soc-cache.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value, const void *data, int len)
{
	int ret;

	if (!snd_soc_codec_volatile_register(codec, reg) &&
	    reg < codec->driver->reg_cache_size &&
	    !codec->cache_bypass) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, len);
	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

50
static unsigned int do_hw_read(struct snd_soc_codec *codec, unsigned int reg)
51
{
52 53
	int ret;
	unsigned int val;
54 55

	if (reg >= codec->driver->reg_cache_size ||
56 57 58 59
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
		if (codec->cache_only)
			return -1;
60

61 62
		BUG_ON(!codec->hw_read);
		return codec->hw_read(codec, reg);
63 64
	}

65 66 67 68
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
69 70
}

71
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
72
				      unsigned int reg)
73 74 75 76
{
	return do_hw_read(codec, reg);
}

77
static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
78
			      unsigned int value)
79
{
80
	u16 data;
81

82
	data = cpu_to_be16((reg << 12) | (value & 0xffffff));
83

84
	return do_hw_write(codec, reg, value, &data, 2);
85 86
}

87 88 89
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
90
	return do_hw_read(codec, reg);
91 92 93 94 95 96 97 98 99 100
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

101
	return do_hw_write(codec, reg, value, data, 2);
102 103
}

104 105 106 107 108
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

109 110
	reg &= 0xff;
	data[0] = reg;
111 112
	data[1] = value & 0xff;

113
	return do_hw_write(codec, reg, value, data, 2);
114 115 116 117 118
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
119
	return do_hw_read(codec, reg);
120 121
}

122 123 124 125 126 127 128 129 130
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

131
	return do_hw_write(codec, reg, value, data, 3);
132 133 134 135 136
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
137
	return do_hw_read(codec, reg);
138 139
}

140
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
141 142 143
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
144 145 146 147 148 149 150 151
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
152 153
	xfer[0].len = reglen;
	xfer[0].buf = reg;
154 155 156 157

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
158 159
	xfer[1].len = datalen;
	xfer[1].buf = data;
160 161

	ret = i2c_transfer(client->adapter, xfer, 2);
162
	if (ret == 2)
163
		return 0;
164 165 166 167 168 169 170 171 172
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
173
					 unsigned int r)
174 175 176 177
{
	u8 reg = r;
	u8 data;
	int ret;
178

179 180 181
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
182 183 184 185 186 187
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
188
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
189 190 191 192 193 194 195
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

196 197
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
198 199 200 201 202 203
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
204

205 206 207 208 209 210 211 212
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

213 214
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
215 216 217 218 219 220 221 222
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
223
				      unsigned int reg)
224
{
225
	return do_hw_read(codec, reg);
226 227 228
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
229
			      unsigned int value)
230 231 232 233 234 235
{
	u8 data[3];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;
236

237
	return do_hw_write(codec, reg, value, data, 3);
238 239
}

240 241 242 243 244 245 246 247
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

248 249
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
250 251 252 253 254 255 256 257 258 259
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
260
	return do_hw_read(codec, reg);
261 262 263 264 265 266 267 268 269 270 271 272
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

273
	return do_hw_write(codec, reg, value, data, 4);
274
}
275

276 277 278 279 280
/* Primitive bulk write support for soc-cache.  The data pointed to by
 * `data' needs to already be in the form the hardware expects
 * including any leading register specific data.  Any data written
 * through this function will not go through the cache as it only
 * handles writing to volatile or out of bounds registers.
281 282 283 284 285 286
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

287 288 289 290
	/* To ensure that we don't get out of sync with the cache, check
	 * whether the base register is volatile or if we've directly asked
	 * to bypass the cache.  Out of bounds registers are considered
	 * volatile.
291
	 */
292 293
	if (!codec->cache_bypass
	    && !snd_soc_codec_volatile_register(codec, reg)
294 295 296 297
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
298
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
299 300 301
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
302 303
#endif
#if defined(CONFIG_SPI_MASTER)
304
	case SND_SOC_SPI:
305
		ret = spi_write(codec->control_data, data, len);
306
		break;
307
#endif
308 309 310 311 312 313 314 315 316 317 318 319
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

320 321 322
static struct {
	int addr_bits;
	int data_bits;
323
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
324
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
325
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
326
} io_types[] = {
327 328 329 330
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
	},
331 332 333 334 335 336 337
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
338
		.i2c_read = snd_soc_8_8_read_i2c,
339 340 341 342 343 344
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
	},
345 346 347 348 349
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
	},
350 351 352 353 354
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
	},
355 356 357 358 359 360 361 362
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
363
 * @control: Control bus used.
364 365 366 367 368 369 370 371 372 373 374 375 376
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
377 378
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

393 394
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
395
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
396

397 398 399 400 401
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
402
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
403 404
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
405 406
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
407 408 409 410

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
411 412 413
		break;

	case SND_SOC_SPI:
414 415 416
#ifdef CONFIG_SPI_MASTER
		codec->hw_write = (hw_write_t)spi_write;
#endif
417 418 419 420

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
421 422 423
		break;
	}

424 425 426
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
535
	int ret;
536 537 538 539 540 541

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
542 543
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, rbnode->reg));
544 545 546
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
547
		codec->cache_bypass = 1;
548
		ret = snd_soc_write(codec, rbnode->reg, val);
549
		codec->cache_bypass = 0;
550 551
		if (ret)
			return ret;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
638
	struct snd_soc_rbtree_node *rbtree_node;
639
	struct snd_soc_rbtree_ctx *rbtree_ctx;
640 641 642 643
	unsigned int val;
	unsigned int word_size;
	int i;
	int ret;
644 645 646 647 648 649 650 651

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

652
	if (!codec->reg_def_copy)
653 654
		return 0;

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	/*
	 * populate the rbtree with the initialized registers.  All other
	 * registers will be inserted when they are first modified.
	 */
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
		val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
		if (!val)
			continue;
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
		if (!rbtree_node) {
			ret = -ENOMEM;
			snd_soc_cache_exit(codec);
			break;
		}
		rbtree_node->reg = i;
		rbtree_node->value = val;
		rbtree_node->defval = val;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
674 675 676 677 678
	}

	return 0;
}

679
#ifdef CONFIG_SND_SOC_CACHE_LZO
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
770
	const struct snd_soc_codec_driver *codec_drv;
771 772 773

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
774
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
775 776 777 778 779
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
780
	const struct snd_soc_codec_driver *codec_drv;
781 782

	codec_drv = codec->driver;
783
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
784 785 786 787 788
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
789
	const struct snd_soc_codec_driver *codec_drv;
790 791

	codec_drv = codec->driver;
792
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
793 794 795 796 797 798 799
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
800
	int ret;
801 802 803

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
804 805
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
806 807 808
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
809
		codec->cache_bypass = 1;
810
		ret = snd_soc_write(codec, i, val);
811
		codec->cache_bypass = 0;
812 813
		if (ret)
			return ret;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
854 855 856 857
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
911
	if (ret >= 0)
912
		/* fetch the value from the cache */
913 914
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
956
	size_t bmp_size;
957
	const struct snd_soc_codec_driver *codec_drv;
958 959 960 961 962 963 964 965 966 967 968 969 970
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
971
	if (!codec->reg_def_copy)
972 973
		tofree = 1;

974
	if (!codec->reg_def_copy) {
975
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
976
		if (!codec->reg_def_copy)
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
996
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
997 998 999 1000 1001
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1002
	bitmap_zero(sync_bmp, bmp_size);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1014
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1015 1016 1017 1018 1019 1020 1021
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1022
	p = codec->reg_def_copy;
1023
	end = codec->reg_def_copy + codec->reg_size;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1039 1040 1041 1042
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1043 1044 1045 1046
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1047 1048 1049 1050
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1051 1052
	return ret;
}
1053
#endif
1054

1055 1056 1057
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1058
	int ret;
1059
	const struct snd_soc_codec_driver *codec_drv;
1060 1061 1062 1063
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1064 1065
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
1066 1067 1068
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1069 1070
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1071 1072
						  i, codec_drv->reg_word_size) == val)
				continue;
1073 1074 1075
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1076 1077 1078 1079 1080 1081 1082 1083 1084
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1085 1086
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1087 1088 1089 1090 1091 1092
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1093 1094
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1109
	const struct snd_soc_codec_driver *codec_drv;
1110 1111 1112

	codec_drv = codec->driver;

1113 1114
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1115
					   codec->reg_size, GFP_KERNEL);
1116
	else
1117
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1118 1119 1120 1121 1122 1123 1124 1125
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1126
	/* Flat *must* be the first entry for fallback */
1127
	{
1128
		.id = SND_SOC_FLAT_COMPRESSION,
1129
		.name = "flat",
1130 1131 1132 1133 1134
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1135
	},
1136
#ifdef CONFIG_SND_SOC_CACHE_LZO
1137 1138
	{
		.id = SND_SOC_LZO_COMPRESSION,
1139
		.name = "LZO",
1140 1141 1142 1143 1144
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1145
	},
1146
#endif
1147 1148
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1149
		.name = "rbtree",
1150 1151 1152 1153 1154
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1155 1156 1157 1158 1159 1160 1161 1162
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1163
		if (cache_types[i].id == codec->compress_type)
1164
			break;
1165 1166

	/* Fall back to flat compression */
1167
	if (i == ARRAY_SIZE(cache_types)) {
1168 1169 1170
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1171 1172 1173 1174 1175
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1176 1177 1178 1179
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1180
		return codec->cache_ops->init(codec);
1181
	}
1182
	return -ENOSYS;
1183 1184 1185 1186 1187 1188 1189 1190
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1191 1192 1193 1194
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1195
		return codec->cache_ops->exit(codec);
1196
	}
1197
	return -ENOSYS;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1221
	return -ENOSYS;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1246
	return -ENOSYS;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1262
	const char *name;
1263 1264 1265 1266 1267

	if (!codec->cache_sync) {
		return 0;
	}

1268
	if (!codec->cache_ops || !codec->cache_ops->sync)
1269
		return -ENOSYS;
1270

1271 1272 1273 1274 1275
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1285 1286
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

int snd_soc_default_writable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].write;
}
EXPORT_SYMBOL_GPL(snd_soc_default_writable_register);