soc-cache.c 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

M
Mark Brown 已提交
23 24
#ifdef CONFIG_SPI_MASTER
static int do_spi_write(void *control, const char *data, int len)
25
{
M
Mark Brown 已提交
26 27
	struct spi_device *spi = control;
	int ret;
28

M
Mark Brown 已提交
29 30 31
	ret = spi_write(spi, data, len);
	if (ret < 0)
		return ret;
32 33 34 35 36

	return len;
}
#endif

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value, const void *data, int len)
{
	int ret;

	if (!snd_soc_codec_volatile_register(codec, reg) &&
	    reg < codec->driver->reg_cache_size &&
	    !codec->cache_bypass) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, len);
	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

64
static unsigned int do_hw_read(struct snd_soc_codec *codec, unsigned int reg)
65
{
66 67
	int ret;
	unsigned int val;
68 69

	if (reg >= codec->driver->reg_cache_size ||
70 71 72 73
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
		if (codec->cache_only)
			return -1;
74

75 76
		BUG_ON(!codec->hw_read);
		return codec->hw_read(codec, reg);
77 78
	}

79 80 81 82
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
83 84
}

85
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
86
				      unsigned int reg)
87 88 89 90
{
	return do_hw_read(codec, reg);
}

91
static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
92
			      unsigned int value)
93
{
94
	u16 data;
95

96
	data = cpu_to_be16((reg << 12) | (value & 0xffffff));
97

98
	return do_hw_write(codec, reg, value, &data, 2);
99 100
}

101 102 103
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
104
	return do_hw_read(codec, reg);
105 106 107 108 109
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
110
	u16 data;
111

112
	data = cpu_to_be16((reg << 9) | (value & 0x1ff));
113

114
	return do_hw_write(codec, reg, value, &data, 2);
115 116
}

117 118 119 120 121
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

122 123
	reg &= 0xff;
	data[0] = reg;
124 125
	data[1] = value & 0xff;

126
	return do_hw_write(codec, reg, value, data, 2);
127 128 129 130 131
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
132
	return do_hw_read(codec, reg);
133 134
}

135 136 137 138
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];
139
	u16 val = cpu_to_be16(value);
140 141

	data[0] = reg;
142
	memcpy(&data[1], &val, sizeof(val));
143

144
	return do_hw_write(codec, reg, value, data, 3);
145 146 147 148 149
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
150
	return do_hw_read(codec, reg);
151 152
}

153
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
154 155 156
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
157 158 159 160 161 162 163 164
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
165 166
	xfer[0].len = reglen;
	xfer[0].buf = reg;
167 168 169 170

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
171 172
	xfer[1].len = datalen;
	xfer[1].buf = data;
173 174

	ret = i2c_transfer(client->adapter, xfer, 2);
175
	if (ret == 2)
176
		return 0;
177 178 179 180 181 182 183 184 185
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
186
					 unsigned int r)
187 188 189 190
{
	u8 reg = r;
	u8 data;
	int ret;
191

192 193 194
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
195 196 197 198 199 200
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
201
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
202 203 204 205 206 207 208
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

209 210
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
211 212 213 214 215 216
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
217

218 219 220 221 222 223 224 225
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

226 227
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
228 229 230 231 232 233 234 235
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
236
				      unsigned int reg)
237
{
238
	return do_hw_read(codec, reg);
239 240 241
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
242
			      unsigned int value)
243 244
{
	u8 data[3];
245
	u16 rval = cpu_to_be16(reg);
246

247
	memcpy(data, &rval, sizeof(rval));
248
	data[2] = value;
249

250
	return do_hw_write(codec, reg, value, data, 3);
251 252
}

253 254 255 256 257 258 259 260
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

261 262
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
263 264 265 266 267 268 269 270 271 272
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
273
	return do_hw_read(codec, reg);
274 275 276 277 278
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
279
	u16 data[2];
280

281 282
	data[0] = cpu_to_be16(reg);
	data[1] = cpu_to_be16(value);
283

284
	return do_hw_write(codec, reg, value, data, sizeof(data));
285
}
286

287 288 289 290 291
/* Primitive bulk write support for soc-cache.  The data pointed to by
 * `data' needs to already be in the form the hardware expects
 * including any leading register specific data.  Any data written
 * through this function will not go through the cache as it only
 * handles writing to volatile or out of bounds registers.
292 293 294 295 296 297
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

298 299 300 301
	/* To ensure that we don't get out of sync with the cache, check
	 * whether the base register is volatile or if we've directly asked
	 * to bypass the cache.  Out of bounds registers are considered
	 * volatile.
302
	 */
303 304
	if (!codec->cache_bypass
	    && !snd_soc_codec_volatile_register(codec, reg)
305 306 307 308
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
309
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
310 311 312
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
313 314
#endif
#if defined(CONFIG_SPI_MASTER)
315
	case SND_SOC_SPI:
316
		ret = spi_write(codec->control_data, data, len);
317
		break;
318
#endif
319 320 321 322 323 324 325 326 327 328 329 330
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

331 332 333
static struct {
	int addr_bits;
	int data_bits;
334
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
335
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
336
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
337
} io_types[] = {
338 339 340 341
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
	},
342 343 344 345 346 347 348
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
349
		.i2c_read = snd_soc_8_8_read_i2c,
350 351 352 353 354 355
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
	},
356 357 358 359 360
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
	},
361 362 363 364 365
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
	},
366 367 368 369 370 371 372 373
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
374
 * @control: Control bus used.
375 376 377 378 379 380 381 382 383 384 385 386 387
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
388 389
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

404 405
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
406
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
407

408 409 410 411 412
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
413
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
414 415
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
416 417
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
418 419 420 421

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
422 423 424
		break;

	case SND_SOC_SPI:
425
#ifdef CONFIG_SPI_MASTER
M
Mark Brown 已提交
426
		codec->hw_write = do_spi_write;
427
#endif
428 429 430 431

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
432 433 434
		break;
	}

435 436 437
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
466 467 468
	if (!base)
		return -1;

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

485
struct snd_soc_rbtree_node {
486 487 488 489 490
	struct rb_node node; /* the actual rbtree node holding this block */
	unsigned int base_reg; /* base register handled by this block */
	unsigned int word_size; /* number of bytes needed to represent the register index */
	void *block; /* block of adjacent registers */
	unsigned int blklen; /* number of registers available in the block */
491 492 493 494
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
495
	struct snd_soc_rbtree_node *cached_rbnode;
496 497
};

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static inline void snd_soc_rbtree_get_base_top_reg(
	struct snd_soc_rbtree_node *rbnode,
	unsigned int *base, unsigned int *top)
{
	*base = rbnode->base_reg;
	*top = rbnode->base_reg + rbnode->blklen - 1;
}

static unsigned int snd_soc_rbtree_get_register(
	struct snd_soc_rbtree_node *rbnode, unsigned int idx)
{
	unsigned int val;

	switch (rbnode->word_size) {
	case 1: {
		u8 *p = rbnode->block;
		val = p[idx];
		return val;
	}
	case 2: {
		u16 *p = rbnode->block;
		val = p[idx];
		return val;
	}
	default:
		BUG();
		break;
	}
	return -1;
}

static void snd_soc_rbtree_set_register(struct snd_soc_rbtree_node *rbnode,
					unsigned int idx, unsigned int val)
{
	switch (rbnode->word_size) {
	case 1: {
		u8 *p = rbnode->block;
		p[idx] = val;
		break;
	}
	case 2: {
		u16 *p = rbnode->block;
		p[idx] = val;
		break;
	}
	default:
		BUG();
		break;
	}
}

549 550 551 552 553
static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
554
	unsigned int base_reg, top_reg;
555 556 557 558

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
559 560
		snd_soc_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
		if (reg >= base_reg && reg <= top_reg)
561
			return rbnode;
562 563 564 565
		else if (reg > top_reg)
			node = node->rb_right;
		else if (reg < base_reg)
			node = node->rb_left;
566 567 568 569 570 571 572 573 574 575
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;
576 577
	unsigned int base_reg_tmp, top_reg_tmp;
	unsigned int base_reg;
578 579 580 581 582 583

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
584 585 586 587 588
		/* base and top registers of the current rbnode */
		snd_soc_rbtree_get_base_top_reg(rbnode_tmp, &base_reg_tmp,
						&top_reg_tmp);
		/* base register of the rbnode to be added */
		base_reg = rbnode->base_reg;
589
		parent = *new;
590 591 592
		/* if this register has already been inserted, just return */
		if (base_reg >= base_reg_tmp &&
		    base_reg <= top_reg_tmp)
593
			return 0;
594 595 596 597
		else if (base_reg > top_reg_tmp)
			new = &((*new)->rb_right);
		else if (base_reg < base_reg_tmp)
			new = &((*new)->rb_left);
598 599 600 601 602 603 604 605 606 607 608 609 610 611
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
612
	unsigned int regtmp;
613
	unsigned int val, def;
614
	int ret;
615
	int i;
616 617 618 619

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
620 621 622 623 624
		for (i = 0; i < rbnode->blklen; ++i) {
			regtmp = rbnode->base_reg + i;
			WARN_ON(codec->writable_register &&
				codec->writable_register(codec, regtmp));
			val = snd_soc_rbtree_get_register(rbnode, i);
625 626 627 628 629
			def = snd_soc_get_cache_val(codec->reg_def_copy, i,
						    rbnode->word_size);
			if (val == def)
				continue;

630 631 632 633 634 635 636 637
			codec->cache_bypass = 1;
			ret = snd_soc_write(codec, regtmp, val);
			codec->cache_bypass = 0;
			if (ret)
				return ret;
			dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
				regtmp, val);
		}
638 639 640 641 642
	}

	return 0;
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static int snd_soc_rbtree_insert_to_block(struct snd_soc_rbtree_node *rbnode,
					  unsigned int pos, unsigned int reg,
					  unsigned int value)
{
	u8 *blk;

	blk = krealloc(rbnode->block,
		       (rbnode->blklen + 1) * rbnode->word_size, GFP_KERNEL);
	if (!blk)
		return -ENOMEM;

	/* insert the register value in the correct place in the rbnode block */
	memmove(blk + (pos + 1) * rbnode->word_size,
		blk + pos * rbnode->word_size,
		(rbnode->blklen - pos) * rbnode->word_size);

	/* update the rbnode block, its size and the base register */
	rbnode->block = blk;
	rbnode->blklen++;
	if (!pos)
		rbnode->base_reg = reg;

	snd_soc_rbtree_set_register(rbnode, pos, value);
	return 0;
}

669 670 671 672
static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
673 674 675 676
	struct snd_soc_rbtree_node *rbnode, *rbnode_tmp;
	struct rb_node *node;
	unsigned int val;
	unsigned int reg_tmp;
677
	unsigned int base_reg, top_reg;
678 679 680
	unsigned int pos;
	int i;
	int ret;
681 682

	rbtree_ctx = codec->reg_cache;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	/* look up the required register in the cached rbnode */
	rbnode = rbtree_ctx->cached_rbnode;
	if (rbnode) {
		snd_soc_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
		if (reg >= base_reg && reg <= top_reg) {
			reg_tmp = reg - base_reg;
			val = snd_soc_rbtree_get_register(rbnode, reg_tmp);
			if (val == value)
				return 0;
			snd_soc_rbtree_set_register(rbnode, reg_tmp, value);
			return 0;
		}
	}
	/* if we can't locate it in the cached rbnode we'll have
	 * to traverse the rbtree looking for it.
	 */
699 700
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
701 702 703
		reg_tmp = reg - rbnode->base_reg;
		val = snd_soc_rbtree_get_register(rbnode, reg_tmp);
		if (val == value)
704
			return 0;
705
		snd_soc_rbtree_set_register(rbnode, reg_tmp, value);
706
		rbtree_ctx->cached_rbnode = rbnode;
707 708 709 710
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		/* look for an adjacent register to the one we are about to add */
		for (node = rb_first(&rbtree_ctx->root); node;
		     node = rb_next(node)) {
			rbnode_tmp = rb_entry(node, struct snd_soc_rbtree_node, node);
			for (i = 0; i < rbnode_tmp->blklen; ++i) {
				reg_tmp = rbnode_tmp->base_reg + i;
				if (abs(reg_tmp - reg) != 1)
					continue;
				/* decide where in the block to place our register */
				if (reg_tmp + 1 == reg)
					pos = i + 1;
				else
					pos = i;
				ret = snd_soc_rbtree_insert_to_block(rbnode_tmp, pos,
								     reg, value);
				if (ret)
					return ret;
728
				rbtree_ctx->cached_rbnode = rbnode_tmp;
729 730 731 732 733 734 735
				return 0;
			}
		}
		/* we did not manage to find a place to insert it in an existing
		 * block so create a new rbnode with a single register in its block.
		 * This block will get populated further if any other adjacent
		 * registers get modified in the future.
736 737 738 739
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
740 741 742 743 744 745 746 747 748 749
		rbnode->blklen = 1;
		rbnode->base_reg = reg;
		rbnode->word_size = codec->driver->reg_word_size;
		rbnode->block = kmalloc(rbnode->blklen * rbnode->word_size,
					GFP_KERNEL);
		if (!rbnode->block) {
			kfree(rbnode);
			return -ENOMEM;
		}
		snd_soc_rbtree_set_register(rbnode, 0, value);
750
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
751
		rbtree_ctx->cached_rbnode = rbnode;
752 753 754 755 756 757 758 759 760 761
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;
762
	unsigned int base_reg, top_reg;
763
	unsigned int reg_tmp;
764 765

	rbtree_ctx = codec->reg_cache;
766 767 768 769 770 771 772 773 774 775 776 777 778
	/* look up the required register in the cached rbnode */
	rbnode = rbtree_ctx->cached_rbnode;
	if (rbnode) {
		snd_soc_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
		if (reg >= base_reg && reg <= top_reg) {
			reg_tmp = reg - base_reg;
			*value = snd_soc_rbtree_get_register(rbnode, reg_tmp);
			return 0;
		}
	}
	/* if we can't locate it in the cached rbnode we'll have
	 * to traverse the rbtree looking for it.
	 */
779 780
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
781 782
		reg_tmp = reg - rbnode->base_reg;
		*value = snd_soc_rbtree_get_register(rbnode, reg_tmp);
783
		rbtree_ctx->cached_rbnode = rbnode;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
809
		kfree(rbtree_node->block);
810 811 812 813 814 815 816 817 818 819 820 821 822
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
823
	unsigned int word_size;
824
	unsigned int val;
825 826
	int i;
	int ret;
827 828 829 830 831 832 833

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;
834
	rbtree_ctx->cached_rbnode = NULL;
835

836
	if (!codec->reg_def_copy)
837 838
		return 0;

839 840
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
841 842
		val = snd_soc_get_cache_val(codec->reg_def_copy, i,
					    word_size);
843 844
		if (!val)
			continue;
845 846 847
		ret = snd_soc_rbtree_cache_write(codec, i, val);
		if (ret)
			goto err;
848 849 850
	}

	return 0;
851 852 853 854

err:
	snd_soc_cache_exit(codec);
	return ret;
855 856
}

857
#ifdef CONFIG_SND_SOC_CACHE_LZO
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
948
	const struct snd_soc_codec_driver *codec_drv;
949 950 951

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
952
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
953 954 955 956 957
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
958
	const struct snd_soc_codec_driver *codec_drv;
959 960

	codec_drv = codec->driver;
961
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
962 963 964 965 966
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
967
	const struct snd_soc_codec_driver *codec_drv;
968 969

	codec_drv = codec->driver;
970
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
971 972 973 974 975 976 977
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
978
	int ret;
979 980 981

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
982 983
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
984 985 986
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
987
		codec->cache_bypass = 1;
988
		ret = snd_soc_write(codec, i, val);
989
		codec->cache_bypass = 0;
990 991
		if (ret)
			return ret;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
1032 1033 1034 1035
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1089
	if (ret >= 0)
1090
		/* fetch the value from the cache */
1091 1092
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
1134
	size_t bmp_size;
1135
	const struct snd_soc_codec_driver *codec_drv;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1149
	if (!codec->reg_def_copy)
1150 1151
		tofree = 1;

1152
	if (!codec->reg_def_copy) {
1153
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1154
		if (!codec->reg_def_copy)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1174
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1175 1176 1177 1178 1179
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1180
	bitmap_zero(sync_bmp, bmp_size);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1192
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1193 1194 1195 1196 1197 1198 1199
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1200
	p = codec->reg_def_copy;
1201
	end = codec->reg_def_copy + codec->reg_size;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1217 1218 1219 1220
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1221 1222 1223 1224
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1225 1226 1227 1228
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1229 1230
	return ret;
}
1231
#endif
1232

1233 1234 1235
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1236
	int ret;
1237
	const struct snd_soc_codec_driver *codec_drv;
1238 1239 1240 1241
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1242 1243
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
1244 1245 1246
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1247 1248
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1249 1250
						  i, codec_drv->reg_word_size) == val)
				continue;
1251 1252 1253
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1254 1255 1256 1257 1258 1259 1260 1261 1262
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1263 1264
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1265 1266 1267 1268 1269 1270
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1271 1272
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1287
	const struct snd_soc_codec_driver *codec_drv;
1288 1289 1290

	codec_drv = codec->driver;

1291 1292
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1293
					   codec->reg_size, GFP_KERNEL);
1294
	else
1295
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1296 1297 1298 1299 1300 1301 1302 1303
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1304
	/* Flat *must* be the first entry for fallback */
1305
	{
1306
		.id = SND_SOC_FLAT_COMPRESSION,
1307
		.name = "flat",
1308 1309 1310 1311 1312
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1313
	},
1314
#ifdef CONFIG_SND_SOC_CACHE_LZO
1315 1316
	{
		.id = SND_SOC_LZO_COMPRESSION,
1317
		.name = "LZO",
1318 1319 1320 1321 1322
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1323
	},
1324
#endif
1325 1326
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1327
		.name = "rbtree",
1328 1329 1330 1331 1332
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1333 1334 1335 1336 1337 1338 1339 1340
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1341
		if (cache_types[i].id == codec->compress_type)
1342
			break;
1343 1344

	/* Fall back to flat compression */
1345
	if (i == ARRAY_SIZE(cache_types)) {
1346 1347 1348
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1349 1350 1351 1352 1353
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1354 1355 1356 1357
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1358
		return codec->cache_ops->init(codec);
1359
	}
1360
	return -ENOSYS;
1361 1362 1363 1364 1365 1366 1367 1368
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1369 1370 1371 1372
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1373
		return codec->cache_ops->exit(codec);
1374
	}
1375
	return -ENOSYS;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1399
	return -ENOSYS;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1424
	return -ENOSYS;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1440
	const char *name;
1441 1442 1443 1444 1445

	if (!codec->cache_sync) {
		return 0;
	}

1446
	if (!codec->cache_ops || !codec->cache_ops->sync)
1447
		return -ENOSYS;
1448

1449 1450 1451 1452 1453
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1463 1464
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

int snd_soc_default_writable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].write;
}
EXPORT_SYMBOL_GPL(snd_soc_default_writable_register);