soc-cache.c 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

23 24 25
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
26 27
	int ret;
	unsigned int val;
28 29

	if (reg >= codec->driver->reg_cache_size ||
30 31
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
32 33 34
			if (codec->cache_only)
				return -1;

35
			BUG_ON(!codec->hw_read);
36 37 38
			return codec->hw_read(codec, reg);
	}

39 40 41 42
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
43 44 45 46 47 48 49 50 51 52 53
}

static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
	int ret;

	data[0] = (reg << 4) | ((value >> 8) & 0x000f);
	data[1] = value & 0x00ff;

54
	if (!snd_soc_codec_volatile_register(codec, reg) &&
55 56
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
57 58 59 60
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
61

62 63
	if (codec->cache_only) {
		codec->cache_sync = 1;
64
		return 0;
65
	}
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	ret = codec->hw_write(codec->control_data, data, 2);
	if (ret == 2)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_4_12_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[1];
	msg[1] = data[0];

	spi_message_init(&m);
92
	memset(&t, 0, sizeof t);
93 94 95 96 97 98 99 100 101 102 103 104 105

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_4_12_spi_write NULL
#endif

106 107 108
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
109 110
	int ret;
	unsigned int val;
111 112

	if (reg >= codec->driver->reg_cache_size ||
113 114
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
115 116 117
			if (codec->cache_only)
				return -1;

118
			BUG_ON(!codec->hw_read);
119 120 121
			return codec->hw_read(codec, reg);
	}

122 123 124 125
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
126 127 128 129 130 131 132 133 134 135 136
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
	int ret;

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

137
	if (!snd_soc_codec_volatile_register(codec, reg) &&
138 139
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
140 141 142 143
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
144

145 146
	if (codec->cache_only) {
		codec->cache_sync = 1;
147
		return 0;
148
	}
149

150 151 152 153 154 155 156 157 158
	ret = codec->hw_write(codec->control_data, data, 2);
	if (ret == 2)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_7_9_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
175
	memset(&t, 0, sizeof t);
176 177 178 179 180 181 182 183 184 185 186 187 188

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_7_9_spi_write NULL
#endif

189 190 191 192
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
193
	int ret;
194

195 196
	reg &= 0xff;
	data[0] = reg;
197 198
	data[1] = value & 0xff;

199
	if (!snd_soc_codec_volatile_register(codec, reg) &&
200 201
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
202 203 204 205
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
206

207 208
	if (codec->cache_only) {
		codec->cache_sync = 1;
209
		return 0;
210
	}
211

212 213 214 215 216 217 218 219 220
	if (codec->hw_write(codec->control_data, data, 2) == 2)
		return 0;
	else
		return -EIO;
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
221 222
	int ret;
	unsigned int val;
223

224
	reg &= 0xff;
225
	if (reg >= codec->driver->reg_cache_size ||
226 227
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
228 229 230
			if (codec->cache_only)
				return -1;

231
			BUG_ON(!codec->hw_read);
232 233 234
			return codec->hw_read(codec, reg);
	}

235 236 237 238
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
257
	memset(&t, 0, sizeof t);
258 259 260 261 262 263 264 265 266 267 268 269 270

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_8_spi_write NULL
#endif

271 272 273 274
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];
275
	int ret;
276 277 278 279 280

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

281
	if (!snd_soc_codec_volatile_register(codec, reg) &&
282 283
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
284 285 286 287
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
288

289 290
	if (codec->cache_only) {
		codec->cache_sync = 1;
291
		return 0;
292
	}
293

294 295 296 297 298 299 300 301 302
	if (codec->hw_write(codec->control_data, data, 3) == 3)
		return 0;
	else
		return -EIO;
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
303 304
	int ret;
	unsigned int val;
305

306
	if (reg >= codec->driver->reg_cache_size ||
307 308
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
309
		if (codec->cache_only)
310
			return -1;
311

312
		BUG_ON(!codec->hw_read);
313
		return codec->hw_read(codec, reg);
314
	}
315 316 317 318 319

	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
320 321
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
339
	memset(&t, 0, sizeof t);
340 341 342 343 344 345 346 347 348 349 350 351 352

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_16_spi_write NULL
#endif

353
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
354 355 356
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
357 358 359 360 361 362 363 364
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
365 366
	xfer[0].len = reglen;
	xfer[0].buf = reg;
367 368 369 370

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
371 372
	xfer[1].len = datalen;
	xfer[1].buf = data;
373 374

	ret = i2c_transfer(client->adapter, xfer, 2);
375 376
	dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
	if (ret == 2)
377
		return 0;
378 379 380 381 382 383 384 385 386 387 388 389 390 391
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u8 data;
	int ret;
392

393 394 395
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
396 397 398 399 400 401
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
402
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
403 404 405 406 407 408 409
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

410 411
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
412 413 414 415 416 417
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
418

419 420 421 422 423 424 425 426
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

427 428
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
429 430 431 432 433 434 435 436 437 438
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
439 440
	int ret;
	unsigned int val;
441 442

	reg &= 0xff;
443
	if (reg >= codec->driver->reg_cache_size ||
444 445
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
446 447 448
			if (codec->cache_only)
				return -1;

449
			BUG_ON(!codec->hw_read);
450 451 452
			return codec->hw_read(codec, reg);
	}

453 454 455 456
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
457 458 459 460 461 462 463 464 465 466 467 468 469
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[3];
	int ret;

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;

	reg &= 0xff;
470
	if (!snd_soc_codec_volatile_register(codec, reg) &&
471 472
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
473 474 475 476
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
477

478 479
	if (codec->cache_only) {
		codec->cache_sync = 1;
480
		return 0;
481
	}
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	ret = codec->hw_write(codec->control_data, data, 3);
	if (ret == 3)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
509
	memset(&t, 0, sizeof t);
510 511 512 513 514 515 516 517 518 519 520 521 522

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_8_spi_write NULL
#endif

523 524 525 526 527 528 529 530
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

531 532
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
533 534 535 536 537 538 539 540 541 542
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
543 544
	int ret;
	unsigned int val;
545

546
	if (reg >= codec->driver->reg_cache_size ||
547 548
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
549
		if (codec->cache_only)
550
			return -1;
551

552
		BUG_ON(!codec->hw_read);
553 554 555
		return codec->hw_read(codec, reg);
	}

556 557 558 559 560
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;

	return val;
561 562 563 564 565 566 567 568 569 570 571 572 573
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];
	int ret;

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

574
	if (!snd_soc_codec_volatile_register(codec, reg) &&
575 576
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
577 578 579 580
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
581 582 583 584 585 586 587 588 589 590 591 592 593 594

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, 4);
	if (ret == 4)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[4];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];
	msg[3] = data[3];

	spi_message_init(&m);
614
	memset(&t, 0, sizeof t);
615 616 617 618 619 620 621 622 623 624 625 626 627

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_16_spi_write NULL
#endif

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/* Primitive bulk write support for soc-cache.  The data pointed to by `data' needs
 * to already be in the form the hardware expects including any leading register specific
 * data.  Any data written through this function will not go through the cache as it
 * only handles writing to volatile or out of bounds registers.
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

	/* Ensure that the base register is volatile.  Subsequently
	 * any other register that is touched by this routine should be
	 * volatile as well to ensure that we don't get out of sync with
	 * the cache.
	 */
	if (!snd_soc_codec_volatile_register(codec, reg)
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
	case SND_SOC_SPI:
		ret = do_spi_write(codec->control_data, data, len);
		break;
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

666 667 668
static struct {
	int addr_bits;
	int data_bits;
669
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
670
	int (*spi_write)(void *, const char *, int);
671
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
672
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
673
} io_types[] = {
674 675 676 677 678
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
		.spi_write = snd_soc_4_12_spi_write,
	},
679 680 681
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
682
		.spi_write = snd_soc_7_9_spi_write,
683 684 685 686
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
687
		.i2c_read = snd_soc_8_8_read_i2c,
688
		.spi_write = snd_soc_8_8_spi_write,
689 690 691 692 693
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
694
		.spi_write = snd_soc_8_16_spi_write,
695
	},
696 697 698 699 700 701
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
		.spi_write = snd_soc_16_8_spi_write,
	},
702 703 704 705
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
706
		.spi_write = snd_soc_16_16_spi_write,
707
	},
708 709 710 711 712 713 714 715 716
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @type: Type of cache.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
717
 * @control: Control bus used.
718 719 720 721 722 723 724 725 726 727 728 729 730
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
731 732
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
733 734 735 736 737 738 739 740 741 742 743 744 745 746
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

747 748
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
749
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
750

751 752 753 754 755
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
756
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
757 758
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
759 760
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
761 762 763 764

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
765 766 767
		break;

	case SND_SOC_SPI:
768 769
		if (io_types[i].spi_write)
			codec->hw_write = io_types[i].spi_write;
770 771 772 773

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
774 775 776
		break;
	}

777 778 779
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
888
	int ret;
889 890 891 892 893 894

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
895 896 897
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
898
		codec->cache_bypass = 1;
899
		ret = snd_soc_write(codec, rbnode->reg, val);
900
		codec->cache_bypass = 0;
901 902
		if (ret)
			return ret;
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
989
	struct snd_soc_rbtree_node *rbtree_node;
990
	struct snd_soc_rbtree_ctx *rbtree_ctx;
991 992 993 994
	unsigned int val;
	unsigned int word_size;
	int i;
	int ret;
995 996 997 998 999 1000 1001 1002

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

1003
	if (!codec->reg_def_copy)
1004 1005
		return 0;

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	/*
	 * populate the rbtree with the initialized registers.  All other
	 * registers will be inserted when they are first modified.
	 */
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
		val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
		if (!val)
			continue;
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
		if (!rbtree_node) {
			ret = -ENOMEM;
			snd_soc_cache_exit(codec);
			break;
		}
		rbtree_node->reg = i;
		rbtree_node->value = val;
		rbtree_node->defval = val;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
1025 1026 1027 1028 1029
	}

	return 0;
}

1030
#ifdef CONFIG_SND_SOC_CACHE_LZO
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
1121
	const struct snd_soc_codec_driver *codec_drv;
1122 1123 1124

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
1125
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1126 1127 1128 1129 1130
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
1131
	const struct snd_soc_codec_driver *codec_drv;
1132 1133

	codec_drv = codec->driver;
1134
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
1135 1136 1137 1138 1139
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
1140
	const struct snd_soc_codec_driver *codec_drv;
1141 1142

	codec_drv = codec->driver;
1143
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1144 1145 1146 1147 1148 1149 1150
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
1151
	int ret;
1152 1153 1154

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
1155 1156 1157
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1158
		codec->cache_bypass = 1;
1159
		ret = snd_soc_write(codec, i, val);
1160
		codec->cache_bypass = 0;
1161 1162
		if (ret)
			return ret;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
1203 1204 1205 1206
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1260
	if (ret >= 0)
1261
		/* fetch the value from the cache */
1262 1263
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
1305
	size_t bmp_size;
1306
	const struct snd_soc_codec_driver *codec_drv;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1320
	if (!codec->reg_def_copy)
1321 1322
		tofree = 1;

1323
	if (!codec->reg_def_copy) {
1324
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1325
		if (!codec->reg_def_copy)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1345
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1346 1347 1348 1349 1350
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1351
	bitmap_zero(sync_bmp, bmp_size);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1363
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1364 1365 1366 1367 1368 1369 1370
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1371
	p = codec->reg_def_copy;
1372
	end = codec->reg_def_copy + codec->reg_size;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1388 1389 1390 1391
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1392 1393 1394 1395
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1396 1397 1398 1399
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1400 1401
	return ret;
}
1402
#endif
1403

1404 1405 1406
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1407
	int ret;
1408
	const struct snd_soc_codec_driver *codec_drv;
1409 1410 1411 1412
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1413 1414 1415
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1416 1417
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1418 1419
						  i, codec_drv->reg_word_size) == val)
				continue;
1420 1421 1422
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1423 1424 1425 1426 1427 1428 1429 1430 1431
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1432 1433
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1434 1435 1436 1437 1438 1439
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1440 1441
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1456
	const struct snd_soc_codec_driver *codec_drv;
1457 1458 1459

	codec_drv = codec->driver;

1460 1461
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1462
					   codec->reg_size, GFP_KERNEL);
1463
	else
1464
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1465 1466 1467 1468 1469 1470 1471 1472
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1473
	/* Flat *must* be the first entry for fallback */
1474
	{
1475
		.id = SND_SOC_FLAT_COMPRESSION,
1476
		.name = "flat",
1477 1478 1479 1480 1481
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1482
	},
1483
#ifdef CONFIG_SND_SOC_CACHE_LZO
1484 1485
	{
		.id = SND_SOC_LZO_COMPRESSION,
1486
		.name = "LZO",
1487 1488 1489 1490 1491
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1492
	},
1493
#endif
1494 1495
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1496
		.name = "rbtree",
1497 1498 1499 1500 1501
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1502 1503 1504 1505 1506 1507 1508 1509
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1510
		if (cache_types[i].id == codec->compress_type)
1511
			break;
1512 1513

	/* Fall back to flat compression */
1514
	if (i == ARRAY_SIZE(cache_types)) {
1515 1516 1517
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1518 1519 1520 1521 1522
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1523 1524 1525 1526
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1527
		return codec->cache_ops->init(codec);
1528
	}
1529 1530 1531 1532 1533 1534 1535 1536 1537
	return -EINVAL;
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1538 1539 1540 1541
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1542
		return codec->cache_ops->exit(codec);
1543
	}
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	return -EINVAL;
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1609
	const char *name;
1610 1611 1612 1613 1614

	if (!codec->cache_sync) {
		return 0;
	}

1615 1616 1617
	if (!codec->cache_ops || !codec->cache_ops->sync)
		return -EINVAL;

1618 1619 1620 1621 1622
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1623 1624 1625 1626 1627 1628 1629 1630 1631
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1632 1633
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);