提交 7d82f540 编写于 作者: T tonyp

7034139: G1: assert(Thread::current()->is_ConcurrentGC_thread()) failed: only...

7034139: G1: assert(Thread::current()->is_ConcurrentGC_thread()) failed: only a conc GC thread can call this.
Summary: We were calling STS join and leave during a STW pause and we are not suppoesed to. I now only call those during  concurrent phase. I also added stress code in the non-product builds to force an overflows (the condition that ws uncovering the bug) to make sure it does not happen again.
Reviewed-by: johnc, brutisso
上级 93795812
......@@ -826,6 +826,14 @@ public:
void ConcurrentMark::checkpointRootsInitialPost() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
// If we force an overflow during remark, the remark operation will
// actually abort and we'll restart concurrent marking. If we always
// force an oveflow during remark we'll never actually complete the
// marking phase. So, we initilize this here, at the start of the
// cycle, so that at the remaining overflow number will decrease at
// every remark and we'll eventually not need to cause one.
force_overflow_stw()->init();
// For each region note start of marking.
NoteStartOfMarkHRClosure startcl;
g1h->heap_region_iterate(&startcl);
......@@ -893,27 +901,37 @@ void ConcurrentMark::checkpointRootsInitial() {
}
/*
Notice that in the next two methods, we actually leave the STS
during the barrier sync and join it immediately afterwards. If we
do not do this, this then the following deadlock can occur: one
thread could be in the barrier sync code, waiting for the other
thread to also sync up, whereas another one could be trying to
yield, while also waiting for the other threads to sync up too.
Because the thread that does the sync barrier has left the STS, it
is possible to be suspended for a Full GC or an evacuation pause
could occur. This is actually safe, since the entering the sync
barrier is one of the last things do_marking_step() does, and it
doesn't manipulate any data structures afterwards.
*/
* Notice that in the next two methods, we actually leave the STS
* during the barrier sync and join it immediately afterwards. If we
* do not do this, the following deadlock can occur: one thread could
* be in the barrier sync code, waiting for the other thread to also
* sync up, whereas another one could be trying to yield, while also
* waiting for the other threads to sync up too.
*
* Note, however, that this code is also used during remark and in
* this case we should not attempt to leave / enter the STS, otherwise
* we'll either hit an asseert (debug / fastdebug) or deadlock
* (product). So we should only leave / enter the STS if we are
* operating concurrently.
*
* Because the thread that does the sync barrier has left the STS, it
* is possible to be suspended for a Full GC or an evacuation pause
* could occur. This is actually safe, since the entering the sync
* barrier is one of the last things do_marking_step() does, and it
* doesn't manipulate any data structures afterwards.
*/
void ConcurrentMark::enter_first_sync_barrier(int task_num) {
if (verbose_low())
gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
ConcurrentGCThread::stsLeave();
if (concurrent()) {
ConcurrentGCThread::stsLeave();
}
_first_overflow_barrier_sync.enter();
ConcurrentGCThread::stsJoin();
if (concurrent()) {
ConcurrentGCThread::stsJoin();
}
// at this point everyone should have synced up and not be doing any
// more work
......@@ -923,7 +941,12 @@ void ConcurrentMark::enter_first_sync_barrier(int task_num) {
// let task 0 do this
if (task_num == 0) {
// task 0 is responsible for clearing the global data structures
clear_marking_state();
// We should be here because of an overflow. During STW we should
// not clear the overflow flag since we rely on it being true when
// we exit this method to abort the pause and restart concurent
// marking.
clear_marking_state(concurrent() /* clear_overflow */);
force_overflow()->update();
if (PrintGC) {
gclog_or_tty->date_stamp(PrintGCDateStamps);
......@@ -940,15 +963,45 @@ void ConcurrentMark::enter_second_sync_barrier(int task_num) {
if (verbose_low())
gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
ConcurrentGCThread::stsLeave();
if (concurrent()) {
ConcurrentGCThread::stsLeave();
}
_second_overflow_barrier_sync.enter();
ConcurrentGCThread::stsJoin();
if (concurrent()) {
ConcurrentGCThread::stsJoin();
}
// at this point everything should be re-initialised and ready to go
if (verbose_low())
gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
}
#ifndef PRODUCT
void ForceOverflowSettings::init() {
_num_remaining = G1ConcMarkForceOverflow;
_force = false;
update();
}
void ForceOverflowSettings::update() {
if (_num_remaining > 0) {
_num_remaining -= 1;
_force = true;
} else {
_force = false;
}
}
bool ForceOverflowSettings::should_force() {
if (_force) {
_force = false;
return true;
} else {
return false;
}
}
#endif // !PRODUCT
void ConcurrentMark::grayRoot(oop p) {
HeapWord* addr = (HeapWord*) p;
// We can't really check against _heap_start and _heap_end, since it
......@@ -1117,6 +1170,7 @@ void ConcurrentMark::markFromRoots() {
_restart_for_overflow = false;
size_t active_workers = MAX2((size_t) 1, parallel_marking_threads());
force_overflow_conc()->init();
set_phase(active_workers, true /* concurrent */);
CMConcurrentMarkingTask markingTask(this, cmThread());
......@@ -2703,12 +2757,16 @@ void ConcurrentMark::oops_do(OopClosure* cl) {
}
void ConcurrentMark::clear_marking_state() {
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
_markStack.setEmpty();
_markStack.clear_overflow();
_regionStack.setEmpty();
_regionStack.clear_overflow();
clear_has_overflown();
if (clear_overflow) {
clear_has_overflown();
} else {
assert(has_overflown(), "pre-condition");
}
_finger = _heap_start;
for (int i = 0; i < (int)_max_task_num; ++i) {
......@@ -4279,6 +4337,15 @@ void CMTask::do_marking_step(double time_target_ms,
}
}
// If we are about to wrap up and go into termination, check if we
// should raise the overflow flag.
if (do_termination && !has_aborted()) {
if (_cm->force_overflow()->should_force()) {
_cm->set_has_overflown();
regular_clock_call();
}
}
// We still haven't aborted. Now, let's try to get into the
// termination protocol.
if (do_termination && !has_aborted()) {
......
......@@ -316,6 +316,19 @@ public:
void setEmpty() { _index = 0; clear_overflow(); }
};
class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
private:
#ifndef PRODUCT
uintx _num_remaining;
bool _force;
#endif // !defined(PRODUCT)
public:
void init() PRODUCT_RETURN;
void update() PRODUCT_RETURN;
bool should_force() PRODUCT_RETURN_( return false; );
};
// this will enable a variety of different statistics per GC task
#define _MARKING_STATS_ 0
// this will enable the higher verbose levels
......@@ -462,6 +475,9 @@ protected:
WorkGang* _parallel_workers;
ForceOverflowSettings _force_overflow_conc;
ForceOverflowSettings _force_overflow_stw;
void weakRefsWork(bool clear_all_soft_refs);
void swapMarkBitMaps();
......@@ -470,7 +486,7 @@ protected:
// task local ones; should be called during initial mark.
void reset();
// It resets all the marking data structures.
void clear_marking_state();
void clear_marking_state(bool clear_overflow = true);
// It should be called to indicate which phase we're in (concurrent
// mark or remark) and how many threads are currently active.
......@@ -547,6 +563,22 @@ protected:
void enter_first_sync_barrier(int task_num);
void enter_second_sync_barrier(int task_num);
ForceOverflowSettings* force_overflow_conc() {
return &_force_overflow_conc;
}
ForceOverflowSettings* force_overflow_stw() {
return &_force_overflow_stw;
}
ForceOverflowSettings* force_overflow() {
if (concurrent()) {
return force_overflow_conc();
} else {
return force_overflow_stw();
}
}
public:
// Manipulation of the global mark stack.
// Notice that the first mark_stack_push is CAS-based, whereas the
......
......@@ -311,7 +311,11 @@
\
develop(bool, G1ExitOnExpansionFailure, false, \
"Raise a fatal VM exit out of memory failure in the event " \
" that heap expansion fails due to running out of swap.")
" that heap expansion fails due to running out of swap.") \
\
develop(uintx, G1ConcMarkForceOverflow, 0, \
"The number of times we'll force an overflow during " \
"concurrent marking")
G1_FLAGS(DECLARE_DEVELOPER_FLAG, DECLARE_PD_DEVELOPER_FLAG, DECLARE_PRODUCT_FLAG, DECLARE_PD_PRODUCT_FLAG, DECLARE_DIAGNOSTIC_FLAG, DECLARE_EXPERIMENTAL_FLAG, DECLARE_NOTPRODUCT_FLAG, DECLARE_MANAGEABLE_FLAG, DECLARE_PRODUCT_RW_FLAG)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册