535 3536 3537
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3538

3539
  if (G1UseConcMarkReferenceProcessing) {
3540
    _ref_processor = g1h->ref_processor_cm();
3541
    assert(_ref_processor != NULL, "should not be NULL");
3542
  }
3543
}
3544 3545

void CMTask::setup_for_region(HeapRegion* hr) {
3546 3547 3548 3549 3550
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3551

3552
  if (_cm->verbose_low()) {
3553 3554
    gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
                           _task_id, hr);
3555
  }
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3568
    if (_cm->verbose_low()) {
3569 3570 3571
      gclog_or_tty->print_cr("[%d] found an empty region "
                             "["PTR_FORMAT", "PTR_FORMAT")",
                             _task_id, bottom, limit);
3572
    }
3573 3574 3575 3576 3577 3578 3579
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3580
    assert(limit >= _finger, "peace of mind");
3581
  } else {
3582
    assert(limit < _region_limit, "only way to get here");
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3600
  assert(_curr_region != NULL, "invariant");
3601
  if (_cm->verbose_low()) {
3602 3603
    gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
                           _task_id, _curr_region);
3604
  }
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;

  _region_finger = NULL;
}

3618 3619 3620 3621 3622 3623 3624 3625 3626
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3627
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3628
  guarantee(nextMarkBitMap != NULL, "invariant");
3629

3630
  if (_cm->verbose_low()) {
3631
    gclog_or_tty->print_cr("[%d] resetting", _task_id);
3632
  }
3633 3634 3635

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();
3636
  assert(_aborted_region.is_empty(), "should have been cleared");
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _region_stack_pops             = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3678 3679 3680
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3681 3682 3683 3684
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3685
  if (has_aborted()) return;
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3702
  if (!concurrent()) return;
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3715
  if (_words_scanned >= _words_scanned_limit) {
3716
    ++_clock_due_to_scanning;
3717 3718
  }
  if (_refs_reached >= _refs_reached_limit) {
3719
    ++_clock_due_to_marking;
3720
  }
3721 3722 3723 3724 3725 3726

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3727 3728 3729 3730 3731 3732 3733
      gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
                        "scanned = %d%s, refs reached = %d%s",
                        _task_id, last_interval_ms,
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3751
    _has_timed_out = true;
3752 3753 3754 3755 3756 3757 3758 3759
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3760
    if (_cm->verbose_low()) {
3761 3762
      gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
                             _task_id);
3763
    }
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3786
  if (_cm->verbose_medium()) {
3787
    gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3788
  }
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3814 3815 3816 3817
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
                               _task_id);
      }
3818 3819 3820 3821
      set_has_aborted();
    } else {
      // the transfer was successful

3822
      if (_cm->verbose_medium()) {
3823 3824
        gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
                               _task_id, n);
3825
      }
3826
      statsOnly( int tmp_size = _cm->mark_stack_size();
3827
                 if (tmp_size > _global_max_size) {
3828
                   _global_max_size = tmp_size;
3829
                 }
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3844 3845
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3846 3847 3848 3849
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3850
    if (_cm->verbose_medium()) {
3851 3852
      gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
                             _task_id, n);
3853
    }
3854 3855 3856 3857
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3858
      assert(success, "invariant");
3859 3860 3861
    }

    statsOnly( int tmp_size = _task_queue->size();
3862
               if (tmp_size > _local_max_size) {
3863
                 _local_max_size = tmp_size;
3864
               }
3865 3866 3867 3868 3869 3870 3871 3872
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3873
  if (has_aborted()) return;
3874 3875 3876 3877 3878

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3879
  if (partially) {
3880
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3881
  } else {
3882
    target_size = 0;
3883
  }
3884 3885

  if (_task_queue->size() > target_size) {
3886
    if (_cm->verbose_high()) {
3887 3888
      gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
                             _task_id, target_size);
3889
    }
3890 3891 3892 3893 3894 3895

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3896
      if (_cm->verbose_high()) {
3897 3898
        gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
                               (void*) obj);
3899
      }
3900

3901
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3902
      assert(!_g1h->is_on_master_free_list(
3903
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3904 3905 3906

      scan_object(obj);

3907
      if (_task_queue->size() <= target_size || has_aborted()) {
3908
        ret = false;
3909
      } else {
3910
        ret = _task_queue->pop_local(obj);
3911
      }
3912 3913
    }

3914
    if (_cm->verbose_high()) {
3915 3916
      gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
                             _task_id, _task_queue->size());
3917
    }
3918 3919 3920 3921
  }
}

void CMTask::drain_global_stack(bool partially) {
3922
  if (has_aborted()) return;
3923 3924 3925

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3926
  assert(partially || _task_queue->size() == 0, "invariant");
3927 3928 3929 3930 3931 3932 3933 3934

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3935
  if (partially) {
3936
    target_size = _cm->partial_mark_stack_size_target();
3937
  } else {
3938
    target_size = 0;
3939
  }
3940 3941

  if (_cm->mark_stack_size() > target_size) {
3942
    if (_cm->verbose_low()) {
3943 3944
      gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
                             _task_id, target_size);
3945
    }
3946 3947 3948 3949 3950 3951

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3952
    if (_cm->verbose_low()) {
3953 3954
      gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
                             _task_id, _cm->mark_stack_size());
3955
    }
3956 3957 3958 3959 3960 3961 3962 3963
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3964
  if (has_aborted()) return;
3965 3966 3967 3968 3969 3970 3971 3972 3973

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3974
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3975
    satb_mq_set.set_par_closure(_task_id, &oc);
3976
  } else {
3977
    satb_mq_set.set_closure(&oc);
3978
  }
3979 3980 3981

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3982
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3983 3984
    while (!has_aborted() &&
           satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3985
      if (_cm->verbose_medium()) {
3986
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3987
      }
3988 3989 3990 3991 3992 3993
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3994
      if (_cm->verbose_medium()) {
3995
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3996
      }
3997 3998 3999 4000 4001 4002 4003
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
4004
    if (G1CollectedHeap::use_parallel_gc_threads()) {
4005
      satb_mq_set.par_iterate_closure_all_threads(_task_id);
4006
    } else {
4007
      satb_mq_set.iterate_closure_all_threads();
4008
    }
4009 4010 4011 4012
  }

  _draining_satb_buffers = false;

4013 4014 4015
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
4016

4017
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4018
    satb_mq_set.set_par_closure(_task_id, NULL);
4019
  } else {
4020
    satb_mq_set.set_closure(NULL);
4021
  }
4022 4023 4024 4025 4026 4027 4028

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::drain_region_stack(BitMapClosure* bc) {
4029 4030 4031 4032
  assert(_cm->region_stack_empty(), "region stack should be empty");
  assert(_aborted_region.is_empty(), "aborted region should be empty");
  return;

4033
  if (has_aborted()) return;
4034

4035 4036
  assert(_region_finger == NULL,
         "it should be NULL when we're not scanning a region");
4037

4038
  if (!_cm->region_stack_empty() || !_aborted_region.is_empty()) {
4039
    if (_cm->verbose_low()) {
4040 4041
      gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
                             _task_id, _cm->region_stack_size());
4042
    }
4043

4044 4045 4046 4047 4048 4049
    MemRegion mr;

    if (!_aborted_region.is_empty()) {
      mr = _aborted_region;
      _aborted_region = MemRegion();

4050 4051 4052 4053 4054
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] scanning aborted region "
                               "[ " PTR_FORMAT ", " PTR_FORMAT " )",
                               _task_id, mr.start(), mr.end());
      }
4055 4056 4057 4058 4059
    } else {
      mr = _cm->region_stack_pop_lock_free();
      // it returns MemRegion() if the pop fails
      statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
    }
4060 4061

    while (mr.start() != NULL) {
4062
      if (_cm->verbose_medium()) {
4063 4064 4065
        gclog_or_tty->print_cr("[%d] we are scanning region "
                               "["PTR_FORMAT", "PTR_FORMAT")",
                               _task_id, mr.start(), mr.end());
4066
      }
4067

4068 4069
      assert(mr.end() <= _cm->finger(),
             "otherwise the region shouldn't be on the stack");
4070 4071
      assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
      if (_nextMarkBitMap->iterate(bc, mr)) {
4072 4073
        assert(!has_aborted(),
               "cannot abort the task without aborting the bitmap iteration");
4074 4075 4076

        // We finished iterating over the region without aborting.
        regular_clock_call();
4077
        if (has_aborted()) {
4078
          mr = MemRegion();
4079
        } else {
4080
          mr = _cm->region_stack_pop_lock_free();
4081 4082 4083 4084
          // it returns MemRegion() if the pop fails
          statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
        }
      } else {
4085
        assert(has_aborted(), "currently the only way to do so");
4086 4087 4088 4089 4090 4091

        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _region_finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _region_finger to something non-null.
4092
        assert(_region_finger != NULL, "invariant");
4093

4094 4095 4096 4097
        // Make sure that any previously aborted region has been
        // cleared.
        assert(_aborted_region.is_empty(), "aborted region not cleared");

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
        // The iteration was actually aborted. So now _region_finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
        MemRegion newRegion =
          MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());

        if (!newRegion.is_empty()) {
          if (_cm->verbose_low()) {
4110 4111
            gclog_or_tty->print_cr("[%d] recording unscanned region"
                                   "[" PTR_FORMAT "," PTR_FORMAT ") in CMTask",
4112 4113 4114
                                   _task_id,
                                   newRegion.start(), newRegion.end());
          }
4115 4116 4117
          // Now record the part of the region we didn't scan to
          // make sure this task scans it later.
          _aborted_region = newRegion;
4118 4119 4120 4121 4122 4123 4124
        }
        // break from while
        mr = MemRegion();
      }
      _region_finger = NULL;
    }

4125
    if (_cm->verbose_low()) {
4126 4127
      gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
                             _task_id, _cm->region_stack_size());
4128
    }
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
  }
}

void CMTask::print_stats() {
  gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
                         _task_id, _calls);
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
  gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
                         _regions_claimed, _region_stack_pops);
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

      (4) Global Region Stack. Entries on it correspond to areas of
      the bitmap that need to be scanned since they contain gray
      objects. Pushes on the region stack only happen during
      evacuation pauses and typically correspond to areas covered by
      GC LABS. If it overflows, then the marking phase should restart
      and iterate over the bitmap to identify gray objects. Tasks will
      try to totally drain the region stack as soon as possible.

      (5) SATB Buffer Queue. This is where completed SATB buffers are
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

      (2) When a global overflow (either on the global stack or the
      region stack) has been triggered. Before the task aborts, it
      will actually sync up with the other tasks to ensure that all
      the marking data structures (local queues, stacks, fingers etc.)
      are re-initialised so that when do_marking_step() completes,
      the marking phase can immediately restart.

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

4282 4283 4284
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
4285 4286
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4287

4288 4289
  assert(concurrent() || _cm->region_stack_empty(),
         "the region stack should have been cleared before remark");
4290 4291
  assert(concurrent() || !_cm->has_aborted_regions(),
         "aborted regions should have been cleared before remark");
4292 4293
  assert(_region_finger == NULL,
         "this should be non-null only when a region is being scanned");
4294 4295

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4296 4297 4298
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
  assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
4299

4300 4301
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4324
  _has_timed_out = false;
4325 4326 4327 4328
  _draining_satb_buffers = false;

  ++_calls;

4329
  if (_cm->verbose_low()) {
4330 4331 4332
    gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
                           "target = %1.2lfms >>>>>>>>>>",
                           _task_id, _calls, _time_target_ms);
4333
  }
4334 4335 4336 4337 4338

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4339 4340
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

  if (_cm->has_overflown()) {
    // This can happen if the region stack or the mark stack overflows
    // during a GC pause and this task, after a yield point,
    // restarts. We have to abort as we need to get into the overflow
    // protocol which happens right at the end of this task.
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  // Then totally drain the region stack.  We will not look at
  // it again before the next invocation of this method. Entries on
  // the region stack are only added during evacuation pauses, for
  // which we have to yield. When we do, we abort the task anyway so
  // it will look at the region stack again when it restarts.
  bitmap_closure.set_scanning_heap_region(false);
  drain_region_stack(&bitmap_closure);
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4373 4374
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4390
      if (_cm->verbose_low()) {
4391 4392 4393 4394
        gclog_or_tty->print_cr("[%d] we're scanning part "
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
                               _task_id, _finger, _region_limit, _curr_region);
4395
      }
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406

      // Let's iterate over the bitmap of the part of the
      // region that is left.
      bitmap_closure.set_scanning_heap_region(true);
      if (mr.is_empty() ||
          _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
4407
        assert(has_aborted(), "currently the only way to do so");
4408 4409 4410 4411 4412
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4413
        assert(_finger != NULL, "invariant");
4414 4415 4416 4417 4418 4419 4420 4421

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4422 4423 4424 4425 4426 4427 4428 4429
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
            giveup_current_region();
        } else {
            move_finger_to(new_finger);
        }
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4447 4448 4449 4450
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4451
      if (_cm->verbose_low()) {
4452
        gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
4453
      }
4454 4455 4456 4457 4458
      HeapRegion* claimed_region = _cm->claim_region(_task_id);
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4459
        if (_cm->verbose_low()) {
4460 4461 4462
          gclog_or_tty->print_cr("[%d] we successfully claimed "
                                 "region "PTR_FORMAT,
                                 _task_id, claimed_region);
4463
        }
4464 4465

        setup_for_region(claimed_region);
4466
        assert(_curr_region == claimed_region, "invariant");
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4477 4478
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4479 4480 4481 4482 4483
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4484 4485 4486
    // tasks might be pushing objects to it concurrently. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
4487 4488
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4489

4490
    if (_cm->verbose_low()) {
4491
      gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4492
    }
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4505
  if (do_stealing && !has_aborted()) {
4506 4507 4508 4509
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4510 4511 4512
    // tasks might be pushing objects to it concurrently. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
4513 4514
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4515

4516
    if (_cm->verbose_low()) {
4517
      gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4518
    }
4519 4520 4521 4522 4523 4524

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

      if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4525
        if (_cm->verbose_medium()) {
4526 4527
          gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
                                 _task_id, (void*) obj);
4528
        }
4529 4530 4531

        statsOnly( ++_steals );

4532 4533
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4546 4547 4548 4549 4550 4551 4552 4553 4554
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4555 4556
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4557
  if (do_termination && !has_aborted()) {
4558
    // We cannot check whether the global stack is empty, since other
4559 4560 4561
    // tasks might be concurrently pushing objects on it. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
4562 4563 4564
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4565

4566
    if (_cm->verbose_low()) {
4567
      gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4568
    }
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

      if (_task_id == 0) {
        // let's allow task 0 to do this
        if (concurrent()) {
4585
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4586 4587 4588 4589 4590 4591 4592 4593
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4594 4595 4596 4597
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
4598
      guarantee(_aborted_region.is_empty(), "only way to reach here");
4599 4600 4601 4602 4603 4604
      guarantee(_cm->region_stack_empty(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
      guarantee(!_cm->region_stack_overflow(), "only way to reach here");
4605

4606
      if (_cm->verbose_low()) {
4607
        gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4608
      }
4609 4610 4611 4612
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4613 4614 4615 4616
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] apparently there is more work to do",
                               _task_id);
      }
4617 4618 4619 4620 4621 4622 4623 4624 4625

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4626
  set_cm_oop_closure(NULL);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4637
    if (_has_timed_out) {
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4653
      if (_cm->verbose_low()) {
4654
        gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4655
      }
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

      _cm->enter_first_sync_barrier(_task_id);
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
      _cm->enter_second_sync_barrier(_task_id);
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4678
      if (_cm->has_aborted()) {
4679 4680
        gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
                               _task_id);
4681
      }
4682 4683
    }
  } else {
4684
    if (_cm->verbose_low()) {
4685 4686 4687
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4688
    }
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
  }

  _claimed = false;
}

CMTask::CMTask(int task_id,
               ConcurrentMark* cm,
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
    _task_id(task_id), _cm(cm),
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4704
    _cm_oop_closure(NULL),
4705
    _aborted_region(MemRegion()) {
4706 4707
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4708 4709 4710 4711 4712 4713

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4768
                 HeapRegion::GrainBytes);
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4779 4780 4781 4782 4783 4784 4785 4786 4787
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4799
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}