soc-cache.c 36.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22 23
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
24 25
	int ret;
	unsigned int val;
26 27

	if (reg >= codec->driver->reg_cache_size ||
28 29
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
30 31 32
			if (codec->cache_only)
				return -1;

33
			BUG_ON(!codec->hw_read);
34 35 36
			return codec->hw_read(codec, reg);
	}

37 38 39 40
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
41 42 43 44 45 46 47 48 49 50 51
}

static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
	int ret;

	data[0] = (reg << 4) | ((value >> 8) & 0x000f);
	data[1] = value & 0x00ff;

52
	if (!snd_soc_codec_volatile_register(codec, reg) &&
53 54
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
55 56 57 58
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
59

60 61
	if (codec->cache_only) {
		codec->cache_sync = 1;
62
		return 0;
63
	}
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	ret = codec->hw_write(codec->control_data, data, 2);
	if (ret == 2)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_4_12_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[1];
	msg[1] = data[0];

	spi_message_init(&m);
90
	memset(&t, 0, sizeof t);
91 92 93 94 95 96 97 98 99 100 101 102 103

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_4_12_spi_write NULL
#endif

104 105 106
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
107 108
	int ret;
	unsigned int val;
109 110

	if (reg >= codec->driver->reg_cache_size ||
111 112
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
113 114 115
			if (codec->cache_only)
				return -1;

116
			BUG_ON(!codec->hw_read);
117 118 119
			return codec->hw_read(codec, reg);
	}

120 121 122 123
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
124 125 126 127 128 129 130 131 132 133 134
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
	int ret;

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

135
	if (!snd_soc_codec_volatile_register(codec, reg) &&
136 137
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
138 139 140 141
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
142

143 144
	if (codec->cache_only) {
		codec->cache_sync = 1;
145
		return 0;
146
	}
147

148 149 150 151 152 153 154 155 156
	ret = codec->hw_write(codec->control_data, data, 2);
	if (ret == 2)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_7_9_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
173
	memset(&t, 0, sizeof t);
174 175 176 177 178 179 180 181 182 183 184 185 186

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_7_9_spi_write NULL
#endif

187 188 189 190
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
191
	int ret;
192

193 194
	reg &= 0xff;
	data[0] = reg;
195 196
	data[1] = value & 0xff;

197
	if (!snd_soc_codec_volatile_register(codec, reg) &&
198 199
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
200 201 202 203
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
204

205 206
	if (codec->cache_only) {
		codec->cache_sync = 1;
207
		return 0;
208
	}
209

210 211 212 213 214 215 216 217 218
	if (codec->hw_write(codec->control_data, data, 2) == 2)
		return 0;
	else
		return -EIO;
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
219 220
	int ret;
	unsigned int val;
221

222
	reg &= 0xff;
223
	if (reg >= codec->driver->reg_cache_size ||
224 225
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
226 227 228
			if (codec->cache_only)
				return -1;

229
			BUG_ON(!codec->hw_read);
230 231 232
			return codec->hw_read(codec, reg);
	}

233 234 235 236
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
255
	memset(&t, 0, sizeof t);
256 257 258 259 260 261 262 263 264 265 266 267 268

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_8_spi_write NULL
#endif

269 270 271 272
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];
273
	int ret;
274 275 276 277 278

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

279
	if (!snd_soc_codec_volatile_register(codec, reg) &&
280 281
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
282 283 284 285
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
286

287 288
	if (codec->cache_only) {
		codec->cache_sync = 1;
289
		return 0;
290
	}
291

292 293 294 295 296 297 298 299 300
	if (codec->hw_write(codec->control_data, data, 3) == 3)
		return 0;
	else
		return -EIO;
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
301 302
	int ret;
	unsigned int val;
303

304
	if (reg >= codec->driver->reg_cache_size ||
305 306
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
307
		if (codec->cache_only)
308
			return -1;
309

310
		BUG_ON(!codec->hw_read);
311
		return codec->hw_read(codec, reg);
312
	}
313 314 315 316 317

	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
337
	memset(&t, 0, sizeof t);
338 339 340 341 342 343 344 345 346 347 348 349 350

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_16_spi_write NULL
#endif

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	struct i2c_msg xfer[2];
	u8 reg = r;
	u8 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 1;
	xfer[0].buf = &reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 1;
	xfer[1].buf = &data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
385
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	struct i2c_msg xfer[2];
	u8 reg = r;
	u16 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 1;
	xfer[0].buf = &reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 2;
	xfer[1].buf = (u8 *)&data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	struct i2c_msg xfer[2];
	u16 reg = r;
	u8 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 2;
	xfer[0].buf = (u8 *)&reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 1;
	xfer[1].buf = &data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
456 457
	int ret;
	unsigned int val;
458 459

	reg &= 0xff;
460
	if (reg >= codec->driver->reg_cache_size ||
461 462
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
463 464 465
			if (codec->cache_only)
				return -1;

466
			BUG_ON(!codec->hw_read);
467 468 469
			return codec->hw_read(codec, reg);
	}

470 471 472 473
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
474 475 476 477 478 479 480 481 482 483 484 485 486
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[3];
	int ret;

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;

	reg &= 0xff;
487
	if (!snd_soc_codec_volatile_register(codec, reg) &&
488 489
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
490 491 492 493
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
494

495 496
	if (codec->cache_only) {
		codec->cache_sync = 1;
497
		return 0;
498
	}
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	ret = codec->hw_write(codec->control_data, data, 3);
	if (ret == 3)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
526
	memset(&t, 0, sizeof t);
527 528 529 530 531 532 533 534 535 536 537 538 539

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_8_spi_write NULL
#endif

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	struct i2c_msg xfer[2];
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 2;
	xfer[0].buf = (u8 *)&reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 2;
	xfer[1].buf = (u8 *)&data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
577 578
	int ret;
	unsigned int val;
579

580
	if (reg >= codec->driver->reg_cache_size ||
581 582
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
583
		if (codec->cache_only)
584
			return -1;
585

586
		BUG_ON(!codec->hw_read);
587 588 589
		return codec->hw_read(codec, reg);
	}

590 591 592 593 594
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;

	return val;
595 596 597 598 599 600 601 602 603 604 605 606 607
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];
	int ret;

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

608
	if (!snd_soc_codec_volatile_register(codec, reg) &&
609 610
		reg < codec->driver->reg_cache_size &&
		!codec->cache_bypass) {
611 612 613 614
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
615 616 617 618 619 620 621 622 623 624 625 626 627 628

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, 4);
	if (ret == 4)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[4];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];
	msg[3] = data[3];

	spi_message_init(&m);
648
	memset(&t, 0, sizeof t);
649 650 651 652 653 654 655 656 657 658 659 660 661

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_16_spi_write NULL
#endif

662 663 664
static struct {
	int addr_bits;
	int data_bits;
665
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
666
	int (*spi_write)(void *, const char *, int);
667
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
668
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
669
} io_types[] = {
670 671 672 673 674
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
		.spi_write = snd_soc_4_12_spi_write,
	},
675 676 677
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
678
		.spi_write = snd_soc_7_9_spi_write,
679 680 681 682
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
683
		.i2c_read = snd_soc_8_8_read_i2c,
684
		.spi_write = snd_soc_8_8_spi_write,
685 686 687 688 689
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
690
		.spi_write = snd_soc_8_16_spi_write,
691
	},
692 693 694 695 696 697
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
		.spi_write = snd_soc_16_8_spi_write,
	},
698 699 700 701
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
702
		.spi_write = snd_soc_16_16_spi_write,
703
	},
704 705 706 707 708 709 710 711 712
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @type: Type of cache.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
713
 * @control: Control bus used.
714 715 716 717 718 719 720 721 722 723 724 725 726
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
727 728
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
729 730 731 732 733 734 735 736 737 738 739 740 741 742
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

743 744
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
745

746 747 748 749 750
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
751
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
752 753
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
754 755
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
756 757 758 759

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
760 761 762
		break;

	case SND_SOC_SPI:
763 764
		if (io_types[i].spi_write)
			codec->hw_write = io_types[i].spi_write;
765 766 767 768

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
769 770 771
		break;
	}

772 773 774
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
883
	int ret;
884 885 886 887 888 889

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
890 891 892
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
893
		codec->cache_bypass = 1;
894
		ret = snd_soc_write(codec, rbnode->reg, val);
895
		codec->cache_bypass = 0;
896 897
		if (ret)
			return ret;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
984
	struct snd_soc_rbtree_node *rbtree_node;
985
	struct snd_soc_rbtree_ctx *rbtree_ctx;
986 987 988 989
	unsigned int val;
	unsigned int word_size;
	int i;
	int ret;
990 991 992 993 994 995 996 997

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

998
	if (!codec->reg_def_copy)
999 1000
		return 0;

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	/*
	 * populate the rbtree with the initialized registers.  All other
	 * registers will be inserted when they are first modified.
	 */
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
		val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
		if (!val)
			continue;
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
		if (!rbtree_node) {
			ret = -ENOMEM;
			snd_soc_cache_exit(codec);
			break;
		}
		rbtree_node->reg = i;
		rbtree_node->value = val;
		rbtree_node->defval = val;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
1020 1021 1022 1023 1024
	}

	return 0;
}

1025
#ifdef CONFIG_SND_SOC_CACHE_LZO
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
1116
	const struct snd_soc_codec_driver *codec_drv;
1117 1118 1119

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
1120
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1121 1122 1123 1124 1125
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
1126
	const struct snd_soc_codec_driver *codec_drv;
1127 1128

	codec_drv = codec->driver;
1129
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
1130 1131 1132 1133 1134
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
1135
	const struct snd_soc_codec_driver *codec_drv;
1136 1137

	codec_drv = codec->driver;
1138
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1139 1140 1141 1142 1143 1144 1145
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
1146
	int ret;
1147 1148 1149

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
1150 1151 1152
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1153
		codec->cache_bypass = 1;
1154
		ret = snd_soc_write(codec, i, val);
1155
		codec->cache_bypass = 0;
1156 1157
		if (ret)
			return ret;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
1198 1199 1200 1201
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1255
	if (ret >= 0)
1256
		/* fetch the value from the cache */
1257 1258
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
1300
	size_t bmp_size;
1301
	const struct snd_soc_codec_driver *codec_drv;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1315
	if (!codec->reg_def_copy)
1316 1317
		tofree = 1;

1318
	if (!codec->reg_def_copy) {
1319
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1320
		if (!codec->reg_def_copy)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1340
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1341 1342 1343 1344 1345
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1346
	bitmap_zero(sync_bmp, bmp_size);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1358
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1359 1360 1361 1362 1363 1364 1365
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1366
	p = codec->reg_def_copy;
1367
	end = codec->reg_def_copy + codec->reg_size;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1383 1384 1385 1386
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1387 1388 1389 1390
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1391 1392 1393 1394
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1395 1396
	return ret;
}
1397
#endif
1398

1399 1400 1401
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1402
	int ret;
1403
	const struct snd_soc_codec_driver *codec_drv;
1404 1405 1406 1407
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1408 1409 1410
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1411 1412
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1413 1414
						  i, codec_drv->reg_word_size) == val)
				continue;
1415 1416 1417
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1418 1419 1420 1421 1422 1423 1424 1425 1426
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1427 1428
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1429 1430 1431 1432 1433 1434
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1435 1436
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1451
	const struct snd_soc_codec_driver *codec_drv;
1452 1453 1454

	codec_drv = codec->driver;

1455 1456
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1457
					   codec->reg_size, GFP_KERNEL);
1458
	else
1459
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1460 1461 1462 1463 1464 1465 1466 1467
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1468
	/* Flat *must* be the first entry for fallback */
1469
	{
1470
		.id = SND_SOC_FLAT_COMPRESSION,
1471
		.name = "flat",
1472 1473 1474 1475 1476
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1477
	},
1478
#ifdef CONFIG_SND_SOC_CACHE_LZO
1479 1480
	{
		.id = SND_SOC_LZO_COMPRESSION,
1481
		.name = "LZO",
1482 1483 1484 1485 1486
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1487
	},
1488
#endif
1489 1490
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1491
		.name = "rbtree",
1492 1493 1494 1495 1496
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1497 1498 1499 1500 1501 1502 1503 1504
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1505
		if (cache_types[i].id == codec->compress_type)
1506
			break;
1507 1508

	/* Fall back to flat compression */
1509
	if (i == ARRAY_SIZE(cache_types)) {
1510 1511 1512
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1513 1514 1515 1516 1517
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1518 1519 1520 1521
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1522
		return codec->cache_ops->init(codec);
1523
	}
1524 1525 1526 1527 1528 1529 1530 1531 1532
	return -EINVAL;
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1533 1534 1535 1536
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1537
		return codec->cache_ops->exit(codec);
1538
	}
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	return -EINVAL;
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;

	if (!codec->cache_sync) {
		return 0;
	}

	if (codec->cache_ops && codec->cache_ops->sync) {
1610 1611 1612
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1613 1614 1615 1616 1617 1618 1619 1620 1621
		ret = codec->cache_ops->sync(codec);
		if (!ret)
			codec->cache_sync = 0;
		return ret;
	}

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);