concurrentMark.cpp 157.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
39 40 41 42 43 44
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
45

46
// Concurrent marking bit map wrapper
47

48
CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
49 50 51 52 53 54 55
  _bm((uintptr_t*)NULL,0),
  _shifter(shifter) {
  _bmStartWord = (HeapWord*)(rs.base());
  _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));

56
  guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
57 58 59
  // For now we'll just commit all of the bit map up fromt.
  // Later on we'll try to be more parsimonious with swap.
  guarantee(_virtual_space.initialize(brs, brs.size()),
60
            "couldn't reseve backing store for concurrent marking bit map");
61
  assert(_virtual_space.committed_size() == brs.size(),
62
         "didn't reserve backing store for all of concurrent marking bit map?");
63 64 65 66 67 68 69 70 71 72 73 74
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
75 76 77
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
78 79 80 81 82 83 84 85 86 87 88 89
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
90 91 92
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
110
  assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
         "size inconsistency");
  return _bmStartWord == (HeapWord*)(rs.base()) &&
         _bmWordSize  == rs.size()>>LogHeapWordSize;
}
#endif

void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

void CMMarkStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(oop, size);
165
  if (_base == NULL) {
166
    vm_exit_during_initialization("Failed to allocate CM region mark stack");
167
  }
168 169
  _index = 0;
  _capacity = (jint) size;
170
  _saved_index = -1;
171 172 173 174
  NOT_PRODUCT(_max_depth = 0);
}

CMMarkStack::~CMMarkStack() {
175 176 177
  if (_base != NULL) {
    FREE_C_HEAP_ARRAY(oop, _base);
  }
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
        int ind = index + i;
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}


void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
241
    assert(ind < _capacity, "By overflow test above.");
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    _base[ind] = ptr_arr[i];
  }
}


bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
    jint new_ind = index - k;
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
281 282
      res = false;
      break;
283 284 285 286 287 288
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

306
void CMMarkStack::oops_do(OopClosure* f) {
307 308 309
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
310 311 312 313 314 315 316 317 318 319
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
  return (_g1h->is_obj_ill(obj)
          || (_g1h->is_in_permanent(obj)
              && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

398 399 400 401
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

402 403
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
404 405
}

406
ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
407 408 409 410
  _markBitMap1(rs, MinObjAlignment - 1),
  _markBitMap2(rs, MinObjAlignment - 1),

  _parallel_marking_threads(0),
411
  _max_parallel_marking_threads(0),
412 413 414 415
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
416
  _cleanup_list("Cleanup List"),
417
  _region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
418 419 420
  _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
           CardTableModRefBS::card_shift,
           false /* in_resource_area*/),
421

422 423 424 425 426 427
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

428
  _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
429 430 431 432 433 434 435
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
  _task_queues(new CMTaskQueueSet((int) _max_task_num)),
  _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),

  _has_overflown(false),
  _concurrent(false),
436 437 438
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
439 440 441 442 443 444 445 446

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
447 448 449 450 451

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
  _count_marked_bytes(NULL) {
452 453
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
454
    verbose_level = no_verbose;
455 456
  }
  if (verbose_level > high_verbose) {
457
    verbose_level = high_verbose;
458
  }
459 460
  _verbose_level = verbose_level;

461
  if (verbose_low()) {
462 463
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
464
  }
465

466
  _markStack.allocate(MarkStackSize);
467 468

  // Create & start a ConcurrentMark thread.
469 470 471 472
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

473 474 475 476 477 478
  _g1h = G1CollectedHeap::heap();
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
  assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
479
  satb_qs.set_buffer_size(G1SATBBufferSize);
480

481 482
  _root_regions.init(_g1h, this);

483 484 485
  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);

486 487 488 489 490
  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_task_num);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num);

  BitMap::idx_t card_bm_size = _card_bm.size();

491 492 493 494 495 496 497
  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_task_num;
  for (int i = 0; i < (int) _max_task_num; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

498
    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
499
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, (size_t) max_regions);
500 501 502 503 504 505

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

506 507 508
    _accum_task_vtime[i] = 0.0;
  }

509 510 511 512 513 514 515 516 517
  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

518 519
  if (ConcGCThreads > ParallelGCThreads) {
    vm_exit_during_initialization("Can't have more ConcGCThreads "
520 521 522 523 524
                                  "than ParallelGCThreads.");
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
525 526 527 528
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
529
  } else {
530 531
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
532 533
      // if both are set

534
      _parallel_marking_threads = (uint) ConcGCThreads;
535
      _max_parallel_marking_threads = _parallel_marking_threads;
536 537
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
538
    } else if (G1MarkingOverheadPercent > 0) {
539 540 541 542
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
543
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
544
      double overall_cm_overhead =
J
johnc 已提交
545 546
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
547 548 549 550 551 552 553 554
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

555
      _parallel_marking_threads = (uint) marking_thread_num;
556
      _max_parallel_marking_threads = _parallel_marking_threads;
557 558 559
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
560
      _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
561
      _max_parallel_marking_threads = _parallel_marking_threads;
562 563 564 565
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

566
    if (parallel_marking_threads() > 1) {
567
      _cleanup_task_overhead = 1.0;
568
    } else {
569
      _cleanup_task_overhead = marking_task_overhead();
570
    }
571 572 573 574 575 576 577 578 579 580 581
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

582
    guarantee(parallel_marking_threads() > 0, "peace of mind");
583
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
584
         _max_parallel_marking_threads, false, true);
585
    if (_parallel_workers == NULL) {
586
      vm_exit_during_initialization("Failed necessary allocation.");
587 588 589
    } else {
      _parallel_workers->initialize_workers();
    }
590 591 592 593 594 595 596 597 598
  }

  // so that the call below can read a sensible value
  _heap_start = (HeapWord*) rs.base();
  set_non_marking_state();
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
599
  // update _heap_end.
600
  if (!concurrent_marking_in_progress() && !force) return;
601 602

  MemRegion committed = _g1h->g1_committed();
603
  assert(committed.start() == _heap_start, "start shouldn't change");
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

625 626 627 628
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
629 630 631 632

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

633
  if (verbose_low()) {
634
    gclog_or_tty->print_cr("[global] resetting");
635
  }
636 637 638 639

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
640
  for (int i = 0; i < (int) _max_task_num; ++i) {
641
    _tasks[i]->reset(_nextMarkBitMap);
642
  }
643 644 645 646 647 648

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

649
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
650
  assert(active_tasks <= _max_task_num, "we should not have more");
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
670 671
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
672 673 674 675 676 677 678 679 680 681 682 683 684
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
685 686
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
687 688 689
}

void ConcurrentMark::clearNextBitmap() {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
712
    if (next > end) {
713
      next = end;
714
    }
715 716 717 718 719 720 721 722 723 724 725 726 727
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

728 729 730
  // Clear the liveness counting data
  clear_all_count_data();

731 732 733
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
734 735 736 737 738 739
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
740
      r->note_start_of_marking();
741 742 743 744 745 746 747 748 749 750 751
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

752
#ifndef PRODUCT
753
  if (G1PrintReachableAtInitialMark) {
754
    print_reachable("at-cycle-start",
755
                    VerifyOption_G1UsePrevMarking, true /* all */);
756
  }
757
#endif
758 759 760

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
761 762 763 764

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
765 766 767 768 769 770
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

771 772 773 774 775 776 777 778
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

779 780 781 782
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
783
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
784 785

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
786 787 788 789
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
790

791 792
  _root_regions.prepare_for_scan();

793 794 795 796 797 798 799
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
819 820

void ConcurrentMark::enter_first_sync_barrier(int task_num) {
821
  if (verbose_low()) {
822
    gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
823
  }
824

825 826 827
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
828
  _first_overflow_barrier_sync.enter();
829 830 831
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
832 833 834
  // at this point everyone should have synced up and not be doing any
  // more work

835
  if (verbose_low()) {
836
    gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
837
  }
838 839 840 841

  // let task 0 do this
  if (task_num == 0) {
    // task 0 is responsible for clearing the global data structures
842 843 844 845 846 847
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
    clear_marking_state(concurrent() /* clear_overflow */);
    force_overflow()->update();
848

849
    if (G1Log::fine()) {
850 851 852 853 854 855 856 857 858 859 860
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

void ConcurrentMark::enter_second_sync_barrier(int task_num) {
861
  if (verbose_low()) {
862
    gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
863
  }
864

865 866 867
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
868
  _second_overflow_barrier_sync.enter();
869 870 871
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
872 873
  // at this point everything should be re-initialised and ready to go

874
  if (verbose_low()) {
875
    gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
876
  }
877 878
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

905 906 907 908 909 910
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
911
  void work(uint worker_id) {
912 913
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
914
    ResourceMark rm;
915 916 917 918 919

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

920 921
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
922 923 924 925 926
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
927 928 929 930 931 932
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

933 934 935 936 937 938
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

939
        bool ret = _cm->do_yield_check(worker_id);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
963
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
964 965 966 967

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
968
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
969 970 971 972 973 974 975 976 977
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

978 979
// Calculates the number of active workers for a concurrent
// phase.
980
uint ConcurrentMark::calc_parallel_marking_threads() {
981
  if (G1CollectedHeap::use_parallel_gc_threads()) {
982
    uint n_conc_workers = 0;
983 984 985 986 987 988 989 990 991 992 993 994 995 996
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
997 998
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
999
  }
1000 1001 1002 1003
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
    if (parallel_marking_threads() > 0) {
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1069 1070 1071 1072 1073 1074 1075 1076 1077
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1078
  force_overflow_conc()->init();
1079 1080 1081 1082 1083 1084

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1085
  uint active_workers = MAX2(1U, parallel_marking_threads());
1086 1087 1088

  // Parallel task terminator is set in "set_phase()"
  set_phase(active_workers, true /* concurrent */);
1089 1090

  CMConcurrentMarkingTask markingTask(this, cmThread());
1091
  if (parallel_marking_threads() > 0) {
1092 1093 1094 1095
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1096
    _parallel_workers->run_task(&markingTask);
1097
  } else {
1098
    markingTask.work(0);
1099
  }
1100 1101 1102 1103 1104 1105 1106
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1107

1108 1109 1110 1111 1112 1113 1114 1115
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1116 1117
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1118 1119 1120 1121
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1122
    Universe::verify(/* silent      */ false,
1123
                     /* option      */ VerifyOption_G1UsePrevMarking);
1124 1125
  }

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
1142
    if (G1TraceMarkStackOverflow) {
1143
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1144
    }
1145
  } else {
1146 1147 1148 1149
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1150
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1151
    // We're done with marking.
1152 1153
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1154 1155
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1156 1157

    if (VerifyDuringGC) {
1158 1159 1160
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1161
      Universe::verify(/* silent      */ false,
1162
                       /* option      */ VerifyOption_G1UseNextMarking);
1163
    }
1164 1165 1166 1167 1168 1169
    assert(!restart_for_overflow(), "sanity");
  }

  // Reset the marking state if marking completed
  if (!restart_for_overflow()) {
    set_non_marking_state();
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

1186 1187 1188 1189
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1190
  ConcurrentMark* _cm;
1191 1192 1193
  BitMap* _region_bm;
  BitMap* _card_bm;

1194 1195
  void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
    assert(start_idx <= last_idx, "sanity");
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    // Set the inclusive bit range [start_idx, last_idx].
    // For small ranges (up to 8 cards) use a simple loop; otherwise
    // use par_at_put_range.
    if ((last_idx - start_idx) < 8) {
      for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
        _card_bm->par_set_bit(i);
      }
    } else {
      assert(last_idx < _card_bm->size(), "sanity");
      // Note BitMap::par_at_put_range() is exclusive.
      _card_bm->par_at_put_range(start_idx, last_idx+1, true);
1208 1209 1210
    }
  }

1211 1212 1213 1214 1215 1216 1217 1218
  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1219
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1220 1221
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1222
      _region_bm->par_at_put(index, true);
1223 1224
    } else {
      // Starts humongous case: calculate how many regions are part of
1225
      // this humongous region and then set the bit range.
1226
      G1CollectedHeap* g1h = G1CollectedHeap::heap();
1227
      HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
1228 1229
      BitMap::idx_t end_index = (BitMap::idx_t) last_hr->hrs_index() + 1;
      _region_bm->par_at_put_range(index, end_index, true);
1230 1231 1232
    }
  }

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
public:
  CMCountDataClosureBase(ConcurrentMark *cm,
                         BitMap* region_bm, BitMap* card_bm):
    _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
  CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
                         BitMap* region_bm, BitMap* card_bm) :
    CMCountDataClosureBase(cm, region_bm, card_bm),
    _bm(bm), _region_marked_bytes(0) { }

1251 1252
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1253
    if (hr->continuesHumongous()) {
1254 1255 1256 1257 1258 1259 1260
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1261 1262
      return false;
    }
1263 1264

    HeapWord* nextTop = hr->next_top_at_mark_start();
1265 1266 1267 1268 1269 1270 1271
    HeapWord* start   = hr->bottom();

    assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, nextTop, hr->end()));

1272 1273
    // Find the first marked object at or after "start".
    start = _bm->getNextMarkedWordAddress(start, nextTop);
1274

1275 1276 1277 1278 1279 1280 1281
    size_t marked_bytes = 0;

    while (start < nextTop) {
      oop obj = oop(start);
      int obj_sz = obj->size();
      HeapWord* obj_last = start + obj_sz - 1;

1282 1283 1284 1285 1286 1287 1288
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
      BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);

      // Set the bits in the card BM for this object (inclusive).
      set_card_bitmap_range(start_idx, last_idx);

      // Add the size of this object to the number of marked bytes.
1289
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1290

1291
      // Find the next marked object after this one.
1292
      start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
1293
    }
1294 1295 1296 1297

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
    if (nextTop < top) {
1298 1299
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
      BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
1300

1301
      set_card_bitmap_range(start_idx, last_idx);
1302 1303 1304

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1305 1306 1307 1308
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1309
      set_bit_for_region(hr);
1310
    }
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
  VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
    _cm(cm),
    _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1385
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1396
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1397 1398 1399 1400 1401

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1402 1403 1404 1405
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1423 1424 1425 1426
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1427
        }
1428
        failures += 1;
1429 1430 1431
      }
    }

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1442
    // find the first violating region by returning true.
1443 1444
    return false;
  }
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

    VerifyLiveObjectDataHRClosure verify_cl(_cm,
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1511

1512
  int failures() const { return _failures; }
1513 1514
};

1515 1516 1517 1518 1519 1520
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1521

1522
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1523 1524 1525 1526
 public:
  FinalCountDataUpdateClosure(ConcurrentMark* cm,
                              BitMap* region_bm,
                              BitMap* card_bm) :
1527
    CMCountDataClosureBase(cm, region_bm, card_bm) { }
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1545
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1546 1547 1548 1549 1550 1551 1552

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);
    }

1553 1554
    // Now set the bits for [ntams, top]
    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top);
    set_card_bitmap_range(start_idx, last_idx);

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1566 1567 1568 1569

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1570 1571 1572 1573
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1574
  uint    _n_workers;
1575

1576
public:
1577 1578 1579 1580 1581
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1582
    // Use the value already set as the number of active threads
1583
    // in the call to run_task().
1584 1585 1586 1587
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1588
    } else {
1589
      _n_workers = 1;
1590
    }
1591 1592
  }

1593
  void work(uint worker_id) {
1594 1595 1596 1597 1598 1599
    assert(worker_id < _n_workers, "invariant");

    FinalCountDataUpdateClosure final_update_cl(_cm,
                                                _actual_region_bm,
                                                _actual_card_bm);

1600
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1601 1602 1603
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1604
                                            HeapRegion::FinalCountClaimValue);
1605
    } else {
1606
      _g1h->heap_region_iterate(&final_update_cl);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1617
  uint _regions_claimed;
1618
  size_t _freed_bytes;
T
tonyp 已提交
1619
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1620
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1621 1622
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1623 1624 1625 1626 1627
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1628 1629
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1630
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1631
                             HumongousRegionSet* humongous_proxy_set,
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1642 1643
  size_t freed_bytes() { return _freed_bytes; }

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
  bool doHeapRegion(HeapRegion *hr) {
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
    hr->reset_gc_time_stamp();
    if (!hr->continuesHumongous()) {
      double start = os::elapsedTime();
      _regions_claimed++;
      hr->note_end_of_marking();
      _max_live_bytes += hr->max_live_bytes();
      _g1->free_region_if_empty(hr,
                                &_freed_bytes,
                                _local_cleanup_list,
                                _old_proxy_set,
                                _humongous_proxy_set,
                                _hrrs_cleanup_task,
                                true /* par */);
      double region_time = (os::elapsedTime() - start);
      _claimed_region_time += region_time;
      if (region_time > _max_region_time) {
        _max_region_time = region_time;
      }
    }
    return false;
  }
1668 1669

  size_t max_live_bytes() { return _max_live_bytes; }
1670
  uint regions_claimed() { return _regions_claimed; }
1671 1672 1673 1674 1675 1676
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1677

1678 1679 1680 1681
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1682 1683
  FreeRegionList* _cleanup_list;

1684 1685
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1686
                   FreeRegionList* cleanup_list) :
1687
    AbstractGangTask("G1 note end"), _g1h(g1h),
1688
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1689

1690
  void work(uint worker_id) {
1691
    double start = os::elapsedTime();
T
tonyp 已提交
1692
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1693
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1694 1695
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1696
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1697
                                           &old_proxy_set,
T
tonyp 已提交
1698 1699
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1700
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1701
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1702
                                            _g1h->workers()->active_workers(),
1703
                                            HeapRegion::NoteEndClaimValue);
1704 1705 1706 1707 1708
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1709 1710 1711
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1712
                                            &old_proxy_set,
T
tonyp 已提交
1713
                                            &humongous_proxy_set,
1714
                                            true /* par */);
1715 1716 1717 1718
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1719

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1737 1738 1739 1740
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1756
    _region_bm(region_bm), _card_bm(card_bm) { }
1757

1758
  void work(uint worker_id) {
1759
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1760
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1761
                       HeapRegion::ScrubRemSetClaimValue);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1781
  HRSPhaseSetter x(HRSPhaseCleanup);
1782 1783
  g1h->verify_region_sets_optional();

1784 1785 1786 1787
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1788
    Universe::verify(/* silent      */ false,
1789
                     /* option      */ VerifyOption_G1UsePrevMarking);
1790 1791
  }

1792 1793 1794 1795 1796
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1797 1798
  HeapRegionRemSet::reset_for_cleanup_tasks();

1799
  uint n_workers;
1800

1801
  // Do counting once more with the world stopped for good measure.
1802 1803
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1804
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1805
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1806 1807
           "sanity check");

1808 1809
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1810
    assert(g1h->n_par_threads() == n_workers,
1811
           "Should not have been reset");
1812
    g1h->workers()->run_task(&g1_par_count_task);
1813
    // Done with the parallel phase so reset to 0.
1814
    g1h->set_par_threads(0);
1815

1816
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1817
           "sanity check");
1818
  } else {
1819
    n_workers = 1;
1820 1821 1822
    g1_par_count_task.work(0);
  }

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

1852 1853 1854 1855 1856 1857 1858
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

1859 1860 1861 1862 1863
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

1864 1865 1866 1867 1868 1869
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
1870
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
1871
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1872
    g1h->set_par_threads((int)n_workers);
1873 1874
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
1875 1876 1877

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
1878 1879 1880
  } else {
    g1_par_note_end_task.work(0);
  }
1881 1882 1883 1884 1885 1886 1887

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
1888 1889 1890 1891 1892 1893

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
1894
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1895
      g1h->set_par_threads((int)n_workers);
1896 1897
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
1898 1899 1900 1901

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
1913
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
1914 1915 1916 1917 1918

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

1919
  if (G1Log::fine()) {
1920 1921 1922 1923 1924 1925
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

1926 1927 1928 1929
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

1930 1931 1932 1933
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

1934 1935 1936 1937
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
1938
  if (VerifyDuringGC) {
1939 1940 1941
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
1942
    Universe::verify(/* silent      */ false,
1943
                     /* option      */ VerifyOption_G1UsePrevMarking);
1944
  }
1945 1946

  g1h->verify_region_sets_optional();
1947 1948 1949 1950 1951
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

1952 1953 1954
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
1955
  FreeRegionList tmp_free_list("Tmp Free List");
1956 1957 1958

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1959
                           "cleanup list has %u entries",
1960 1961 1962 1963 1964 1965 1966 1967
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
1968
    hr->par_clear();
T
tonyp 已提交
1969
    tmp_free_list.add_as_tail(hr);
1970 1971 1972 1973 1974 1975 1976

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
1977
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1978 1979 1980
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1981 1982
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
1983
                               tmp_free_list.length(),
1984 1985 1986 1987 1988
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
1989
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
1990 1991 1992 1993 1994 1995 1996
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
1997 1998 1999
      }
    }
  }
T
tonyp 已提交
2000
  assert(tmp_free_list.is_empty(), "post-condition");
2001 2002
}

2003 2004
// Support closures for reference procssing in G1

2005 2006 2007 2008 2009
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2010 2011 2012 2013 2014

class G1CMKeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
 public:
2015 2016 2017 2018
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
    _g1(g1), _cm(cm) {
    assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
  }
2019

2020 2021
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2022

2023
  template <class T> void do_oop_work(T* p) {
2024 2025 2026
    oop obj = oopDesc::load_decode_heap_oop(p);
    HeapWord* addr = (HeapWord*)obj;

2027
    if (_cm->verbose_high()) {
2028
      gclog_or_tty->print_cr("\t[0] we're looking at location "
2029 2030 2031
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             p, (void*) obj);
    }
2032 2033

    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2034
      _cm->mark_and_count(obj);
2035
      _cm->mark_stack_push(obj);
2036 2037 2038 2039 2040
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
2041
  ConcurrentMark*               _cm;
2042 2043 2044
  CMMarkStack*                  _markStack;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
2045
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
2046
                               G1CMKeepAliveClosure* oopClosure) :
2047
    _cm(cm),
2048
    _markStack(markStack),
2049
    _oopClosure(oopClosure) { }
2050 2051

  void do_void() {
2052
    _markStack->drain((OopClosure*)_oopClosure, _cm->nextMarkBitMap(), false);
2053 2054 2055
  }
};

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2075 2076 2077
  G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task),
    _ref_counter_limit(G1RefProcDrainInterval) {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2088
      if (_cm->verbose_high()) {
2089 2090 2091
        gclog_or_tty->print_cr("\t[%d] we're looking at location "
                               "*"PTR_FORMAT" = "PTR_FORMAT,
                               _task->task_id(), p, (void*) obj);
2092
      }
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
        // We have dealt with _ref_counter_limit references, pushing them and objects
        // reachable from them on to the local stack (and possibly the global stack).
        // Call do_marking_step() to process these entries. We call the routine in a
        // loop, which we'll exit if there's nothing more to do (i.e. we're done
        // with the entries that we've pushed as a result of the deal_with_reference
        // calls above) or we overflow.
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
        // while there may still be some work to do. (See the comment at the
        // beginning of CMTask::do_marking_step() for those conditions - one of which
        // is reaching the specified time target.) It is only when
        // CMTask::do_marking_step() returns without setting the has_aborted() flag
        // that the marking has completed.
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2119
      if (_cm->verbose_high()) {
2120
         gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2121
      }
2122 2123 2124 2125 2126 2127 2128 2129 2130
    }
  }
};

class G1CMParDrainMarkingStackClosure: public VoidClosure {
  ConcurrentMark* _cm;
  CMTask* _task;
 public:
  G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2131
    _cm(cm), _task(task) { }
2132 2133 2134

  void do_void() {
    do {
2135 2136 2137 2138
      if (_cm->verbose_high()) {
        gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
                               _task->task_id());
      }
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

      // We call CMTask::do_marking_step() to completely drain the local and
      // global marking stacks. The routine is called in a loop, which we'll
      // exit if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a result of applying the
      // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
      // lists above) or we overflow the global marking stack.
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
      // while there may still be some work to do. (See the comment at the
      // beginning of CMTask::do_marking_step() for those conditions - one of which
      // is reaching the specified time target.) It is only when
      // CMTask::do_marking_step() returns without setting the has_aborted() flag
      // that the marking has completed.

      _task->do_marking_step(1000000000.0 /* something very large */,
                             true /* do_stealing    */,
                             true /* do_termination */);
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2160 2161 2162 2163
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2164 2165 2166 2167 2168 2169 2170
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2171
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2172 2173 2174
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2175 2176
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2177 2178 2179 2180 2181 2182

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2183
class G1CMRefProcTaskProxy: public AbstractGangTask {
2184 2185 2186 2187 2188 2189
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2190
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2191
                     G1CollectedHeap* g1h,
2192
                     ConcurrentMark* cm) :
2193
    AbstractGangTask("Process reference objects in parallel"),
2194
    _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2195

2196 2197
  virtual void work(uint worker_id) {
    CMTask* marking_task = _cm->task(worker_id);
2198
    G1CMIsAliveClosure g1_is_alive(_g1h);
2199
    G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2200 2201
    G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);

2202
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2203 2204 2205
  }
};

2206
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2207 2208
  assert(_workers != NULL, "Need parallel worker threads.");

2209
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2210 2211 2212 2213 2214 2215 2216 2217 2218

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2219
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2220 2221 2222 2223
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2224
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2225
    AbstractGangTask("Enqueue reference objects in parallel"),
2226
    _enq_task(enq_task) { }
2227

2228 2229
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2230 2231 2232
  }
};

2233
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2234 2235
  assert(_workers != NULL, "Need parallel worker threads.");

2236
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2237 2238 2239 2240 2241 2242

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2243 2244 2245 2246
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2247 2248 2249 2250 2251 2252 2253 2254
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2255
    if (G1Log::finer()) {
2256 2257
      gclog_or_tty->put(' ');
    }
2258
    TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2259

2260
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2261

2262 2263
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2264

2265 2266 2267
    // Process weak references.
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2268

2269
    G1CMKeepAliveClosure g1_keep_alive(g1h, this);
2270
    G1CMDrainMarkingStackClosure
2271
      g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
2272

2273 2274
    // We use the work gang from the G1CollectedHeap and we utilize all
    // the worker threads.
2275 2276
    uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
    active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
2277

2278
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2279
                                              g1h->workers(), active_workers);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

    if (rp->processing_is_mt()) {
      // Set the degree of MT here.  If the discovery is done MT, there
      // may have been a different number of threads doing the discovery
      // and a different number of discovered lists may have Ref objects.
      // That is OK as long as the Reference lists are balanced (see
      // balance_all_queues() and balance_queues()).
      rp->set_active_mt_degree(active_workers);

      rp->process_discovered_references(&g1_is_alive,
2290 2291 2292 2293
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
                                      &par_task_executor);

2294 2295 2296 2297 2298 2299 2300 2301 2302
      // The work routines of the parallel keep_alive and drain_marking_stack
      // will set the has_overflown flag if we overflow the global marking
      // stack.
    } else {
      rp->process_discovered_references(&g1_is_alive,
                                        &g1_keep_alive,
                                        &g1_drain_mark_stack,
                                        NULL);
    }
2303

2304 2305 2306 2307 2308 2309 2310
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
      // Should have been done already when we tried to push an
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2311

2312 2313 2314 2315 2316 2317
    if (rp->processing_is_mt()) {
      assert(rp->num_q() == active_workers, "why not");
      rp->enqueue_discovered_references(&par_task_executor);
    } else {
      rp->enqueue_discovered_references();
    }
2318

2319
    rp->verify_no_references_recorded();
2320
    assert(!rp->discovery_enabled(), "Post condition");
2321 2322
  }

2323
  // Now clean up stale oops in StringTable
2324
  StringTable::unlink(&g1_is_alive);
2325 2326
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
2340
  void work(uint worker_id) {
2341 2342
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2343 2344
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2345 2346
      task->record_start_time();
      do {
2347 2348 2349
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2350 2351 2352 2353 2354 2355 2356
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2357
  CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2358
    AbstractGangTask("Par Remark"), _cm(cm) {
2359
    _cm->terminator()->reset_for_reuse(active_workers);
2360
  }
2361 2362 2363 2364 2365 2366 2367 2368 2369
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2370
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2371
    G1CollectedHeap::StrongRootsScope srs(g1h);
2372
    // this is remark, so we'll use up all active threads
2373
    uint active_workers = g1h->workers()->active_workers();
2374 2375
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2376
      active_workers = (uint) ParallelGCThreads;
2377 2378
      g1h->workers()->set_active_workers(active_workers);
    }
2379
    set_phase(active_workers, false /* concurrent */);
2380 2381 2382 2383
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2384

2385
    CMRemarkTask remarkTask(this, active_workers);
2386
    g1h->set_par_threads(active_workers);
2387 2388 2389
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2390
    G1CollectedHeap::StrongRootsScope srs(g1h);
2391
    // this is remark, so we'll use up all available threads
2392
    uint active_workers = 1;
2393
    set_phase(active_workers, false /* concurrent */);
2394

2395
    CMRemarkTask remarkTask(this, active_workers);
2396 2397 2398 2399 2400
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2401 2402
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

  print_stats();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

2418 2419
#ifndef PRODUCT

2420
class PrintReachableOopClosure: public OopClosure {
2421 2422 2423
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2424
  VerifyOption     _vo;
2425
  bool             _all;
2426 2427

public:
2428 2429
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2430
                           bool          all) :
2431
    _g1h(G1CollectedHeap::heap()),
2432
    _out(out), _vo(vo), _all(all) { }
2433

2434 2435
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2436

2437 2438
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2439 2440 2441
    const char* str = NULL;
    const char* str2 = "";

2442 2443 2444 2445 2446
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2447
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2448
      guarantee(hr != NULL, "invariant");
2449
      bool over_tams = false;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
      bool marked = false;

      switch (_vo) {
        case VerifyOption_G1UsePrevMarking:
          over_tams = hr->obj_allocated_since_prev_marking(obj);
          marked = _g1h->isMarkedPrev(obj);
          break;
        case VerifyOption_G1UseNextMarking:
          over_tams = hr->obj_allocated_since_next_marking(obj);
          marked = _g1h->isMarkedNext(obj);
          break;
        case VerifyOption_G1UseMarkWord:
          marked = obj->is_gc_marked();
          break;
        default:
          ShouldNotReachHere();
2466 2467 2468
      }

      if (over_tams) {
2469 2470
        str = " >";
        if (marked) {
2471
          str2 = " AND MARKED";
2472
        }
2473 2474
      } else if (marked) {
        str = " M";
2475
      } else {
2476
        str = " NOT";
2477
      }
2478 2479
    }

2480
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2481 2482 2483 2484
                   p, (void*) obj, str, str2);
  }
};

2485
class PrintReachableObjectClosure : public ObjectClosure {
2486
private:
2487 2488 2489 2490 2491
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2492 2493

public:
2494 2495
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2496 2497
                              bool          all,
                              HeapRegion*   hr) :
2498 2499
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2500

2501
  void do_object(oop o) {
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
    bool over_tams = false;
    bool marked = false;

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        over_tams = _hr->obj_allocated_since_prev_marking(o);
        marked = _g1h->isMarkedPrev(o);
        break;
      case VerifyOption_G1UseNextMarking:
        over_tams = _hr->obj_allocated_since_next_marking(o);
        marked = _g1h->isMarkedNext(o);
        break;
      case VerifyOption_G1UseMarkWord:
        marked = o->is_gc_marked();
        break;
      default:
        ShouldNotReachHere();
2519 2520 2521 2522 2523 2524
    }
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2525
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2526 2527
      o->oop_iterate(&oopCl);
    }
2528 2529 2530
  }
};

2531
class PrintReachableRegionClosure : public HeapRegionClosure {
2532 2533
private:
  outputStream* _out;
2534
  VerifyOption  _vo;
2535
  bool          _all;
2536 2537 2538 2539 2540 2541

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2542
    HeapWord* p = NULL;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        p = hr->prev_top_at_mark_start();
        break;
      case VerifyOption_G1UseNextMarking:
        p = hr->next_top_at_mark_start();
        break;
      case VerifyOption_G1UseMarkWord:
        // When we are verifying marking using the mark word
        // TAMS has no relevance.
        assert(p == NULL, "post-condition");
        break;
      default:
        ShouldNotReachHere();
2558
    }
2559
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2560
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2561 2562 2563 2564 2565 2566 2567 2568
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2569
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2570 2571 2572
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2573 2574 2575 2576

    return false;
  }

2577 2578
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2579
                              bool          all) :
2580
    _out(out), _vo(vo), _all(all) { }
2581 2582
};

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static const char* verify_option_to_tams(VerifyOption vo) {
  switch (vo) {
    case VerifyOption_G1UsePrevMarking:
      return "PTAMS";
    case VerifyOption_G1UseNextMarking:
      return "NTAMS";
    default:
      return "NONE";
  }
}

2594
void ConcurrentMark::print_reachable(const char* str,
2595
                                     VerifyOption vo,
2596 2597 2598
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2622
  out->print_cr("-- USING %s", verify_option_to_tams(vo));
2623 2624
  out->cr();

2625
  out->print_cr("--- ITERATING OVER REGIONS");
2626
  out->cr();
2627
  PrintReachableRegionClosure rcl(out, vo, all);
2628
  _g1h->heap_region_iterate(&rcl);
2629
  out->cr();
2630

2631
  gclog_or_tty->print_cr("  done");
2632
  gclog_or_tty->flush();
2633 2634
}

2635 2636
#endif // PRODUCT

2637
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2638 2639 2640
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2641 2642 2643
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2644 2645 2646
  _nextMarkBitMap->clearRange(mr);
}

2647 2648 2649 2650 2651
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2652 2653 2654 2655 2656 2657 2658 2659
HeapRegion*
ConcurrentMark::claim_region(int task_num) {
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2660
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2686 2687 2688 2689
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2690
    if (verbose_low()) {
2691 2692 2693 2694
      gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
                             task_num, curr_region, bottom, end, limit);
2695
    }
2696

2697 2698
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2699 2700 2701 2702 2703
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2704
      assert(_finger >= end, "the finger should have moved forward");
2705

2706
      if (verbose_low()) {
2707 2708
        gclog_or_tty->print_cr("[%d] we were successful with region = "
                               PTR_FORMAT, task_num, curr_region);
2709
      }
2710 2711

      if (limit > bottom) {
2712
        if (verbose_low()) {
2713 2714
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
                                 "returning it ", task_num, curr_region);
2715
        }
2716 2717
        return curr_region;
      } else {
2718 2719
        assert(limit == bottom,
               "the region limit should be at bottom");
2720
        if (verbose_low()) {
2721 2722
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
                                 "returning NULL", task_num, curr_region);
2723
        }
2724 2725 2726 2727 2728
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2729
      assert(_finger > finger, "the finger should have moved forward");
2730
      if (verbose_low()) {
2731 2732 2733 2734
        gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
                               task_num, _finger, finger);
2735
      }
2736 2737 2738 2739 2740 2741 2742 2743 2744

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2794

2795 2796
  virtual void do_object(oop obj) {
    do_object_work(obj);
2797
  }
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
    for (int i = 0; i < (int) _max_task_num; i += 1) {
      cl.set_phase(VerifyNoCSetOopsQueues, i);
      OopTaskQueue* queue = _task_queues->queue(i);
      queue->oops_do(&cl);
    }
2822 2823
  }

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
    assert(parallel_marking_threads() <= _max_task_num, "sanity");
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
2870
}
2871
#endif // PRODUCT
2872

2873
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2874 2875
  _markStack.setEmpty();
  _markStack.clear_overflow();
2876 2877 2878 2879 2880
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
2881 2882 2883 2884 2885 2886 2887 2888
  _finger = _heap_start;

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
  size_t _max_task_num;

 public:
  AggregateCountDataHRClosure(ConcurrentMark *cm,
                              BitMap* cm_card_bm,
                              size_t max_task_num) :
    _cm(cm), _cm_card_bm(cm_card_bm),
    _max_task_num(max_task_num) { }

  bool is_card_aligned(HeapWord* p) {
    return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
  }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

    assert(is_card_aligned(start), "sanity");
    assert(is_card_aligned(end), "sanity");

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

    // If ntams is not card aligned then we bump the index for
    // limit so that we get the card spanning ntams.
    if (!is_card_aligned(limit)) {
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
2952
    uint hrs_index = hr->hrs_index();
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
    size_t marked_bytes = 0;

    for (int i = 0; (size_t)i < _max_task_num; i += 1) {
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

      // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
        // parameter. If does, however, have an early exit if
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
  size_t _max_task_num;
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
                           size_t max_task_num,
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
    _max_task_num(max_task_num),
    _active_workers(n_workers) { }

  void work(uint worker_id) {
    AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
                                           _max_task_num, n_workers);

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3057
  uint max_regions = _g1h->max_regions();
3058 3059 3060 3061 3062 3063 3064 3065 3066
  assert(_max_task_num != 0, "unitialized");

  for (int i = 0; (size_t) i < _max_task_num; i += 1) {
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3067
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3068 3069 3070 3071
    task_card_bm->clear();
  }
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3086 3087
  // Clear the liveness counting data
  clear_all_count_data();
3088 3089
  // Empty mark stack
  clear_marking_state();
3090
  for (int i = 0; i < (int)_max_task_num; ++i) {
3091
    _tasks[i]->clear_region_fields();
3092
  }
3093 3094 3095 3096
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3097 3098 3099 3100 3101
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3140
                "(%8.2f s marking).",
3141
                cmThread()->vtime_accum(),
3142
                cmThread()->vtime_mark_accum());
3143 3144
}

T
tonyp 已提交
3145 3146 3147 3148
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

3149
// We take a break if someone is trying to stop the world.
3150
bool ConcurrentMark::do_yield_check(uint worker_id) {
3151
  if (should_yield()) {
3152
    if (worker_id == 0) {
3153
      _g1h->g1_policy()->record_concurrent_pause();
3154
    }
3155
    cmThread()->yield();
3156
    if (worker_id == 0) {
3157
      _g1h->g1_policy()->record_concurrent_pause_end();
3158
    }
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3176 3177
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
  for (int i = 0; i < (int) _max_task_num; ++i) {
    gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  }
  gclog_or_tty->print_cr("");
}
#endif

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
    gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
                           _task_id, (void*) obj);
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3208 3209 3210 3211 3212 3213 3214 3215 3216
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3217 3218
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3219 3220 3221

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3222 3223
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3224

3225 3226 3227 3228 3229
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3256 3257 3258 3259 3260
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3261

3262
  if (G1UseConcMarkReferenceProcessing) {
3263
    _ref_processor = g1h->ref_processor_cm();
3264
    assert(_ref_processor != NULL, "should not be NULL");
3265
  }
3266
}
3267 3268

void CMTask::setup_for_region(HeapRegion* hr) {
3269 3270 3271 3272 3273
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3274

3275
  if (_cm->verbose_low()) {
3276 3277
    gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
                           _task_id, hr);
3278
  }
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3291
    if (_cm->verbose_low()) {
3292 3293 3294
      gclog_or_tty->print_cr("[%d] found an empty region "
                             "["PTR_FORMAT", "PTR_FORMAT")",
                             _task_id, bottom, limit);
3295
    }
3296 3297 3298 3299 3300 3301 3302
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3303
    assert(limit >= _finger, "peace of mind");
3304
  } else {
3305
    assert(limit < _region_limit, "only way to get here");
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3323
  assert(_curr_region != NULL, "invariant");
3324
  if (_cm->verbose_low()) {
3325 3326
    gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
                           _task_id, _curr_region);
3327
  }
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3339 3340 3341 3342 3343 3344 3345 3346 3347
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3348
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3349
  guarantee(nextMarkBitMap != NULL, "invariant");
3350

3351
  if (_cm->verbose_low()) {
3352
    gclog_or_tty->print_cr("[%d] resetting", _task_id);
3353
  }
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3397 3398 3399
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3400 3401 3402 3403
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3404
  if (has_aborted()) return;
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3421
  if (!concurrent()) return;
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3434
  if (_words_scanned >= _words_scanned_limit) {
3435
    ++_clock_due_to_scanning;
3436 3437
  }
  if (_refs_reached >= _refs_reached_limit) {
3438
    ++_clock_due_to_marking;
3439
  }
3440 3441 3442 3443 3444 3445

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3446 3447 3448 3449 3450 3451 3452
      gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
                        "scanned = %d%s, refs reached = %d%s",
                        _task_id, last_interval_ms,
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3470
    _has_timed_out = true;
3471 3472 3473 3474 3475 3476 3477 3478
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3479
    if (_cm->verbose_low()) {
3480 3481
      gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
                             _task_id);
3482
    }
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3505
  if (_cm->verbose_medium()) {
3506
    gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3507
  }
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3533 3534 3535 3536
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
                               _task_id);
      }
3537 3538 3539 3540
      set_has_aborted();
    } else {
      // the transfer was successful

3541
      if (_cm->verbose_medium()) {
3542 3543
        gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
                               _task_id, n);
3544
      }
3545
      statsOnly( int tmp_size = _cm->mark_stack_size();
3546
                 if (tmp_size > _global_max_size) {
3547
                   _global_max_size = tmp_size;
3548
                 }
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3563 3564
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3565 3566 3567 3568
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3569
    if (_cm->verbose_medium()) {
3570 3571
      gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
                             _task_id, n);
3572
    }
3573 3574 3575 3576
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3577
      assert(success, "invariant");
3578 3579 3580
    }

    statsOnly( int tmp_size = _task_queue->size();
3581
               if (tmp_size > _local_max_size) {
3582
                 _local_max_size = tmp_size;
3583
               }
3584 3585 3586 3587 3588 3589 3590 3591
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3592
  if (has_aborted()) return;
3593 3594 3595 3596 3597

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3598
  if (partially) {
3599
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3600
  } else {
3601
    target_size = 0;
3602
  }
3603 3604

  if (_task_queue->size() > target_size) {
3605
    if (_cm->verbose_high()) {
3606 3607
      gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
                             _task_id, target_size);
3608
    }
3609 3610 3611 3612 3613 3614

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3615
      if (_cm->verbose_high()) {
3616 3617
        gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
                               (void*) obj);
3618
      }
3619

3620
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3621
      assert(!_g1h->is_on_master_free_list(
3622
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3623 3624 3625

      scan_object(obj);

3626
      if (_task_queue->size() <= target_size || has_aborted()) {
3627
        ret = false;
3628
      } else {
3629
        ret = _task_queue->pop_local(obj);
3630
      }
3631 3632
    }

3633
    if (_cm->verbose_high()) {
3634 3635
      gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
                             _task_id, _task_queue->size());
3636
    }
3637 3638 3639 3640
  }
}

void CMTask::drain_global_stack(bool partially) {
3641
  if (has_aborted()) return;
3642 3643 3644

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3645
  assert(partially || _task_queue->size() == 0, "invariant");
3646 3647 3648 3649 3650 3651 3652 3653

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3654
  if (partially) {
3655
    target_size = _cm->partial_mark_stack_size_target();
3656
  } else {
3657
    target_size = 0;
3658
  }
3659 3660

  if (_cm->mark_stack_size() > target_size) {
3661
    if (_cm->verbose_low()) {
3662 3663
      gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
                             _task_id, target_size);
3664
    }
3665 3666 3667 3668 3669 3670

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3671
    if (_cm->verbose_low()) {
3672 3673
      gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
                             _task_id, _cm->mark_stack_size());
3674
    }
3675 3676 3677 3678 3679 3680 3681 3682
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3683
  if (has_aborted()) return;
3684 3685 3686 3687 3688 3689 3690 3691 3692

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3693
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3694
    satb_mq_set.set_par_closure(_task_id, &oc);
3695
  } else {
3696
    satb_mq_set.set_closure(&oc);
3697
  }
3698 3699 3700

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3701
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3702 3703
    while (!has_aborted() &&
           satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3704
      if (_cm->verbose_medium()) {
3705
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3706
      }
3707 3708 3709 3710 3711 3712
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3713
      if (_cm->verbose_medium()) {
3714
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3715
      }
3716 3717 3718 3719 3720 3721 3722
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3723
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3724
      satb_mq_set.par_iterate_closure_all_threads(_task_id);
3725
    } else {
3726
      satb_mq_set.iterate_closure_all_threads();
3727
    }
3728 3729 3730 3731
  }

  _draining_satb_buffers = false;

3732 3733 3734
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3735

3736
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3737
    satb_mq_set.set_par_closure(_task_id, NULL);
3738
  } else {
3739
    satb_mq_set.set_closure(NULL);
3740
  }
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
  gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
                         _task_id, _calls);
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3775
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3834
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3846 3847 3848 3849 3850 3851
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
      (local queues, stacks, fingers etc.)  are re-initialised so that
      when do_marking_step() completes, the marking phase can
      immediately restart.
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

3888 3889 3890
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
3891 3892
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
3893 3894

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3895 3896 3897
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
  assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
3898

3899 3900
  assert(!_claimed,
         "only one thread should claim this task at any one time");
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
3923
  _has_timed_out = false;
3924 3925 3926 3927
  _draining_satb_buffers = false;

  ++_calls;

3928
  if (_cm->verbose_low()) {
3929 3930 3931
    gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
                           "target = %1.2lfms >>>>>>>>>>",
                           _task_id, _calls, _time_target_ms);
3932
  }
3933 3934 3935 3936 3937

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3938 3939
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
3940 3941

  if (_cm->has_overflown()) {
3942 3943 3944 3945
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
3961 3962
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

3978
      if (_cm->verbose_low()) {
3979 3980 3981 3982
        gclog_or_tty->print_cr("[%d] we're scanning part "
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
                               _task_id, _finger, _region_limit, _curr_region);
3983
      }
3984 3985 3986

      // Let's iterate over the bitmap of the part of the
      // region that is left.
3987
      if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3988 3989 3990 3991 3992
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
3993
        assert(has_aborted(), "currently the only way to do so");
3994 3995 3996 3997 3998
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
3999
        assert(_finger != NULL, "invariant");
4000 4001 4002 4003 4004 4005 4006 4007

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4008 4009 4010 4011
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4012
          giveup_current_region();
4013
        } else {
4014
          move_finger_to(new_finger);
4015
        }
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4033 4034 4035 4036
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4037
      if (_cm->verbose_low()) {
4038
        gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
4039
      }
4040 4041 4042 4043 4044
      HeapRegion* claimed_region = _cm->claim_region(_task_id);
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4045
        if (_cm->verbose_low()) {
4046 4047 4048
          gclog_or_tty->print_cr("[%d] we successfully claimed "
                                 "region "PTR_FORMAT,
                                 _task_id, claimed_region);
4049
        }
4050 4051

        setup_for_region(claimed_region);
4052
        assert(_curr_region == claimed_region, "invariant");
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4063 4064
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4065 4066 4067 4068 4069
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4070
    // tasks might be pushing objects to it concurrently.
4071 4072
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4073

4074
    if (_cm->verbose_low()) {
4075
      gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4076
    }
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4089
  if (do_stealing && !has_aborted()) {
4090 4091 4092 4093
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4094
    // tasks might be pushing objects to it concurrently.
4095 4096
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4097

4098
    if (_cm->verbose_low()) {
4099
      gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4100
    }
4101 4102 4103 4104 4105 4106

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

      if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4107
        if (_cm->verbose_medium()) {
4108 4109
          gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
                                 _task_id, (void*) obj);
4110
        }
4111 4112 4113

        statsOnly( ++_steals );

4114 4115
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4128 4129 4130 4131 4132 4133 4134 4135 4136
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4137 4138
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4139
  if (do_termination && !has_aborted()) {
4140
    // We cannot check whether the global stack is empty, since other
4141
    // tasks might be concurrently pushing objects on it.
4142 4143 4144
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4145

4146
    if (_cm->verbose_low()) {
4147
      gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4148
    }
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

      if (_task_id == 0) {
        // let's allow task 0 to do this
        if (concurrent()) {
4165
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4166 4167 4168 4169 4170 4171 4172 4173
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4174 4175 4176 4177 4178 4179 4180 4181
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4182

4183
      if (_cm->verbose_low()) {
4184
        gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4185
      }
4186 4187 4188 4189
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4190 4191 4192 4193
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] apparently there is more work to do",
                               _task_id);
      }
4194 4195 4196 4197 4198 4199 4200 4201 4202

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4203
  set_cm_oop_closure(NULL);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4214
    if (_has_timed_out) {
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4230
      if (_cm->verbose_low()) {
4231
        gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4232
      }
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

      _cm->enter_first_sync_barrier(_task_id);
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
      _cm->enter_second_sync_barrier(_task_id);
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4255
      if (_cm->has_aborted()) {
4256 4257
        gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
                               _task_id);
4258
      }
4259 4260
    }
  } else {
4261
    if (_cm->verbose_low()) {
4262 4263 4264
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4265
    }
4266 4267 4268 4269 4270 4271 4272
  }

  _claimed = false;
}

CMTask::CMTask(int task_id,
               ConcurrentMark* cm,
4273 4274
               size_t* marked_bytes,
               BitMap* card_bm,
4275 4276 4277 4278 4279 4280 4281 4282
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
    _task_id(task_id), _cm(cm),
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4283
    _cm_oop_closure(NULL),
4284 4285
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4286 4287
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4288 4289 4290 4291 4292 4293

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4348
                 HeapRegion::GrainBytes);
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4359 4360 4361 4362 4363 4364 4365 4366 4367
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4379
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}