soc-cache.c 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value, const void *data, int len)
{
	int ret;

	if (!snd_soc_codec_volatile_register(codec, reg) &&
	    reg < codec->driver->reg_cache_size &&
	    !codec->cache_bypass) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, len);
	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

50 51 52
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
53 54
	int ret;
	unsigned int val;
55 56

	if (reg >= codec->driver->reg_cache_size ||
57 58
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
59 60 61
			if (codec->cache_only)
				return -1;

62
			BUG_ON(!codec->hw_read);
63 64 65
			return codec->hw_read(codec, reg);
	}

66 67 68 69
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
70 71 72 73 74 75 76 77 78 79
}

static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

	data[0] = (reg << 4) | ((value >> 8) & 0x000f);
	data[1] = value & 0x00ff;

80
	return do_hw_write(codec, reg, value, data, 2);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_4_12_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[1];
	msg[1] = data[0];

	spi_message_init(&m);
99
	memset(&t, 0, sizeof t);
100 101 102 103 104 105 106 107 108 109 110 111 112

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_4_12_spi_write NULL
#endif

113 114 115
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
116 117
	int ret;
	unsigned int val;
118 119

	if (reg >= codec->driver->reg_cache_size ||
120 121
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
122 123 124
			if (codec->cache_only)
				return -1;

125
			BUG_ON(!codec->hw_read);
126 127 128
			return codec->hw_read(codec, reg);
	}

129 130 131 132
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
133 134 135 136 137 138 139 140 141 142
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

143
	return do_hw_write(codec, reg, value, data, 2);
144 145
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_7_9_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
162
	memset(&t, 0, sizeof t);
163 164 165 166 167 168 169 170 171 172 173 174 175

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_7_9_spi_write NULL
#endif

176 177 178 179 180
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

181 182
	reg &= 0xff;
	data[0] = reg;
183 184
	data[1] = value & 0xff;

185
	return do_hw_write(codec, reg, value, data, 2);
186 187 188 189 190
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
191 192
	int ret;
	unsigned int val;
193

194
	reg &= 0xff;
195
	if (reg >= codec->driver->reg_cache_size ||
196 197
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
198 199 200
			if (codec->cache_only)
				return -1;

201
			BUG_ON(!codec->hw_read);
202 203 204
			return codec->hw_read(codec, reg);
	}

205 206 207 208
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
227
	memset(&t, 0, sizeof t);
228 229 230 231 232 233 234 235 236 237 238 239 240

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_8_spi_write NULL
#endif

241 242 243 244 245 246 247 248 249
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

250
	return do_hw_write(codec, reg, value, data, 3);
251 252 253 254 255
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
256 257
	int ret;
	unsigned int val;
258

259
	if (reg >= codec->driver->reg_cache_size ||
260 261
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
262
		if (codec->cache_only)
263
			return -1;
264

265
		BUG_ON(!codec->hw_read);
266
		return codec->hw_read(codec, reg);
267
	}
268 269 270 271 272

	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
273 274
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
292
	memset(&t, 0, sizeof t);
293 294 295 296 297 298 299 300 301 302 303 304 305

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_16_spi_write NULL
#endif

306
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
307 308 309
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
310 311 312 313 314 315 316 317
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
318 319
	xfer[0].len = reglen;
	xfer[0].buf = reg;
320 321 322 323

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
324 325
	xfer[1].len = datalen;
	xfer[1].buf = data;
326 327

	ret = i2c_transfer(client->adapter, xfer, 2);
328 329
	dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
	if (ret == 2)
330
		return 0;
331 332 333 334 335 336 337 338 339 340 341 342 343 344
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u8 data;
	int ret;
345

346 347 348
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
349 350 351 352 353 354
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
355
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
356 357 358 359 360 361 362
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

363 364
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
365 366 367 368 369 370
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
371

372 373 374 375 376 377 378 379
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

380 381
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
382 383 384 385 386 387 388 389 390 391
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
392 393
	int ret;
	unsigned int val;
394 395

	reg &= 0xff;
396
	if (reg >= codec->driver->reg_cache_size ||
397 398
		snd_soc_codec_volatile_register(codec, reg) ||
		codec->cache_bypass) {
399 400 401
			if (codec->cache_only)
				return -1;

402
			BUG_ON(!codec->hw_read);
403 404 405
			return codec->hw_read(codec, reg);
	}

406 407 408 409
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
410 411 412 413 414 415 416 417 418 419 420
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[3];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;
	reg &= 0xff;
421

422
	return do_hw_write(codec, reg, value, data, 3);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
442
	memset(&t, 0, sizeof t);
443 444 445 446 447 448 449 450 451 452 453 454 455

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_8_spi_write NULL
#endif

456 457 458 459 460 461 462 463
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

464 465
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
466 467 468 469 470 471 472 473 474 475
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
476 477
	int ret;
	unsigned int val;
478

479
	if (reg >= codec->driver->reg_cache_size ||
480 481
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
482
		if (codec->cache_only)
483
			return -1;
484

485
		BUG_ON(!codec->hw_read);
486 487 488
		return codec->hw_read(codec, reg);
	}

489 490 491 492 493
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;

	return val;
494 495 496 497 498 499 500 501 502 503 504 505
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

506
	return do_hw_write(codec, reg, value, data, 4);
507
}
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[4];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];
	msg[3] = data[3];

	spi_message_init(&m);
527
	memset(&t, 0, sizeof t);
528 529 530 531 532 533 534 535 536 537 538 539 540

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_16_spi_write NULL
#endif

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/* Primitive bulk write support for soc-cache.  The data pointed to by `data' needs
 * to already be in the form the hardware expects including any leading register specific
 * data.  Any data written through this function will not go through the cache as it
 * only handles writing to volatile or out of bounds registers.
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

	/* Ensure that the base register is volatile.  Subsequently
	 * any other register that is touched by this routine should be
	 * volatile as well to ensure that we don't get out of sync with
	 * the cache.
	 */
	if (!snd_soc_codec_volatile_register(codec, reg)
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
	case SND_SOC_SPI:
		ret = do_spi_write(codec->control_data, data, len);
		break;
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

579 580 581
static struct {
	int addr_bits;
	int data_bits;
582
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
583
	int (*spi_write)(void *, const char *, int);
584
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
585
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
586
} io_types[] = {
587 588 589 590 591
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
		.spi_write = snd_soc_4_12_spi_write,
	},
592 593 594
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
595
		.spi_write = snd_soc_7_9_spi_write,
596 597 598 599
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
600
		.i2c_read = snd_soc_8_8_read_i2c,
601
		.spi_write = snd_soc_8_8_spi_write,
602 603 604 605 606
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
607
		.spi_write = snd_soc_8_16_spi_write,
608
	},
609 610 611 612 613 614
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
		.spi_write = snd_soc_16_8_spi_write,
	},
615 616 617 618
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
619
		.spi_write = snd_soc_16_16_spi_write,
620
	},
621 622 623 624 625 626 627 628 629
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @type: Type of cache.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
630
 * @control: Control bus used.
631 632 633 634 635 636 637 638 639 640 641 642 643
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
644 645
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

660 661
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
662
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
663

664 665 666 667 668
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
669
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
670 671
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
672 673
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
674 675 676 677

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
678 679 680
		break;

	case SND_SOC_SPI:
681 682
		if (io_types[i].spi_write)
			codec->hw_write = io_types[i].spi_write;
683 684 685 686

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
687 688 689
		break;
	}

690 691 692
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
801
	int ret;
802 803 804 805 806 807

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
808 809 810
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
811
		codec->cache_bypass = 1;
812
		ret = snd_soc_write(codec, rbnode->reg, val);
813
		codec->cache_bypass = 0;
814 815
		if (ret)
			return ret;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
902
	struct snd_soc_rbtree_node *rbtree_node;
903
	struct snd_soc_rbtree_ctx *rbtree_ctx;
904 905 906 907
	unsigned int val;
	unsigned int word_size;
	int i;
	int ret;
908 909 910 911 912 913 914 915

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

916
	if (!codec->reg_def_copy)
917 918
		return 0;

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	/*
	 * populate the rbtree with the initialized registers.  All other
	 * registers will be inserted when they are first modified.
	 */
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
		val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
		if (!val)
			continue;
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
		if (!rbtree_node) {
			ret = -ENOMEM;
			snd_soc_cache_exit(codec);
			break;
		}
		rbtree_node->reg = i;
		rbtree_node->value = val;
		rbtree_node->defval = val;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
938 939 940 941 942
	}

	return 0;
}

943
#ifdef CONFIG_SND_SOC_CACHE_LZO
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
1034
	const struct snd_soc_codec_driver *codec_drv;
1035 1036 1037

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
1038
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1039 1040 1041 1042 1043
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
1044
	const struct snd_soc_codec_driver *codec_drv;
1045 1046

	codec_drv = codec->driver;
1047
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
1048 1049 1050 1051 1052
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
1053
	const struct snd_soc_codec_driver *codec_drv;
1054 1055

	codec_drv = codec->driver;
1056
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1057 1058 1059 1060 1061 1062 1063
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
1064
	int ret;
1065 1066 1067

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
1068 1069 1070
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1071
		codec->cache_bypass = 1;
1072
		ret = snd_soc_write(codec, i, val);
1073
		codec->cache_bypass = 0;
1074 1075
		if (ret)
			return ret;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
1116 1117 1118 1119
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1173
	if (ret >= 0)
1174
		/* fetch the value from the cache */
1175 1176
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
1218
	size_t bmp_size;
1219
	const struct snd_soc_codec_driver *codec_drv;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1233
	if (!codec->reg_def_copy)
1234 1235
		tofree = 1;

1236
	if (!codec->reg_def_copy) {
1237
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1238
		if (!codec->reg_def_copy)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1258
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1259 1260 1261 1262 1263
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1264
	bitmap_zero(sync_bmp, bmp_size);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1276
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1277 1278 1279 1280 1281 1282 1283
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1284
	p = codec->reg_def_copy;
1285
	end = codec->reg_def_copy + codec->reg_size;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1301 1302 1303 1304
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1305 1306 1307 1308
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1309 1310 1311 1312
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1313 1314
	return ret;
}
1315
#endif
1316

1317 1318 1319
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1320
	int ret;
1321
	const struct snd_soc_codec_driver *codec_drv;
1322 1323 1324 1325
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1326 1327 1328
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1329 1330
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1331 1332
						  i, codec_drv->reg_word_size) == val)
				continue;
1333 1334 1335
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1336 1337 1338 1339 1340 1341 1342 1343 1344
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1345 1346
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1347 1348 1349 1350 1351 1352
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1353 1354
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1369
	const struct snd_soc_codec_driver *codec_drv;
1370 1371 1372

	codec_drv = codec->driver;

1373 1374
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1375
					   codec->reg_size, GFP_KERNEL);
1376
	else
1377
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1378 1379 1380 1381 1382 1383 1384 1385
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1386
	/* Flat *must* be the first entry for fallback */
1387
	{
1388
		.id = SND_SOC_FLAT_COMPRESSION,
1389
		.name = "flat",
1390 1391 1392 1393 1394
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1395
	},
1396
#ifdef CONFIG_SND_SOC_CACHE_LZO
1397 1398
	{
		.id = SND_SOC_LZO_COMPRESSION,
1399
		.name = "LZO",
1400 1401 1402 1403 1404
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1405
	},
1406
#endif
1407 1408
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1409
		.name = "rbtree",
1410 1411 1412 1413 1414
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1415 1416 1417 1418 1419 1420 1421 1422
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1423
		if (cache_types[i].id == codec->compress_type)
1424
			break;
1425 1426

	/* Fall back to flat compression */
1427
	if (i == ARRAY_SIZE(cache_types)) {
1428 1429 1430
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1431 1432 1433 1434 1435
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1436 1437 1438 1439
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1440
		return codec->cache_ops->init(codec);
1441
	}
1442 1443 1444 1445 1446 1447 1448 1449 1450
	return -EINVAL;
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1451 1452 1453 1454
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1455
		return codec->cache_ops->exit(codec);
1456
	}
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	return -EINVAL;
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1522
	const char *name;
1523 1524 1525 1526 1527

	if (!codec->cache_sync) {
		return 0;
	}

1528 1529 1530
	if (!codec->cache_ops || !codec->cache_ops->sync)
		return -EINVAL;

1531 1532 1533 1534 1535
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1536 1537 1538 1539 1540 1541 1542 1543 1544
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1545 1546
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);