core.c 267.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211 212 213

	WARN_ON_ONCE(!irqs_disabled());

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
609 610 611 612
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
613
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
652 653
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
654
	/*
655 656
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
657
	 */
658
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
659 660
		return;

661
	cgrp = perf_cgroup_from_task(current, event->ctx);
662 663 664
	/*
	 * Do not update time when cgroup is not active
	 */
665
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
667 668 669
}

static inline void
670 671
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
672 673 674 675
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

676 677 678 679 680 681
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
682 683
		return;

684
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
685
	info = this_cpu_ptr(cgrp->info);
686
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
687 688
}

689 690
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
700
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
701 702
{
	struct perf_cpu_context *cpuctx;
703
	struct list_head *list;
S
Stephane Eranian 已提交
704 705 706
	unsigned long flags;

	/*
707 708
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
709 710 711
	 */
	local_irq_save(flags);

712 713 714
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
715

716 717
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
718

719 720 721 722 723 724 725 726
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
740
		}
741 742
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
743 744 745 746 747
	}

	local_irq_restore(flags);
}

748 749
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
750
{
751 752 753
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

754
	rcu_read_lock();
755 756
	/*
	 * we come here when we know perf_cgroup_events > 0
757 758
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
759
	 */
760
	cgrp1 = perf_cgroup_from_task(task, NULL);
761
	cgrp2 = perf_cgroup_from_task(next, NULL);
762 763 764 765 766 767 768 769

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 771

	rcu_read_unlock();
S
Stephane Eranian 已提交
772 773
}

774 775
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
776
{
777 778 779
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

780
	rcu_read_lock();
781 782
	/*
	 * we come here when we know perf_cgroup_events > 0
783 784
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
785
	 */
786 787
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 789 790 791 792 793 794 795

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 797

	rcu_read_unlock();
S
Stephane Eranian 已提交
798 799 800 801 802 803 804 805
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
806 807
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
808

809
	if (!f.file)
S
Stephane Eranian 已提交
810 811
		return -EBADF;

A
Al Viro 已提交
812
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813
					 &perf_event_cgrp_subsys);
814 815 816 817
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
831
out:
832
	fdput(f);
S
Stephane Eranian 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
877 878 879 880 881 882 883 884 885 886

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
887
	struct list_head *cpuctx_entry;
888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
901 902 903
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
904 905
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);

906
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
907 908
		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
			cpuctx->cgrp = cgrp;
909 910
	} else {
		list_del(cpuctx_entry);
911
		cpuctx->cgrp = NULL;
912
	}
913 914
}

S
Stephane Eranian 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

939 940
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
941 942 943
{
}

944 945
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
946 947 948 949 950 951 952 953 954 955 956
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
957 958
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
987 988 989 990 991 992 993

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
994 995
#endif

996 997 998 999 1000 1001
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1002
 * function must be called with interrupts disabled
1003
 */
1004
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005 1006 1007 1008 1009 1010 1011 1012 1013
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1014 1015
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1016
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1017 1018 1019
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1020

P
Peter Zijlstra 已提交
1021
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 1023
}

1024
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025
{
1026
	struct hrtimer *timer = &cpuctx->hrtimer;
1027
	struct pmu *pmu = cpuctx->ctx.pmu;
1028
	u64 interval;
1029 1030 1031 1032 1033

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1034 1035 1036 1037
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1038 1039 1040
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041

1042
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043

P
Peter Zijlstra 已提交
1044 1045
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046
	timer->function = perf_mux_hrtimer_handler;
1047 1048
}

1049
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050
{
1051
	struct hrtimer *timer = &cpuctx->hrtimer;
1052
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1053
	unsigned long flags;
1054 1055 1056

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1057
		return 0;
1058

P
Peter Zijlstra 已提交
1059 1060 1061 1062 1063 1064 1065
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066

1067
	return 0;
1068 1069
}

P
Peter Zijlstra 已提交
1070
void perf_pmu_disable(struct pmu *pmu)
1071
{
P
Peter Zijlstra 已提交
1072 1073 1074
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1075 1076
}

P
Peter Zijlstra 已提交
1077
void perf_pmu_enable(struct pmu *pmu)
1078
{
P
Peter Zijlstra 已提交
1079 1080 1081
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1082 1083
}

1084
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085 1086

/*
1087 1088 1089 1090
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1091
 */
1092
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093
{
1094
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095

1096
	WARN_ON(!irqs_disabled());
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1110 1111
}

1112
static void get_ctx(struct perf_event_context *ctx)
1113
{
1114
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1126
static void put_ctx(struct perf_event_context *ctx)
1127
{
1128 1129 1130
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1131
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132
			put_task_struct(ctx->task);
1133
		call_rcu(&ctx->rcu_head, free_ctx);
1134
	}
1135 1136
}

P
Peter Zijlstra 已提交
1137 1138 1139 1140 1141 1142 1143
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1144 1145 1146 1147
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1148 1149
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1190
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1191 1192 1193
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1194
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1195 1196 1197
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1198 1199
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1212
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226 1227
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1228 1229 1230 1231 1232 1233 1234
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1235 1236 1237 1238 1239 1240 1241
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1242
{
1243 1244 1245 1246 1247
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1248
		ctx->parent_ctx = NULL;
1249
	ctx->generation++;
1250 1251

	return parent_ctx;
1252 1253
}

1254 1255
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1256
{
1257
	u32 nr;
1258 1259 1260 1261 1262 1263
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1264 1265 1266 1267 1268
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1269 1270
}

1271
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272
{
1273 1274
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1275

1276 1277 1278
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1279 1280
}

1281
/*
1282
 * If we inherit events we want to return the parent event id
1283 1284
 * to userspace.
 */
1285
static u64 primary_event_id(struct perf_event *event)
1286
{
1287
	u64 id = event->id;
1288

1289 1290
	if (event->parent)
		id = event->parent->id;
1291 1292 1293 1294

	return id;
}

1295
/*
1296
 * Get the perf_event_context for a task and lock it.
1297
 *
1298 1299 1300
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1301
static struct perf_event_context *
P
Peter Zijlstra 已提交
1302
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303
{
1304
	struct perf_event_context *ctx;
1305

P
Peter Zijlstra 已提交
1306
retry:
1307 1308 1309
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310
	 * part of the read side critical section was irqs-enabled -- see
1311 1312 1313
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1314
	 * side critical section has interrupts disabled.
1315
	 */
1316
	local_irq_save(*flags);
1317
	rcu_read_lock();
P
Peter Zijlstra 已提交
1318
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319 1320 1321 1322
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1323
		 * perf_event_task_sched_out, though the
1324 1325 1326 1327 1328 1329
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1330
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1331
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332
			raw_spin_unlock(&ctx->lock);
1333
			rcu_read_unlock();
1334
			local_irq_restore(*flags);
1335 1336
			goto retry;
		}
1337

1338 1339
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1340
			raw_spin_unlock(&ctx->lock);
1341
			ctx = NULL;
P
Peter Zijlstra 已提交
1342 1343
		} else {
			WARN_ON_ONCE(ctx->task != task);
1344
		}
1345 1346
	}
	rcu_read_unlock();
1347 1348
	if (!ctx)
		local_irq_restore(*flags);
1349 1350 1351 1352 1353 1354 1355 1356
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1357 1358
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1359
{
1360
	struct perf_event_context *ctx;
1361 1362
	unsigned long flags;

P
Peter Zijlstra 已提交
1363
	ctx = perf_lock_task_context(task, ctxn, &flags);
1364 1365
	if (ctx) {
		++ctx->pin_count;
1366
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367 1368 1369 1370
	}
	return ctx;
}

1371
static void perf_unpin_context(struct perf_event_context *ctx)
1372 1373 1374
{
	unsigned long flags;

1375
	raw_spin_lock_irqsave(&ctx->lock, flags);
1376
	--ctx->pin_count;
1377
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1391 1392 1393
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1394 1395 1396 1397

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1398 1399 1400
	return ctx ? ctx->time : 0;
}

1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1409 1410
	lockdep_assert_held(&ctx->lock);

1411 1412 1413
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1414

S
Stephane Eranian 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1426
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1427 1428
	else if (ctx->is_active)
		run_end = ctx->time;
1429 1430 1431 1432
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1433 1434 1435 1436

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1437
		run_end = perf_event_time(event);
1438 1439

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1440

1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1455 1456 1457 1458 1459 1460 1461
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1462 1463 1464 1465 1466 1467 1468
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1469 1470 1471 1472 1473 1474 1475
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1485
/*
1486
 * Add a event from the lists for its context.
1487 1488
 * Must be called with ctx->mutex and ctx->lock held.
 */
1489
static void
1490
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491
{
P
Peter Zijlstra 已提交
1492 1493
	lockdep_assert_held(&ctx->lock);

1494 1495
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1496 1497

	/*
1498 1499 1500
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1501
	 */
1502
	if (event->group_leader == event) {
1503 1504
		struct list_head *list;

1505
		event->group_caps = event->event_caps;
1506

1507 1508
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1509
	}
P
Peter Zijlstra 已提交
1510

1511
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1512

1513 1514 1515
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1516
		ctx->nr_stat++;
1517 1518

	ctx->generation++;
1519 1520
}

J
Jiri Olsa 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1530
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1546
		nr += nr_siblings;
1547 1548 1549 1550 1551 1552 1553
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1554
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 1556 1557 1558 1559 1560 1561
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1562 1563 1564 1565 1566 1567
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1568 1569 1570
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1571 1572 1573
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1574 1575 1576
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1577 1578 1579
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1580 1581 1582
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1583 1584 1585
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1597 1598 1599 1600 1601 1602
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1603 1604 1605 1606 1607 1608
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1609 1610 1611
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1621
	event->id_header_size = size;
1622 1623
}

P
Peter Zijlstra 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1645 1646
static void perf_group_attach(struct perf_event *event)
{
1647
	struct perf_event *group_leader = event->group_leader, *pos;
1648

1649 1650
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1651 1652 1653 1654 1655 1656
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1657 1658 1659 1660 1661
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1662 1663
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1664
	group_leader->group_caps &= event->event_caps;
1665 1666 1667

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1668 1669 1670 1671 1672

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1673 1674
}

1675
/*
1676
 * Remove a event from the lists for its context.
1677
 * Must be called with ctx->mutex and ctx->lock held.
1678
 */
1679
static void
1680
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681
{
P
Peter Zijlstra 已提交
1682 1683 1684
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1685 1686 1687 1688
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689
		return;
1690 1691 1692

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1693
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1694

1695 1696
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1697
		ctx->nr_stat--;
1698

1699
	list_del_rcu(&event->event_entry);
1700

1701 1702
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1703

1704
	update_group_times(event);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1715 1716

	ctx->generation++;
1717 1718
}

1719
static void perf_group_detach(struct perf_event *event)
1720 1721
{
	struct perf_event *sibling, *tmp;
1722 1723
	struct list_head *list = NULL;

1724 1725
	lockdep_assert_held(&event->ctx->lock);

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1740
		goto out;
1741 1742 1743 1744
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1745

1746
	/*
1747 1748
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1749
	 * to whatever list we are on.
1750
	 */
1751
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752 1753
		if (list)
			list_move_tail(&sibling->group_entry, list);
1754
		sibling->group_leader = sibling;
1755 1756

		/* Inherit group flags from the previous leader */
1757
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1758 1759

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1760
	}
1761 1762 1763 1764 1765 1766

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1767 1768
}

1769 1770
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1771
	return event->state == PERF_EVENT_STATE_DEAD;
1772 1773
}

1774
static inline int __pmu_filter_match(struct perf_event *event)
1775 1776 1777 1778 1779
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1801 1802 1803
static inline int
event_filter_match(struct perf_event *event)
{
1804 1805
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1806 1807
}

1808 1809
static void
event_sched_out(struct perf_event *event,
1810
		  struct perf_cpu_context *cpuctx,
1811
		  struct perf_event_context *ctx)
1812
{
1813
	u64 tstamp = perf_event_time(event);
1814
	u64 delta;
P
Peter Zijlstra 已提交
1815 1816 1817 1818

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1819 1820 1821 1822 1823 1824
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1825 1826
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1827
		delta = tstamp - event->tstamp_stopped;
1828
		event->tstamp_running += delta;
1829
		event->tstamp_stopped = tstamp;
1830 1831
	}

1832
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1833
		return;
1834

1835 1836
	perf_pmu_disable(event->pmu);

1837 1838 1839
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1840 1841 1842 1843
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1844
	}
1845

1846
	if (!is_software_event(event))
1847
		cpuctx->active_oncpu--;
1848 1849
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1850 1851
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1852
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1853
		cpuctx->exclusive = 0;
1854 1855

	perf_pmu_enable(event->pmu);
1856 1857
}

1858
static void
1859
group_sched_out(struct perf_event *group_event,
1860
		struct perf_cpu_context *cpuctx,
1861
		struct perf_event_context *ctx)
1862
{
1863
	struct perf_event *event;
1864
	int state = group_event->state;
1865

1866 1867
	perf_pmu_disable(ctx->pmu);

1868
	event_sched_out(group_event, cpuctx, ctx);
1869 1870 1871 1872

	/*
	 * Schedule out siblings (if any):
	 */
1873 1874
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1875

1876 1877
	perf_pmu_enable(ctx->pmu);

1878
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879 1880 1881
		cpuctx->exclusive = 0;
}

1882
#define DETACH_GROUP	0x01UL
1883

T
Thomas Gleixner 已提交
1884
/*
1885
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1886
 *
1887
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1888 1889
 * remove it from the context list.
 */
1890 1891 1892 1893 1894
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1895
{
1896
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1897

1898
	event_sched_out(event, cpuctx, ctx);
1899
	if (flags & DETACH_GROUP)
1900
		perf_group_detach(event);
1901
	list_del_event(event, ctx);
1902 1903

	if (!ctx->nr_events && ctx->is_active) {
1904
		ctx->is_active = 0;
1905 1906 1907 1908
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1909
	}
T
Thomas Gleixner 已提交
1910 1911 1912
}

/*
1913
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1914
 *
1915 1916
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1917 1918
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1919
 * When called from perf_event_exit_task, it's OK because the
1920
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1921
 */
1922
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1923
{
1924 1925 1926
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1927

1928
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1947 1948
}

1949
/*
1950
 * Cross CPU call to disable a performance event
1951
 */
1952 1953 1954 1955
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1956
{
1957 1958
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1959

1960 1961 1962 1963 1964 1965 1966 1967
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1968 1969
}

1970
/*
1971
 * Disable a event.
1972
 *
1973 1974
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1975
 * remains valid.  This condition is satisifed when called through
1976 1977
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1978 1979
 * goes to exit will block in perf_event_exit_event().
 *
1980
 * When called from perf_pending_event it's OK because event->ctx
1981
 * is the current context on this CPU and preemption is disabled,
1982
 * hence we can't get into perf_event_task_sched_out for this context.
1983
 */
P
Peter Zijlstra 已提交
1984
static void _perf_event_disable(struct perf_event *event)
1985
{
1986
	struct perf_event_context *ctx = event->ctx;
1987

1988
	raw_spin_lock_irq(&ctx->lock);
1989
	if (event->state <= PERF_EVENT_STATE_OFF) {
1990
		raw_spin_unlock_irq(&ctx->lock);
1991
		return;
1992
	}
1993
	raw_spin_unlock_irq(&ctx->lock);
1994

1995 1996 1997 1998 1999 2000
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
2001
}
P
Peter Zijlstra 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2015
EXPORT_SYMBOL_GPL(perf_event_disable);
2016

2017 2018 2019 2020 2021 2022
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2058 2059 2060
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2061
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2062

2063
static int
2064
event_sched_in(struct perf_event *event,
2065
		 struct perf_cpu_context *cpuctx,
2066
		 struct perf_event_context *ctx)
2067
{
2068
	u64 tstamp = perf_event_time(event);
2069
	int ret = 0;
2070

2071 2072
	lockdep_assert_held(&ctx->lock);

2073
	if (event->state <= PERF_EVENT_STATE_OFF)
2074 2075
		return 0;

2076 2077 2078 2079 2080 2081 2082
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2094 2095 2096 2097 2098
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2099 2100
	perf_pmu_disable(event->pmu);

2101 2102
	perf_set_shadow_time(event, ctx, tstamp);

2103 2104
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2105
	if (event->pmu->add(event, PERF_EF_START)) {
2106 2107
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2108 2109
		ret = -EAGAIN;
		goto out;
2110 2111
	}

2112 2113
	event->tstamp_running += tstamp - event->tstamp_stopped;

2114
	if (!is_software_event(event))
2115
		cpuctx->active_oncpu++;
2116 2117
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2118 2119
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2120

2121
	if (event->attr.exclusive)
2122 2123
		cpuctx->exclusive = 1;

2124 2125 2126 2127
out:
	perf_pmu_enable(event->pmu);

	return ret;
2128 2129
}

2130
static int
2131
group_sched_in(struct perf_event *group_event,
2132
	       struct perf_cpu_context *cpuctx,
2133
	       struct perf_event_context *ctx)
2134
{
2135
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2136
	struct pmu *pmu = ctx->pmu;
2137 2138
	u64 now = ctx->time;
	bool simulate = false;
2139

2140
	if (group_event->state == PERF_EVENT_STATE_OFF)
2141 2142
		return 0;

2143
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144

2145
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2146
		pmu->cancel_txn(pmu);
2147
		perf_mux_hrtimer_restart(cpuctx);
2148
		return -EAGAIN;
2149
	}
2150 2151 2152 2153

	/*
	 * Schedule in siblings as one group (if any):
	 */
2154
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155
		if (event_sched_in(event, cpuctx, ctx)) {
2156
			partial_group = event;
2157 2158 2159 2160
			goto group_error;
		}
	}

2161
	if (!pmu->commit_txn(pmu))
2162
		return 0;
2163

2164 2165 2166 2167
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2178
	 */
2179 2180
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2181 2182 2183 2184 2185 2186 2187 2188
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2189
	}
2190
	event_sched_out(group_event, cpuctx, ctx);
2191

P
Peter Zijlstra 已提交
2192
	pmu->cancel_txn(pmu);
2193

2194
	perf_mux_hrtimer_restart(cpuctx);
2195

2196 2197 2198
	return -EAGAIN;
}

2199
/*
2200
 * Work out whether we can put this event group on the CPU now.
2201
 */
2202
static int group_can_go_on(struct perf_event *event,
2203 2204 2205 2206
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2207
	 * Groups consisting entirely of software events can always go on.
2208
	 */
2209
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210 2211 2212
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2213
	 * events can go on.
2214 2215 2216 2217 2218
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2219
	 * events on the CPU, it can't go on.
2220
	 */
2221
	if (event->attr.exclusive && cpuctx->active_oncpu)
2222 2223 2224 2225 2226 2227 2228 2229
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/*
 * Complement to update_event_times(). This computes the tstamp_* values to
 * continue 'enabled' state from @now, and effectively discards the time
 * between the prior tstamp_stopped and now (as we were in the OFF state, or
 * just switched (context) time base).
 *
 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
 * cannot have been scheduled in yet. And going into INACTIVE state means
 * '@event->tstamp_stopped = @now'.
 *
 * Thus given the rules of update_event_times():
 *
 *   total_time_enabled = tstamp_stopped - tstamp_enabled
 *   total_time_running = tstamp_stopped - tstamp_running
 *
 * We can insert 'tstamp_stopped == now' and reverse them to compute new
 * tstamp_* values.
 */
static void __perf_event_enable_time(struct perf_event *event, u64 now)
{
	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);

	event->tstamp_stopped = now;
	event->tstamp_enabled = now - event->total_time_enabled;
	event->tstamp_running = now - event->total_time_running;
}

2257 2258
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2259
{
2260 2261
	u64 tstamp = perf_event_time(event);

2262
	list_add_event(event, ctx);
2263
	perf_group_attach(event);
2264 2265 2266 2267 2268 2269
	/*
	 * We can be called with event->state == STATE_OFF when we create with
	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		__perf_event_enable_time(event, tstamp);
2270 2271
}

2272 2273 2274
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2275 2276 2277 2278 2279
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2280

2281
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282 2283
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2284 2285 2286 2287 2288 2289 2290
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2291
	ctx_sched_out(ctx, cpuctx, event_type);
2292 2293
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2321
static void ctx_resched(struct perf_cpu_context *cpuctx,
2322 2323
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2324
{
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2335 2336
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2351 2352
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2353 2354
}

T
Thomas Gleixner 已提交
2355
/*
2356
 * Cross CPU call to install and enable a performance event
2357
 *
2358 2359
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2360
 */
2361
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2362
{
2363 2364
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2365
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2366
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2367
	bool reprogram = true;
2368
	int ret = 0;
T
Thomas Gleixner 已提交
2369

2370
	raw_spin_lock(&cpuctx->ctx.lock);
2371
	if (ctx->task) {
2372 2373
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2374

2375
		reprogram = (ctx->task == current);
2376

2377
		/*
2378 2379 2380 2381 2382
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2383
		 */
2384 2385 2386 2387
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2388

2389
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2390 2391
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2392
	}
2393

2394
	if (reprogram) {
2395 2396
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2397
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2398 2399 2400 2401
	} else {
		add_event_to_ctx(event, ctx);
	}

2402
unlock:
2403
	perf_ctx_unlock(cpuctx, task_ctx);
2404

2405
	return ret;
T
Thomas Gleixner 已提交
2406 2407 2408
}

/*
2409 2410 2411
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2412 2413
 */
static void
2414 2415
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2416 2417
			int cpu)
{
2418
	struct task_struct *task = READ_ONCE(ctx->task);
2419

2420 2421
	lockdep_assert_held(&ctx->mutex);

2422 2423
	if (event->cpu != -1)
		event->cpu = cpu;
2424

2425 2426 2427 2428 2429 2430
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2442 2443 2444
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2464
	 */
2465

2466
	/*
2467 2468 2469 2470
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2471
	 */
2472 2473 2474
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2475 2476 2477 2478
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2479
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2480 2481 2482 2483 2484
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2485 2486 2487
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2488
	/*
2489 2490
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2491
	 */
2492 2493 2494 2495 2496 2497
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2498 2499
}

2500
/*
2501
 * Put a event into inactive state and update time fields.
2502 2503 2504 2505 2506 2507
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2508
static void __perf_event_mark_enabled(struct perf_event *event)
2509
{
2510
	struct perf_event *sub;
2511
	u64 tstamp = perf_event_time(event);
2512

2513
	event->state = PERF_EVENT_STATE_INACTIVE;
2514
	__perf_event_enable_time(event, tstamp);
P
Peter Zijlstra 已提交
2515
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2516
		/* XXX should not be > INACTIVE if event isn't */
2517
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2518
			__perf_event_enable_time(sub, tstamp);
P
Peter Zijlstra 已提交
2519
	}
2520 2521
}

2522
/*
2523
 * Cross CPU call to enable a performance event
2524
 */
2525 2526 2527 2528
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2529
{
2530
	struct perf_event *leader = event->group_leader;
2531
	struct perf_event_context *task_ctx;
2532

P
Peter Zijlstra 已提交
2533 2534
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2535
		return;
2536

2537 2538 2539
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2540
	__perf_event_mark_enabled(event);
2541

2542 2543 2544
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2545
	if (!event_filter_match(event)) {
2546
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2547
			perf_cgroup_defer_enabled(event);
2548
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2549
		return;
S
Stephane Eranian 已提交
2550
	}
2551

2552
	/*
2553
	 * If the event is in a group and isn't the group leader,
2554
	 * then don't put it on unless the group is on.
2555
	 */
2556 2557
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2558
		return;
2559
	}
2560

2561 2562 2563
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2564

2565
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2566 2567
}

2568
/*
2569
 * Enable a event.
2570
 *
2571 2572
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2573
 * remains valid.  This condition is satisfied when called through
2574 2575
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2576
 */
P
Peter Zijlstra 已提交
2577
static void _perf_event_enable(struct perf_event *event)
2578
{
2579
	struct perf_event_context *ctx = event->ctx;
2580

2581
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2582 2583
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2584
		raw_spin_unlock_irq(&ctx->lock);
2585 2586 2587 2588
		return;
	}

	/*
2589
	 * If the event is in error state, clear that first.
2590 2591 2592 2593
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2594
	 */
2595 2596
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2597
	raw_spin_unlock_irq(&ctx->lock);
2598

2599
	event_function_call(event, __perf_event_enable, NULL);
2600
}
P
Peter Zijlstra 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2613
EXPORT_SYMBOL_GPL(perf_event_enable);
2614

2615 2616 2617 2618 2619
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2620 2621
static int __perf_event_stop(void *info)
{
2622 2623
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2624

2625
	/* if it's already INACTIVE, do nothing */
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2651
		event->pmu->start(event, 0);
2652

2653 2654 2655
	return 0;
}

2656
static int perf_event_stop(struct perf_event *event, int restart)
2657 2658 2659
{
	struct stop_event_data sd = {
		.event		= event,
2660
		.restart	= restart,
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2721
static int _perf_event_refresh(struct perf_event *event, int refresh)
2722
{
2723
	/*
2724
	 * not supported on inherited events
2725
	 */
2726
	if (event->attr.inherit || !is_sampling_event(event))
2727 2728
		return -EINVAL;

2729
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2730
	_perf_event_enable(event);
2731 2732

	return 0;
2733
}
P
Peter Zijlstra 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2749
EXPORT_SYMBOL_GPL(perf_event_refresh);
2750

2751 2752 2753
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2754
{
2755
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2756
	struct perf_event *event;
2757

P
Peter Zijlstra 已提交
2758
	lockdep_assert_held(&ctx->lock);
2759

2760 2761 2762 2763 2764 2765 2766
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2767
		return;
2768 2769
	}

2770
	ctx->is_active &= ~event_type;
2771 2772 2773
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2774 2775 2776 2777 2778
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2790 2791 2792 2793 2794 2795
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2796 2797
	is_active ^= ctx->is_active; /* changed bits */

2798
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2799
		return;
2800

P
Peter Zijlstra 已提交
2801
	perf_pmu_disable(ctx->pmu);
2802
	if (is_active & EVENT_PINNED) {
2803 2804
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2805
	}
2806

2807
	if (is_active & EVENT_FLEXIBLE) {
2808
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2809
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2810
	}
P
Peter Zijlstra 已提交
2811
	perf_pmu_enable(ctx->pmu);
2812 2813
}

2814
/*
2815 2816 2817 2818 2819 2820
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2821
 */
2822 2823
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2824
{
2825 2826 2827
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2850 2851
}

2852 2853
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2854 2855 2856
{
	u64 value;

2857
	if (!event->attr.inherit_stat)
2858 2859 2860
		return;

	/*
2861
	 * Update the event value, we cannot use perf_event_read()
2862 2863
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2864
	 * we know the event must be on the current CPU, therefore we
2865 2866
	 * don't need to use it.
	 */
2867 2868
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2869 2870
		event->pmu->read(event);
		/* fall-through */
2871

2872 2873
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2874 2875 2876 2877 2878 2879 2880
		break;

	default:
		break;
	}

	/*
2881
	 * In order to keep per-task stats reliable we need to flip the event
2882 2883
	 * values when we flip the contexts.
	 */
2884 2885 2886
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2887

2888 2889
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2890

2891
	/*
2892
	 * Since we swizzled the values, update the user visible data too.
2893
	 */
2894 2895
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2896 2897
}

2898 2899
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2900
{
2901
	struct perf_event *event, *next_event;
2902 2903 2904 2905

	if (!ctx->nr_stat)
		return;

2906 2907
	update_context_time(ctx);

2908 2909
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2910

2911 2912
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2913

2914 2915
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2916

2917
		__perf_event_sync_stat(event, next_event);
2918

2919 2920
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2921 2922 2923
	}
}

2924 2925
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2926
{
P
Peter Zijlstra 已提交
2927
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2928
	struct perf_event_context *next_ctx;
2929
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2930
	struct perf_cpu_context *cpuctx;
2931
	int do_switch = 1;
T
Thomas Gleixner 已提交
2932

P
Peter Zijlstra 已提交
2933 2934
	if (likely(!ctx))
		return;
2935

P
Peter Zijlstra 已提交
2936 2937
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2938 2939
		return;

2940
	rcu_read_lock();
P
Peter Zijlstra 已提交
2941
	next_ctx = next->perf_event_ctxp[ctxn];
2942 2943 2944 2945 2946 2947 2948
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2949
	if (!parent && !next_parent)
2950 2951 2952
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2953 2954 2955 2956 2957 2958 2959 2960 2961
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2962 2963
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2964
		if (context_equiv(ctx, next_ctx)) {
2965 2966
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2967 2968 2969

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2980
			do_switch = 0;
2981

2982
			perf_event_sync_stat(ctx, next_ctx);
2983
		}
2984 2985
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2986
	}
2987
unlock:
2988
	rcu_read_unlock();
2989

2990
	if (do_switch) {
2991
		raw_spin_lock(&ctx->lock);
2992
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2993
		raw_spin_unlock(&ctx->lock);
2994
	}
T
Thomas Gleixner 已提交
2995 2996
}

2997 2998
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2999 3000
void perf_sched_cb_dec(struct pmu *pmu)
{
3001 3002
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

3003
	this_cpu_dec(perf_sched_cb_usages);
3004 3005 3006

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
3007 3008
}

3009

3010 3011
void perf_sched_cb_inc(struct pmu *pmu)
{
3012 3013 3014 3015 3016
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

3017 3018 3019 3020 3021 3022
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
3023 3024 3025 3026
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

3038
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3039
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3040

3041 3042
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3043

3044 3045
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3046

3047
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3048

3049 3050
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3051 3052 3053
	}
}

3054 3055 3056
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3071 3072
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3073 3074 3075
{
	int ctxn;

3076 3077 3078
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3079 3080 3081
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3082 3083
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3084 3085 3086 3087 3088 3089

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3090
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3091
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3092 3093
}

3094 3095 3096 3097 3098 3099 3100
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101 3102
}

3103
static void
3104
ctx_pinned_sched_in(struct perf_event_context *ctx,
3105
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3106
{
3107
	struct perf_event *event;
T
Thomas Gleixner 已提交
3108

3109 3110
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3111
			continue;
3112
		if (!event_filter_match(event))
3113 3114
			continue;

S
Stephane Eranian 已提交
3115 3116 3117 3118
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3119
		if (group_can_go_on(event, cpuctx, 1))
3120
			group_sched_in(event, cpuctx, ctx);
3121 3122 3123 3124 3125

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3126 3127 3128
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3129
		}
3130
	}
3131 3132 3133 3134
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3135
		      struct perf_cpu_context *cpuctx)
3136 3137 3138
{
	struct perf_event *event;
	int can_add_hw = 1;
3139

3140 3141 3142
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3143
			continue;
3144 3145
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3146
		 * of events:
3147
		 */
3148
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3149 3150
			continue;

S
Stephane Eranian 已提交
3151 3152 3153 3154
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3155
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3156
			if (group_sched_in(event, cpuctx, ctx))
3157
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3158
		}
T
Thomas Gleixner 已提交
3159
	}
3160 3161 3162 3163 3164
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3165 3166
	     enum event_type_t event_type,
	     struct task_struct *task)
3167
{
3168
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3169 3170 3171
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3172

3173
	if (likely(!ctx->nr_events))
3174
		return;
3175

3176
	ctx->is_active |= (event_type | EVENT_TIME);
3177 3178 3179 3180 3181 3182 3183
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3184 3185 3186 3187 3188 3189 3190 3191 3192
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3193 3194 3195 3196
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3197
	if (is_active & EVENT_PINNED)
3198
		ctx_pinned_sched_in(ctx, cpuctx);
3199 3200

	/* Then walk through the lower prio flexible groups */
3201
	if (is_active & EVENT_FLEXIBLE)
3202
		ctx_flexible_sched_in(ctx, cpuctx);
3203 3204
}

3205
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3206 3207
			     enum event_type_t event_type,
			     struct task_struct *task)
3208 3209 3210
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3211
	ctx_sched_in(ctx, cpuctx, event_type, task);
3212 3213
}

S
Stephane Eranian 已提交
3214 3215
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3216
{
P
Peter Zijlstra 已提交
3217
	struct perf_cpu_context *cpuctx;
3218

P
Peter Zijlstra 已提交
3219
	cpuctx = __get_cpu_context(ctx);
3220 3221 3222
	if (cpuctx->task_ctx == ctx)
		return;

3223
	perf_ctx_lock(cpuctx, ctx);
3224 3225 3226 3227 3228 3229 3230
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3231
	perf_pmu_disable(ctx->pmu);
3232 3233 3234 3235
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3236 3237 3238
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3239
	 */
3240 3241
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3242
	perf_event_sched_in(cpuctx, ctx, task);
3243
	perf_pmu_enable(ctx->pmu);
3244 3245

unlock:
3246
	perf_ctx_unlock(cpuctx, ctx);
3247 3248
}

P
Peter Zijlstra 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3260 3261
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3262 3263 3264 3265
{
	struct perf_event_context *ctx;
	int ctxn;

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3276 3277 3278 3279 3280
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3281
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3282
	}
3283

3284 3285 3286
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3287 3288
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3289 3290
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3318
#define REDUCE_FLS(a, b)		\
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3358 3359 3360
	if (!divisor)
		return dividend;

3361 3362 3363
	return div64_u64(dividend, divisor);
}

3364 3365 3366
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3367
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3368
{
3369
	struct hw_perf_event *hwc = &event->hw;
3370
	s64 period, sample_period;
3371 3372
	s64 delta;

3373
	period = perf_calculate_period(event, nsec, count);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3384

3385
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3386 3387 3388
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3389
		local64_set(&hwc->period_left, 0);
3390 3391 3392

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3393
	}
3394 3395
}

3396 3397 3398 3399 3400 3401 3402
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3403
{
3404 3405
	struct perf_event *event;
	struct hw_perf_event *hwc;
3406
	u64 now, period = TICK_NSEC;
3407
	s64 delta;
3408

3409 3410 3411 3412 3413 3414
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3415 3416
		return;

3417
	raw_spin_lock(&ctx->lock);
3418
	perf_pmu_disable(ctx->pmu);
3419

3420
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3421
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3422 3423
			continue;

3424
		if (!event_filter_match(event))
3425 3426
			continue;

3427 3428
		perf_pmu_disable(event->pmu);

3429
		hwc = &event->hw;
3430

3431
		if (hwc->interrupts == MAX_INTERRUPTS) {
3432
			hwc->interrupts = 0;
3433
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3434
			event->pmu->start(event, 0);
3435 3436
		}

3437
		if (!event->attr.freq || !event->attr.sample_freq)
3438
			goto next;
3439

3440 3441 3442 3443 3444
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3445
		now = local64_read(&event->count);
3446 3447
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3448

3449 3450 3451
		/*
		 * restart the event
		 * reload only if value has changed
3452 3453 3454
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3455
		 */
3456
		if (delta > 0)
3457
			perf_adjust_period(event, period, delta, false);
3458 3459

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3460 3461
	next:
		perf_pmu_enable(event->pmu);
3462
	}
3463

3464
	perf_pmu_enable(ctx->pmu);
3465
	raw_spin_unlock(&ctx->lock);
3466 3467
}

3468
/*
3469
 * Round-robin a context's events:
3470
 */
3471
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3472
{
3473 3474 3475 3476 3477 3478
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3479 3480
}

3481
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3482
{
P
Peter Zijlstra 已提交
3483
	struct perf_event_context *ctx = NULL;
3484
	int rotate = 0;
3485

3486 3487 3488 3489
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3490

P
Peter Zijlstra 已提交
3491
	ctx = cpuctx->task_ctx;
3492 3493 3494 3495
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3496

3497
	if (!rotate)
3498 3499
		goto done;

3500
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3501
	perf_pmu_disable(cpuctx->ctx.pmu);
3502

3503 3504 3505
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3506

3507 3508 3509
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3510

3511
	perf_event_sched_in(cpuctx, ctx, current);
3512

3513 3514
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3515
done:
3516 3517

	return rotate;
3518 3519 3520 3521
}

void perf_event_task_tick(void)
{
3522 3523
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3524
	int throttled;
3525

3526 3527
	WARN_ON(!irqs_disabled());

3528 3529
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3530
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3531

3532
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3533
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3534 3535
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3546
	__perf_event_mark_enabled(event);
3547 3548 3549 3550

	return 1;
}

3551
/*
3552
 * Enable all of a task's events that have been marked enable-on-exec.
3553 3554
 * This expects task == current.
 */
3555
static void perf_event_enable_on_exec(int ctxn)
3556
{
3557
	struct perf_event_context *ctx, *clone_ctx = NULL;
3558
	enum event_type_t event_type = 0;
3559
	struct perf_cpu_context *cpuctx;
3560
	struct perf_event *event;
3561 3562 3563 3564
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3565
	ctx = current->perf_event_ctxp[ctxn];
3566
	if (!ctx || !ctx->nr_events)
3567 3568
		goto out;

3569 3570
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3571
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3572
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3573
		enabled |= event_enable_on_exec(event, ctx);
3574 3575
		event_type |= get_event_type(event);
	}
3576 3577

	/*
3578
	 * Unclone and reschedule this context if we enabled any event.
3579
	 */
3580
	if (enabled) {
3581
		clone_ctx = unclone_ctx(ctx);
3582
		ctx_resched(cpuctx, ctx, event_type);
3583 3584
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3585 3586
	}
	perf_ctx_unlock(cpuctx, ctx);
3587

P
Peter Zijlstra 已提交
3588
out:
3589
	local_irq_restore(flags);
3590 3591 3592

	if (clone_ctx)
		put_ctx(clone_ctx);
3593 3594
}

3595 3596 3597
struct perf_read_data {
	struct perf_event *event;
	bool group;
3598
	int ret;
3599 3600
};

3601
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3602 3603 3604 3605
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3606 3607 3608 3609
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3610 3611 3612 3613 3614 3615 3616 3617

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3618
/*
3619
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3620
 */
3621
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3622
{
3623 3624
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3625
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3626
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3627
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3628

3629 3630 3631 3632
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3633 3634
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3635 3636 3637 3638
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3639
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3640
	if (ctx->is_active) {
3641
		update_context_time(ctx);
S
Stephane Eranian 已提交
3642 3643
		update_cgrp_time_from_event(event);
	}
3644

3645
	update_event_times(event);
3646 3647
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3648

3649 3650 3651
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3652
		goto unlock;
3653 3654 3655 3656 3657
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3658 3659 3660

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3661 3662 3663 3664 3665
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3666
			sub->pmu->read(sub);
3667
		}
3668
	}
3669 3670

	data->ret = pmu->commit_txn(pmu);
3671 3672

unlock:
3673
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3674 3675
}

P
Peter Zijlstra 已提交
3676 3677
static inline u64 perf_event_count(struct perf_event *event)
{
3678
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3679 3680
}

3681 3682 3683 3684 3685 3686 3687 3688
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3689 3690
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running)
3691 3692
{
	unsigned long flags;
3693
	int ret = 0;
3694
	u64 now;
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3706 3707 3708 3709
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3724

3725 3726 3727
	now = event->shadow_ctx_time + perf_clock();
	if (enabled)
		*enabled = now - event->tstamp_enabled;
3728 3729 3730 3731 3732
	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
3733
	if (event->oncpu == smp_processor_id()) {
3734
		event->pmu->read(event);
3735 3736 3737 3738 3739
		if (running)
			*running = now - event->tstamp_running;
	} else if (running) {
		*running = event->total_time_running;
	}
3740

3741 3742
	*value = local64_read(&event->count);
out:
3743 3744
	local_irq_restore(flags);

3745
	return ret;
3746 3747
}

3748
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3749
{
3750
	int event_cpu, ret = 0;
3751

T
Thomas Gleixner 已提交
3752
	/*
3753 3754
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3755
	 */
3756
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3757 3758 3759
		struct perf_read_data data = {
			.event = event,
			.group = group,
3760
			.ret = 0,
3761
		};
3762

3763 3764 3765 3766 3767 3768
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3769

3770 3771 3772 3773
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3774
		 * If event_cpu isn't a valid CPU it means the event got
3775 3776 3777 3778 3779
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3780 3781
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3782
		ret = data.ret;
3783
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3784 3785 3786
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3787
		raw_spin_lock_irqsave(&ctx->lock, flags);
3788 3789 3790 3791 3792
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3793
		if (ctx->is_active) {
3794
			update_context_time(ctx);
S
Stephane Eranian 已提交
3795 3796
			update_cgrp_time_from_event(event);
		}
3797 3798 3799 3800
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3801
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3802
	}
3803 3804

	return ret;
T
Thomas Gleixner 已提交
3805 3806
}

3807
/*
3808
 * Initialize the perf_event context in a task_struct:
3809
 */
3810
static void __perf_event_init_context(struct perf_event_context *ctx)
3811
{
3812
	raw_spin_lock_init(&ctx->lock);
3813
	mutex_init(&ctx->mutex);
3814
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3815 3816
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3817 3818
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3834
	}
3835 3836 3837
	ctx->pmu = pmu;

	return ctx;
3838 3839
}

3840 3841 3842 3843
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3844 3845

	rcu_read_lock();
3846
	if (!vpid)
T
Thomas Gleixner 已提交
3847 3848
		task = current;
	else
3849
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3850 3851 3852 3853 3854 3855 3856
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3857 3858 3859
	return task;
}

3860 3861 3862
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3863
static struct perf_event_context *
3864 3865
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3866
{
3867
	struct perf_event_context *ctx, *clone_ctx = NULL;
3868
	struct perf_cpu_context *cpuctx;
3869
	void *task_ctx_data = NULL;
3870
	unsigned long flags;
P
Peter Zijlstra 已提交
3871
	int ctxn, err;
3872
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3873

3874
	if (!task) {
3875
		/* Must be root to operate on a CPU event: */
3876
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3877 3878
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3879
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3880
		ctx = &cpuctx->ctx;
3881
		get_ctx(ctx);
3882
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3883 3884 3885 3886

		return ctx;
	}

P
Peter Zijlstra 已提交
3887 3888 3889 3890 3891
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3892 3893 3894 3895 3896 3897 3898 3899
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3900
retry:
P
Peter Zijlstra 已提交
3901
	ctx = perf_lock_task_context(task, ctxn, &flags);
3902
	if (ctx) {
3903
		clone_ctx = unclone_ctx(ctx);
3904
		++ctx->pin_count;
3905 3906 3907 3908 3909

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3910
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3911 3912 3913

		if (clone_ctx)
			put_ctx(clone_ctx);
3914
	} else {
3915
		ctx = alloc_perf_context(pmu, task);
3916 3917 3918
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3919

3920 3921 3922 3923 3924
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3935
		else {
3936
			get_ctx(ctx);
3937
			++ctx->pin_count;
3938
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3939
		}
3940 3941 3942
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3943
			put_ctx(ctx);
3944 3945 3946 3947

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3948 3949 3950
		}
	}

3951
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3952
	return ctx;
3953

P
Peter Zijlstra 已提交
3954
errout:
3955
	kfree(task_ctx_data);
3956
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3957 3958
}

L
Li Zefan 已提交
3959
static void perf_event_free_filter(struct perf_event *event);
3960
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3961

3962
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3963
{
3964
	struct perf_event *event;
P
Peter Zijlstra 已提交
3965

3966 3967 3968
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3969
	perf_event_free_filter(event);
3970
	kfree(event);
P
Peter Zijlstra 已提交
3971 3972
}

3973 3974
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3985
static bool is_sb_event(struct perf_event *event)
3986
{
3987 3988
	struct perf_event_attr *attr = &event->attr;

3989
	if (event->parent)
3990
		return false;
3991 3992

	if (event->attach_state & PERF_ATTACH_TASK)
3993
		return false;
3994

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
4007 4008
}

4009
static void unaccount_event_cpu(struct perf_event *event, int cpu)
4010
{
4011 4012 4013 4014 4015 4016
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

4040 4041
static void unaccount_event(struct perf_event *event)
{
4042 4043
	bool dec = false;

4044 4045 4046 4047
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
4048
		dec = true;
4049 4050 4051 4052
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
4053 4054
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
4055 4056
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4057
	if (event->attr.freq)
4058
		unaccount_freq_event();
4059
	if (event->attr.context_switch) {
4060
		dec = true;
4061 4062
		atomic_dec(&nr_switch_events);
	}
4063
	if (is_cgroup_event(event))
4064
		dec = true;
4065
	if (has_branch_stack(event))
4066 4067
		dec = true;

4068 4069 4070 4071
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4072 4073

	unaccount_event_cpu(event, event->cpu);
4074 4075

	unaccount_pmu_sb_event(event);
4076
}
4077

4078 4079 4080 4081 4082 4083 4084 4085
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4096
 * _free_event()), the latter -- before the first perf_install_in_context().
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4145
	if ((e1->pmu == e2->pmu) &&
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4171 4172 4173
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4174
static void _free_event(struct perf_event *event)
4175
{
4176
	irq_work_sync(&event->pending);
4177

4178
	unaccount_event(event);
4179

4180
	if (event->rb) {
4181 4182 4183 4184 4185 4186 4187
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4188
		ring_buffer_attach(event, NULL);
4189
		mutex_unlock(&event->mmap_mutex);
4190 4191
	}

S
Stephane Eranian 已提交
4192 4193 4194
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4195 4196 4197 4198 4199 4200
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4201 4202
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4203 4204 4205 4206 4207 4208 4209

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4210 4211
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4212 4213

	call_rcu(&event->rcu_head, free_event_rcu);
4214 4215
}

P
Peter Zijlstra 已提交
4216 4217 4218 4219 4220
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4221
{
P
Peter Zijlstra 已提交
4222 4223 4224 4225 4226 4227
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4228

P
Peter Zijlstra 已提交
4229
	_free_event(event);
T
Thomas Gleixner 已提交
4230 4231
}

4232
/*
4233
 * Remove user event from the owner task.
4234
 */
4235
static void perf_remove_from_owner(struct perf_event *event)
4236
{
P
Peter Zijlstra 已提交
4237
	struct task_struct *owner;
4238

P
Peter Zijlstra 已提交
4239 4240
	rcu_read_lock();
	/*
4241 4242 4243
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4244 4245
	 * owner->perf_event_mutex.
	 */
4246
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4268 4269 4270 4271 4272 4273
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4274
		if (event->owner) {
P
Peter Zijlstra 已提交
4275
			list_del_init(&event->owner_entry);
4276 4277
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4278 4279 4280
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4281 4282 4283 4284 4285 4286 4287
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4298
	struct perf_event_context *ctx = event->ctx;
4299 4300
	struct perf_event *child, *tmp;

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4311 4312
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4313

4314
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4315
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4316
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4317

P
Peter Zijlstra 已提交
4318
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4319
	/*
4320
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4321
	 * anymore.
P
Peter Zijlstra 已提交
4322
	 *
P
Peter Zijlstra 已提交
4323 4324 4325
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4326
	 *
4327 4328
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4329
	 */
P
Peter Zijlstra 已提交
4330 4331 4332 4333
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4334

4335 4336 4337
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4338

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4388 4389
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4390 4391 4392 4393
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4394 4395 4396
/*
 * Called when the last reference to the file is gone.
 */
4397 4398
static int perf_release(struct inode *inode, struct file *file)
{
4399
	perf_event_release_kernel(file->private_data);
4400
	return 0;
4401 4402
}

4403
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4404
{
4405
	struct perf_event *child;
4406 4407
	u64 total = 0;

4408 4409 4410
	*enabled = 0;
	*running = 0;

4411
	mutex_lock(&event->child_mutex);
4412

4413
	(void)perf_event_read(event, false);
4414 4415
	total += perf_event_count(event);

4416 4417 4418 4419 4420 4421
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4422
		(void)perf_event_read(child, false);
4423
		total += perf_event_count(child);
4424 4425 4426
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4427
	mutex_unlock(&event->child_mutex);
4428 4429 4430

	return total;
}
4431
EXPORT_SYMBOL_GPL(perf_event_read_value);
4432

4433
static int __perf_read_group_add(struct perf_event *leader,
4434
					u64 read_format, u64 *values)
4435
{
4436
	struct perf_event_context *ctx = leader->ctx;
4437
	struct perf_event *sub;
4438
	unsigned long flags;
4439
	int n = 1; /* skip @nr */
4440
	int ret;
P
Peter Zijlstra 已提交
4441

4442 4443 4444
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4445

4446 4447 4448 4449 4450 4451 4452 4453 4454
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4465 4466
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4467

4468 4469
	raw_spin_lock_irqsave(&ctx->lock, flags);

4470 4471 4472 4473 4474
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4475

4476
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4477
	return 0;
4478
}
4479

4480 4481 4482 4483 4484
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4485
	int ret;
4486
	u64 *values;
4487

4488
	lockdep_assert_held(&ctx->mutex);
4489

4490 4491 4492
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4493

4494 4495 4496 4497 4498 4499 4500
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4501

4502 4503 4504 4505 4506 4507 4508 4509 4510
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4511

4512
	mutex_unlock(&leader->child_mutex);
4513

4514
	ret = event->read_size;
4515 4516
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4517
	goto out;
4518

4519 4520 4521
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4522
	kfree(values);
4523
	return ret;
4524 4525
}

4526
static int perf_read_one(struct perf_event *event,
4527 4528
				 u64 read_format, char __user *buf)
{
4529
	u64 enabled, running;
4530 4531 4532
	u64 values[4];
	int n = 0;

4533 4534 4535 4536 4537
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4538
	if (read_format & PERF_FORMAT_ID)
4539
		values[n++] = primary_event_id(event);
4540 4541 4542 4543 4544 4545 4546

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4547 4548 4549 4550
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4551
	if (event->state > PERF_EVENT_STATE_EXIT)
4552 4553 4554 4555 4556 4557 4558 4559
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4560
/*
4561
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4562 4563
 */
static ssize_t
4564
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4565
{
4566
	u64 read_format = event->attr.read_format;
4567
	int ret;
T
Thomas Gleixner 已提交
4568

4569
	/*
4570
	 * Return end-of-file for a read on a event that is in
4571 4572 4573
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4574
	if (event->state == PERF_EVENT_STATE_ERROR)
4575 4576
		return 0;

4577
	if (count < event->read_size)
4578 4579
		return -ENOSPC;

4580
	WARN_ON_ONCE(event->ctx->parent_ctx);
4581
	if (read_format & PERF_FORMAT_GROUP)
4582
		ret = perf_read_group(event, read_format, buf);
4583
	else
4584
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4585

4586
	return ret;
T
Thomas Gleixner 已提交
4587 4588 4589 4590 4591
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4592
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4593 4594
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4595

P
Peter Zijlstra 已提交
4596
	ctx = perf_event_ctx_lock(event);
4597
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4598 4599 4600
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4601 4602 4603 4604
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4605
	struct perf_event *event = file->private_data;
4606
	struct ring_buffer *rb;
4607
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4608

4609
	poll_wait(file, &event->waitq, wait);
4610

4611
	if (is_event_hup(event))
4612
		return events;
P
Peter Zijlstra 已提交
4613

4614
	/*
4615 4616
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4617 4618
	 */
	mutex_lock(&event->mmap_mutex);
4619 4620
	rb = event->rb;
	if (rb)
4621
		events = atomic_xchg(&rb->poll, 0);
4622
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4623 4624 4625
	return events;
}

P
Peter Zijlstra 已提交
4626
static void _perf_event_reset(struct perf_event *event)
4627
{
4628
	(void)perf_event_read(event, false);
4629
	local64_set(&event->count, 0);
4630
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4631 4632
}

4633
/*
4634 4635
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4636
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4637
 * task existence requirements of perf_event_enable/disable.
4638
 */
4639 4640
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4641
{
4642
	struct perf_event *child;
P
Peter Zijlstra 已提交
4643

4644
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4645

4646 4647 4648
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4649
		func(child);
4650
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4651 4652
}

4653 4654
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4655
{
4656 4657
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4658

P
Peter Zijlstra 已提交
4659 4660
	lockdep_assert_held(&ctx->mutex);

4661
	event = event->group_leader;
4662

4663 4664
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4665
		perf_event_for_each_child(sibling, func);
4666 4667
}

4668 4669 4670 4671
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4672
{
4673
	u64 value = *((u64 *)info);
4674
	bool active;
4675

4676 4677
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4678
	} else {
4679 4680
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4681
	}
4682 4683 4684 4685

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4686 4687 4688 4689 4690 4691 4692 4693
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4694 4695 4696 4697 4698 4699 4700 4701 4702
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4721
	event_function_call(event, __perf_event_period, &value);
4722

4723
	return 0;
4724 4725
}

4726 4727
static const struct file_operations perf_fops;

4728
static inline int perf_fget_light(int fd, struct fd *p)
4729
{
4730 4731 4732
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4733

4734 4735 4736
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4737
	}
4738 4739
	*p = f;
	return 0;
4740 4741 4742 4743
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4744
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4745
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4746

P
Peter Zijlstra 已提交
4747
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4748
{
4749
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4750
	u32 flags = arg;
4751 4752

	switch (cmd) {
4753
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4754
		func = _perf_event_enable;
4755
		break;
4756
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4757
		func = _perf_event_disable;
4758
		break;
4759
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4760
		func = _perf_event_reset;
4761
		break;
P
Peter Zijlstra 已提交
4762

4763
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4764
		return _perf_event_refresh(event, arg);
4765

4766 4767
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4768

4769 4770 4771 4772 4773 4774 4775 4776 4777
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4778
	case PERF_EVENT_IOC_SET_OUTPUT:
4779 4780 4781
	{
		int ret;
		if (arg != -1) {
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4792 4793 4794
		}
		return ret;
	}
4795

L
Li Zefan 已提交
4796 4797 4798
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4799 4800 4801
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4815
	default:
P
Peter Zijlstra 已提交
4816
		return -ENOTTY;
4817
	}
P
Peter Zijlstra 已提交
4818 4819

	if (flags & PERF_IOC_FLAG_GROUP)
4820
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4821
	else
4822
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4823 4824

	return 0;
4825 4826
}

P
Peter Zijlstra 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4860
int perf_event_task_enable(void)
4861
{
P
Peter Zijlstra 已提交
4862
	struct perf_event_context *ctx;
4863
	struct perf_event *event;
4864

4865
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4866 4867 4868 4869 4870
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4871
	mutex_unlock(&current->perf_event_mutex);
4872 4873 4874 4875

	return 0;
}

4876
int perf_event_task_disable(void)
4877
{
P
Peter Zijlstra 已提交
4878
	struct perf_event_context *ctx;
4879
	struct perf_event *event;
4880

4881
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4882 4883 4884 4885 4886
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4887
	mutex_unlock(&current->perf_event_mutex);
4888 4889 4890 4891

	return 0;
}

4892
static int perf_event_index(struct perf_event *event)
4893
{
P
Peter Zijlstra 已提交
4894 4895 4896
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4897
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4898 4899
		return 0;

4900
	return event->pmu->event_idx(event);
4901 4902
}

4903
static void calc_timer_values(struct perf_event *event,
4904
				u64 *now,
4905 4906
				u64 *enabled,
				u64 *running)
4907
{
4908
	u64 ctx_time;
4909

4910 4911
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4912 4913 4914 4915
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4931 4932
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4933 4934 4935 4936 4937

unlock:
	rcu_read_unlock();
}

4938 4939
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4940 4941 4942
{
}

4943 4944 4945 4946 4947
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4948
void perf_event_update_userpage(struct perf_event *event)
4949
{
4950
	struct perf_event_mmap_page *userpg;
4951
	struct ring_buffer *rb;
4952
	u64 enabled, running, now;
4953 4954

	rcu_read_lock();
4955 4956 4957 4958
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4959 4960 4961 4962 4963 4964 4965 4966 4967
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4968
	calc_timer_values(event, &now, &enabled, &running);
4969

4970
	userpg = rb->user_page;
4971 4972 4973 4974 4975
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4976
	++userpg->lock;
4977
	barrier();
4978
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4979
	userpg->offset = perf_event_count(event);
4980
	if (userpg->index)
4981
		userpg->offset -= local64_read(&event->hw.prev_count);
4982

4983
	userpg->time_enabled = enabled +
4984
			atomic64_read(&event->child_total_time_enabled);
4985

4986
	userpg->time_running = running +
4987
			atomic64_read(&event->child_total_time_running);
4988

4989
	arch_perf_update_userpage(event, userpg, now);
4990

4991
	barrier();
4992
	++userpg->lock;
4993
	preempt_enable();
4994
unlock:
4995
	rcu_read_unlock();
4996 4997
}

4998
static int perf_mmap_fault(struct vm_fault *vmf)
4999
{
5000
	struct perf_event *event = vmf->vma->vm_file->private_data;
5001
	struct ring_buffer *rb;
5002 5003 5004 5005 5006 5007 5008 5009 5010
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
5011 5012
	rb = rcu_dereference(event->rb);
	if (!rb)
5013 5014 5015 5016 5017
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

5018
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5019 5020 5021 5022
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
5023
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5024 5025 5026 5027 5028 5029 5030 5031 5032
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

5033 5034 5035
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
5036
	struct ring_buffer *old_rb = NULL;
5037 5038
	unsigned long flags;

5039 5040 5041 5042 5043 5044
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
5045

5046 5047 5048 5049
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5050

5051 5052
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
5053
	}
5054

5055
	if (rb) {
5056 5057 5058 5059 5060
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5061 5062 5063 5064 5065
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5090 5091 5092 5093 5094 5095 5096 5097
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5098 5099 5100 5101
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5102 5103 5104
	rcu_read_unlock();
}

5105
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5106
{
5107
	struct ring_buffer *rb;
5108

5109
	rcu_read_lock();
5110 5111 5112 5113
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5114 5115 5116
	}
	rcu_read_unlock();

5117
	return rb;
5118 5119
}

5120
void ring_buffer_put(struct ring_buffer *rb)
5121
{
5122
	if (!atomic_dec_and_test(&rb->refcount))
5123
		return;
5124

5125
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5126

5127
	call_rcu(&rb->rcu_head, rb_free_rcu);
5128 5129 5130 5131
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5132
	struct perf_event *event = vma->vm_file->private_data;
5133

5134
	atomic_inc(&event->mmap_count);
5135
	atomic_inc(&event->rb->mmap_count);
5136

5137 5138 5139
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5140
	if (event->pmu->event_mapped)
5141
		event->pmu->event_mapped(event, vma->vm_mm);
5142 5143
}

5144 5145
static void perf_pmu_output_stop(struct perf_event *event);

5146 5147 5148 5149 5150 5151 5152 5153
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5154 5155
static void perf_mmap_close(struct vm_area_struct *vma)
{
5156
	struct perf_event *event = vma->vm_file->private_data;
5157

5158
	struct ring_buffer *rb = ring_buffer_get(event);
5159 5160 5161
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5162

5163
	if (event->pmu->event_unmapped)
5164
		event->pmu->event_unmapped(event, vma->vm_mm);
5165

5166 5167 5168 5169 5170 5171 5172
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5173 5174 5175 5176 5177 5178 5179 5180 5181
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5182 5183 5184
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5185
		/* this has to be the last one */
5186
		rb_free_aux(rb);
5187 5188
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5189 5190 5191
		mutex_unlock(&event->mmap_mutex);
	}

5192 5193 5194
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5195
		goto out_put;
5196

5197
	ring_buffer_attach(event, NULL);
5198 5199 5200
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5201 5202
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5203

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5220

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5232 5233 5234
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5235
		mutex_unlock(&event->mmap_mutex);
5236
		put_event(event);
5237

5238 5239 5240 5241 5242
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5243
	}
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5259
out_put:
5260
	ring_buffer_put(rb); /* could be last */
5261 5262
}

5263
static const struct vm_operations_struct perf_mmap_vmops = {
5264
	.open		= perf_mmap_open,
5265
	.close		= perf_mmap_close, /* non mergable */
5266 5267
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5268 5269 5270 5271
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5272
	struct perf_event *event = file->private_data;
5273
	unsigned long user_locked, user_lock_limit;
5274
	struct user_struct *user = current_user();
5275
	unsigned long locked, lock_limit;
5276
	struct ring_buffer *rb = NULL;
5277 5278
	unsigned long vma_size;
	unsigned long nr_pages;
5279
	long user_extra = 0, extra = 0;
5280
	int ret = 0, flags = 0;
5281

5282 5283 5284
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5285
	 * same rb.
5286 5287 5288 5289
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5290
	if (!(vma->vm_flags & VM_SHARED))
5291
		return -EINVAL;
5292 5293

	vma_size = vma->vm_end - vma->vm_start;
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5354

5355
	/*
5356
	 * If we have rb pages ensure they're a power-of-two number, so we
5357 5358
	 * can do bitmasks instead of modulo.
	 */
5359
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5360 5361
		return -EINVAL;

5362
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5363 5364
		return -EINVAL;

5365
	WARN_ON_ONCE(event->ctx->parent_ctx);
5366
again:
5367
	mutex_lock(&event->mmap_mutex);
5368
	if (event->rb) {
5369
		if (event->rb->nr_pages != nr_pages) {
5370
			ret = -EINVAL;
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5384 5385 5386
		goto unlock;
	}

5387
	user_extra = nr_pages + 1;
5388 5389

accounting:
5390
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5391 5392 5393 5394 5395 5396

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5397
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5398

5399 5400
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5401

5402
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5403
	lock_limit >>= PAGE_SHIFT;
5404
	locked = vma->vm_mm->pinned_vm + extra;
5405

5406 5407
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5408 5409 5410
		ret = -EPERM;
		goto unlock;
	}
5411

5412
	WARN_ON(!rb && event->rb);
5413

5414
	if (vma->vm_flags & VM_WRITE)
5415
		flags |= RING_BUFFER_WRITABLE;
5416

5417
	if (!rb) {
5418 5419 5420
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5421

5422 5423 5424 5425
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5426

5427 5428 5429
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5430

5431
		ring_buffer_attach(event, rb);
5432

5433 5434 5435
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5436 5437
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5438 5439 5440
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5441

5442
unlock:
5443 5444 5445 5446
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5447
		atomic_inc(&event->mmap_count);
5448 5449 5450 5451
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5452
	mutex_unlock(&event->mmap_mutex);
5453

5454 5455 5456 5457
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5458
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5459
	vma->vm_ops = &perf_mmap_vmops;
5460

5461
	if (event->pmu->event_mapped)
5462
		event->pmu->event_mapped(event, vma->vm_mm);
5463

5464
	return ret;
5465 5466
}

P
Peter Zijlstra 已提交
5467 5468
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5469
	struct inode *inode = file_inode(filp);
5470
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5471 5472
	int retval;

A
Al Viro 已提交
5473
	inode_lock(inode);
5474
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5475
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5476 5477 5478 5479 5480 5481 5482

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5483
static const struct file_operations perf_fops = {
5484
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5485 5486 5487
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5488
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5489
	.compat_ioctl		= perf_compat_ioctl,
5490
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5491
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5492 5493
};

5494
/*
5495
 * Perf event wakeup
5496 5497 5498 5499 5500
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5501 5502 5503 5504 5505 5506 5507 5508
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5509
void perf_event_wakeup(struct perf_event *event)
5510
{
5511
	ring_buffer_wakeup(event);
5512

5513
	if (event->pending_kill) {
5514
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5515
		event->pending_kill = 0;
5516
	}
5517 5518
}

5519
static void perf_pending_event(struct irq_work *entry)
5520
{
5521 5522
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5523 5524 5525 5526 5527 5528 5529
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5530

5531 5532
	if (event->pending_disable) {
		event->pending_disable = 0;
5533
		perf_event_disable_local(event);
5534 5535
	}

5536 5537 5538
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5539
	}
5540 5541 5542

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5543 5544
}

5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5566 5567 5568 5569 5570
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5571
	DECLARE_BITMAP(_mask, 64);
5572

5573 5574
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5575 5576 5577 5578 5579 5580 5581
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5582
static void perf_sample_regs_user(struct perf_regs *regs_user,
5583 5584
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5585
{
5586 5587
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5588
		regs_user->regs = regs;
5589 5590
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5591 5592 5593
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5594 5595 5596
	}
}

5597 5598 5599 5600 5601 5602 5603 5604
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5700 5701 5702
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5716
		data->time = perf_event_clock(event);
5717

5718
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5730 5731 5732
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5757 5758 5759

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5760 5761
}

5762 5763 5764
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5765 5766 5767 5768 5769
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5770
static void perf_output_read_one(struct perf_output_handle *handle,
5771 5772
				 struct perf_event *event,
				 u64 enabled, u64 running)
5773
{
5774
	u64 read_format = event->attr.read_format;
5775 5776 5777
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5778
	values[n++] = perf_event_count(event);
5779
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5780
		values[n++] = enabled +
5781
			atomic64_read(&event->child_total_time_enabled);
5782 5783
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5784
		values[n++] = running +
5785
			atomic64_read(&event->child_total_time_running);
5786 5787
	}
	if (read_format & PERF_FORMAT_ID)
5788
		values[n++] = primary_event_id(event);
5789

5790
	__output_copy(handle, values, n * sizeof(u64));
5791 5792 5793
}

static void perf_output_read_group(struct perf_output_handle *handle,
5794 5795
			    struct perf_event *event,
			    u64 enabled, u64 running)
5796
{
5797 5798
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5799 5800 5801 5802 5803 5804
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5805
		values[n++] = enabled;
5806 5807

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5808
		values[n++] = running;
5809

5810
	if (leader != event)
5811 5812
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5813
	values[n++] = perf_event_count(leader);
5814
	if (read_format & PERF_FORMAT_ID)
5815
		values[n++] = primary_event_id(leader);
5816

5817
	__output_copy(handle, values, n * sizeof(u64));
5818

5819
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5820 5821
		n = 0;

5822 5823
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5824 5825
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5826
		values[n++] = perf_event_count(sub);
5827
		if (read_format & PERF_FORMAT_ID)
5828
			values[n++] = primary_event_id(sub);
5829

5830
		__output_copy(handle, values, n * sizeof(u64));
5831 5832 5833
	}
}

5834 5835 5836
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5837 5838 5839 5840 5841 5842 5843
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5844
static void perf_output_read(struct perf_output_handle *handle,
5845
			     struct perf_event *event)
5846
{
5847
	u64 enabled = 0, running = 0, now;
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5859
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5860
		calc_timer_values(event, &now, &enabled, &running);
5861

5862
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5863
		perf_output_read_group(handle, event, enabled, running);
5864
	else
5865
		perf_output_read_one(handle, event, enabled, running);
5866 5867
}

5868 5869 5870
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5871
			struct perf_event *event)
5872 5873 5874 5875 5876
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5877 5878 5879
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5905
		perf_output_read(handle, event);
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5916
			__output_copy(handle, data->callchain, size);
5917 5918 5919 5920 5921 5922 5923
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5955

5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5990

5991
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5992 5993 5994
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5995
	}
A
Andi Kleen 已提交
5996 5997 5998

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5999 6000 6001

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
6002

A
Andi Kleen 已提交
6003 6004 6005
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

6023 6024 6025
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
6039 6040
}

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

6073 6074
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
6075
			 struct perf_event *event,
6076
			 struct pt_regs *regs)
6077
{
6078
	u64 sample_type = event->attr.sample_type;
6079

6080
	header->type = PERF_RECORD_SAMPLE;
6081
	header->size = sizeof(*header) + event->header_size;
6082 6083 6084

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6085

6086
	__perf_event_header__init_id(header, data, event);
6087

6088
	if (sample_type & PERF_SAMPLE_IP)
6089 6090
		data->ip = perf_instruction_pointer(regs);

6091
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6092
		int size = 1;
6093

6094
		data->callchain = perf_callchain(event, regs);
6095 6096 6097 6098 6099

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6100 6101
	}

6102
	if (sample_type & PERF_SAMPLE_RAW) {
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6123

6124
		header->size += size;
6125
	}
6126 6127 6128 6129 6130 6131 6132 6133 6134

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6135

6136
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6137 6138
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6139

6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6163
						     data->regs_user.regs);
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6191 6192 6193

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6194
}
6195

6196 6197 6198 6199 6200 6201 6202
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6203 6204 6205
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6206

6207 6208 6209
	/* protect the callchain buffers */
	rcu_read_lock();

6210
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6211

6212
	if (output_begin(&handle, event, header.size))
6213
		goto exit;
6214

6215
	perf_output_sample(&handle, &header, data, event);
6216

6217
	perf_output_end(&handle);
6218 6219 6220

exit:
	rcu_read_unlock();
6221 6222
}

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6247
/*
6248
 * read event_id
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6259
perf_event_read_event(struct perf_event *event,
6260 6261 6262
			struct task_struct *task)
{
	struct perf_output_handle handle;
6263
	struct perf_sample_data sample;
6264
	struct perf_read_event read_event = {
6265
		.header = {
6266
			.type = PERF_RECORD_READ,
6267
			.misc = 0,
6268
			.size = sizeof(read_event) + event->read_size,
6269
		},
6270 6271
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6272
	};
6273
	int ret;
6274

6275
	perf_event_header__init_id(&read_event.header, &sample, event);
6276
	ret = perf_output_begin(&handle, event, read_event.header.size);
6277 6278 6279
	if (ret)
		return;

6280
	perf_output_put(&handle, read_event);
6281
	perf_output_read(&handle, event);
6282
	perf_event__output_id_sample(event, &handle, &sample);
6283

6284 6285 6286
	perf_output_end(&handle);
}

6287
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6288 6289

static void
6290 6291
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6292
		   void *data, bool all)
6293 6294 6295 6296
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6297 6298 6299 6300 6301 6302 6303
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6304
		output(event, data);
6305 6306 6307
	}
}

6308
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6309 6310 6311 6312 6313
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6314 6315 6316 6317 6318 6319 6320 6321
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6322 6323 6324 6325 6326 6327 6328 6329
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6330 6331 6332 6333 6334 6335
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6336
static void
6337
perf_iterate_sb(perf_iterate_f output, void *data,
6338 6339 6340 6341 6342
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6343 6344 6345
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6346
	/*
6347 6348
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6349 6350 6351
	 * context.
	 */
	if (task_ctx) {
6352 6353
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6354 6355
	}

6356
	perf_iterate_sb_cpu(output, data);
6357 6358

	for_each_task_context_nr(ctxn) {
6359 6360
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6361
			perf_iterate_ctx(ctx, output, data, false);
6362
	}
6363
done:
6364
	preempt_enable();
6365
	rcu_read_unlock();
6366 6367
}

6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6397
		perf_event_stop(event, 1);
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6413
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6414 6415 6416 6417 6418
				   true);
	}
	rcu_read_unlock();
}

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6429 6430 6431
	struct stop_event_data sd = {
		.event	= event,
	};
6432 6433 6434 6435 6436 6437 6438 6439 6440

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6441 6442 6443 6444 6445 6446 6447
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6448 6449
	 */
	if (rcu_dereference(parent->rb) == rb)
6450
		ro->err = __perf_event_stop(&sd);
6451 6452 6453 6454 6455 6456
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6457
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6458 6459 6460 6461 6462
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6463
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6464
	if (cpuctx->task_ctx)
6465
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6466
				   &ro, false);
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6500 6501
}

P
Peter Zijlstra 已提交
6502
/*
P
Peter Zijlstra 已提交
6503 6504
 * task tracking -- fork/exit
 *
6505
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6506 6507
 */

P
Peter Zijlstra 已提交
6508
struct perf_task_event {
6509
	struct task_struct		*task;
6510
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6511 6512 6513 6514 6515 6516

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6517 6518
		u32				tid;
		u32				ptid;
6519
		u64				time;
6520
	} event_id;
P
Peter Zijlstra 已提交
6521 6522
};

6523 6524
static int perf_event_task_match(struct perf_event *event)
{
6525 6526 6527
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6528 6529
}

6530
static void perf_event_task_output(struct perf_event *event,
6531
				   void *data)
P
Peter Zijlstra 已提交
6532
{
6533
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6534
	struct perf_output_handle handle;
6535
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6536
	struct task_struct *task = task_event->task;
6537
	int ret, size = task_event->event_id.header.size;
6538

6539 6540 6541
	if (!perf_event_task_match(event))
		return;

6542
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6543

6544
	ret = perf_output_begin(&handle, event,
6545
				task_event->event_id.header.size);
6546
	if (ret)
6547
		goto out;
P
Peter Zijlstra 已提交
6548

6549 6550
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6551

6552 6553
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6554

6555 6556
	task_event->event_id.time = perf_event_clock(event);

6557
	perf_output_put(&handle, task_event->event_id);
6558

6559 6560
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6561
	perf_output_end(&handle);
6562 6563
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6564 6565
}

6566 6567
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6568
			      int new)
P
Peter Zijlstra 已提交
6569
{
P
Peter Zijlstra 已提交
6570
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6571

6572 6573 6574
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6575 6576
		return;

P
Peter Zijlstra 已提交
6577
	task_event = (struct perf_task_event){
6578 6579
		.task	  = task,
		.task_ctx = task_ctx,
6580
		.event_id    = {
P
Peter Zijlstra 已提交
6581
			.header = {
6582
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6583
				.misc = 0,
6584
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6585
			},
6586 6587
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6588 6589
			/* .tid  */
			/* .ptid */
6590
			/* .time */
P
Peter Zijlstra 已提交
6591 6592 6593
		},
	};

6594
	perf_iterate_sb(perf_event_task_output,
6595 6596
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6597 6598
}

6599
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6600
{
6601
	perf_event_task(task, NULL, 1);
6602
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6603 6604
}

6605 6606 6607 6608 6609
/*
 * comm tracking
 */

struct perf_comm_event {
6610 6611
	struct task_struct	*task;
	char			*comm;
6612 6613 6614 6615 6616 6617 6618
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6619
	} event_id;
6620 6621
};

6622 6623 6624 6625 6626
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6627
static void perf_event_comm_output(struct perf_event *event,
6628
				   void *data)
6629
{
6630
	struct perf_comm_event *comm_event = data;
6631
	struct perf_output_handle handle;
6632
	struct perf_sample_data sample;
6633
	int size = comm_event->event_id.header.size;
6634 6635
	int ret;

6636 6637 6638
	if (!perf_event_comm_match(event))
		return;

6639 6640
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6641
				comm_event->event_id.header.size);
6642 6643

	if (ret)
6644
		goto out;
6645

6646 6647
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6648

6649
	perf_output_put(&handle, comm_event->event_id);
6650
	__output_copy(&handle, comm_event->comm,
6651
				   comm_event->comm_size);
6652 6653 6654

	perf_event__output_id_sample(event, &handle, &sample);

6655
	perf_output_end(&handle);
6656 6657
out:
	comm_event->event_id.header.size = size;
6658 6659
}

6660
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6661
{
6662
	char comm[TASK_COMM_LEN];
6663 6664
	unsigned int size;

6665
	memset(comm, 0, sizeof(comm));
6666
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6667
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6668 6669 6670 6671

	comm_event->comm = comm;
	comm_event->comm_size = size;

6672
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6673

6674
	perf_iterate_sb(perf_event_comm_output,
6675 6676
		       comm_event,
		       NULL);
6677 6678
}

6679
void perf_event_comm(struct task_struct *task, bool exec)
6680
{
6681 6682
	struct perf_comm_event comm_event;

6683
	if (!atomic_read(&nr_comm_events))
6684
		return;
6685

6686
	comm_event = (struct perf_comm_event){
6687
		.task	= task,
6688 6689
		/* .comm      */
		/* .comm_size */
6690
		.event_id  = {
6691
			.header = {
6692
				.type = PERF_RECORD_COMM,
6693
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6694 6695 6696 6697
				/* .size */
			},
			/* .pid */
			/* .tid */
6698 6699 6700
		},
	};

6701
	perf_event_comm_event(&comm_event);
6702 6703
}

6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6830 6831 6832 6833 6834
/*
 * mmap tracking
 */

struct perf_mmap_event {
6835 6836 6837 6838
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6839 6840 6841
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6842
	u32			prot, flags;
6843 6844 6845 6846 6847 6848 6849 6850 6851

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6852
	} event_id;
6853 6854
};

6855 6856 6857 6858 6859 6860 6861 6862
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6863
	       (executable && (event->attr.mmap || event->attr.mmap2));
6864 6865
}

6866
static void perf_event_mmap_output(struct perf_event *event,
6867
				   void *data)
6868
{
6869
	struct perf_mmap_event *mmap_event = data;
6870
	struct perf_output_handle handle;
6871
	struct perf_sample_data sample;
6872
	int size = mmap_event->event_id.header.size;
6873
	int ret;
6874

6875 6876 6877
	if (!perf_event_mmap_match(event, data))
		return;

6878 6879 6880 6881 6882
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6883
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6884 6885
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6886 6887
	}

6888 6889
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6890
				mmap_event->event_id.header.size);
6891
	if (ret)
6892
		goto out;
6893

6894 6895
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6896

6897
	perf_output_put(&handle, mmap_event->event_id);
6898 6899 6900 6901 6902 6903

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6904 6905
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6906 6907
	}

6908
	__output_copy(&handle, mmap_event->file_name,
6909
				   mmap_event->file_size);
6910 6911 6912

	perf_event__output_id_sample(event, &handle, &sample);

6913
	perf_output_end(&handle);
6914 6915
out:
	mmap_event->event_id.header.size = size;
6916 6917
}

6918
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6919
{
6920 6921
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6922 6923
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6924
	u32 prot = 0, flags = 0;
6925 6926 6927
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6928
	char *name;
6929

6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6951
	if (file) {
6952 6953
		struct inode *inode;
		dev_t dev;
6954

6955
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6956
		if (!buf) {
6957 6958
			name = "//enomem";
			goto cpy_name;
6959
		}
6960
		/*
6961
		 * d_path() works from the end of the rb backwards, so we
6962 6963 6964
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6965
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6966
		if (IS_ERR(name)) {
6967 6968
			name = "//toolong";
			goto cpy_name;
6969
		}
6970 6971 6972 6973 6974 6975
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6976

6977
		goto got_name;
6978
	} else {
6979 6980 6981 6982 6983 6984
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6985
		name = (char *)arch_vma_name(vma);
6986 6987
		if (name)
			goto cpy_name;
6988

6989
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6990
				vma->vm_end >= vma->vm_mm->brk) {
6991 6992
			name = "[heap]";
			goto cpy_name;
6993 6994
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6995
				vma->vm_end >= vma->vm_mm->start_stack) {
6996 6997
			name = "[stack]";
			goto cpy_name;
6998 6999
		}

7000 7001
		name = "//anon";
		goto cpy_name;
7002 7003
	}

7004 7005 7006
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
7007
got_name:
7008 7009 7010 7011 7012 7013 7014 7015
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
7016 7017 7018

	mmap_event->file_name = name;
	mmap_event->file_size = size;
7019 7020 7021 7022
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
7023 7024
	mmap_event->prot = prot;
	mmap_event->flags = flags;
7025

7026 7027 7028
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

7029
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7030

7031
	perf_iterate_sb(perf_event_mmap_output,
7032 7033
		       mmap_event,
		       NULL);
7034

7035 7036 7037
	kfree(buf);
}

7038 7039 7040 7041 7042 7043 7044
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
7045
	if (filter->inode != file_inode(file))
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7088
		perf_event_stop(event, 1);
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7099 7100 7101 7102 7103 7104 7105
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7106 7107 7108 7109 7110 7111
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7112
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7113 7114 7115 7116
	}
	rcu_read_unlock();
}

7117
void perf_event_mmap(struct vm_area_struct *vma)
7118
{
7119 7120
	struct perf_mmap_event mmap_event;

7121
	if (!atomic_read(&nr_mmap_events))
7122 7123 7124
		return;

	mmap_event = (struct perf_mmap_event){
7125
		.vma	= vma,
7126 7127
		/* .file_name */
		/* .file_size */
7128
		.event_id  = {
7129
			.header = {
7130
				.type = PERF_RECORD_MMAP,
7131
				.misc = PERF_RECORD_MISC_USER,
7132 7133 7134 7135
				/* .size */
			},
			/* .pid */
			/* .tid */
7136 7137
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7138
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7139
		},
7140 7141 7142 7143
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7144 7145
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7146 7147
	};

7148
	perf_addr_filters_adjust(vma);
7149
	perf_event_mmap_event(&mmap_event);
7150 7151
}

A
Alexander Shishkin 已提交
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7299
	perf_iterate_sb(perf_event_switch_output,
7300 7301 7302 7303
		       &switch_event,
		       NULL);
}

7304 7305 7306 7307
/*
 * IRQ throttle logging
 */

7308
static void perf_log_throttle(struct perf_event *event, int enable)
7309 7310
{
	struct perf_output_handle handle;
7311
	struct perf_sample_data sample;
7312 7313 7314 7315 7316
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7317
		u64				id;
7318
		u64				stream_id;
7319 7320
	} throttle_event = {
		.header = {
7321
			.type = PERF_RECORD_THROTTLE,
7322 7323 7324
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7325
		.time		= perf_event_clock(event),
7326 7327
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7328 7329
	};

7330
	if (enable)
7331
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7332

7333 7334 7335
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7336
				throttle_event.header.size);
7337 7338 7339 7340
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7341
	perf_event__output_id_sample(event, &handle, &sample);
7342 7343 7344
	perf_output_end(&handle);
}

7345 7346 7347 7348 7349
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7365
	    event->attach_state & PERF_ATTACH_ITRACE)
7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7386 7387
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7388
{
7389
	struct hw_perf_event *hwc = &event->hw;
7390
	int ret = 0;
7391
	u64 seq;
7392

7393 7394 7395 7396 7397 7398 7399 7400 7401
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7402
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7403 7404
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7405 7406
			ret = 1;
		}
7407
	}
7408

7409
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7410
		u64 now = perf_clock();
7411
		s64 delta = now - hwc->freq_time_stamp;
7412

7413
		hwc->freq_time_stamp = now;
7414

7415
		if (delta > 0 && delta < 2*TICK_NSEC)
7416
			perf_adjust_period(event, delta, hwc->last_period, true);
7417 7418
	}

7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7446

7447 7448
	/*
	 * XXX event_limit might not quite work as expected on inherited
7449
	 * events
7450 7451
	 */

7452 7453
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7454
		ret = 1;
7455
		event->pending_kill = POLL_HUP;
7456 7457

		perf_event_disable_inatomic(event);
7458 7459
	}

7460
	READ_ONCE(event->overflow_handler)(event, data, regs);
7461

7462
	if (*perf_event_fasync(event) && event->pending_kill) {
7463 7464
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7465 7466
	}

7467
	return ret;
7468 7469
}

7470
int perf_event_overflow(struct perf_event *event,
7471 7472
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7473
{
7474
	return __perf_event_overflow(event, 1, data, regs);
7475 7476
}

7477
/*
7478
 * Generic software event infrastructure
7479 7480
 */

7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7492
/*
7493 7494
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7495 7496 7497 7498
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7499
u64 perf_swevent_set_period(struct perf_event *event)
7500
{
7501
	struct hw_perf_event *hwc = &event->hw;
7502 7503 7504 7505 7506
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7507 7508

again:
7509
	old = val = local64_read(&hwc->period_left);
7510 7511
	if (val < 0)
		return 0;
7512

7513 7514 7515
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7516
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7517
		goto again;
7518

7519
	return nr;
7520 7521
}

7522
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7523
				    struct perf_sample_data *data,
7524
				    struct pt_regs *regs)
7525
{
7526
	struct hw_perf_event *hwc = &event->hw;
7527
	int throttle = 0;
7528

7529 7530
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7531

7532 7533
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7534

7535
	for (; overflow; overflow--) {
7536
		if (__perf_event_overflow(event, throttle,
7537
					    data, regs)) {
7538 7539 7540 7541 7542 7543
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7544
		throttle = 1;
7545
	}
7546 7547
}

P
Peter Zijlstra 已提交
7548
static void perf_swevent_event(struct perf_event *event, u64 nr,
7549
			       struct perf_sample_data *data,
7550
			       struct pt_regs *regs)
7551
{
7552
	struct hw_perf_event *hwc = &event->hw;
7553

7554
	local64_add(nr, &event->count);
7555

7556 7557 7558
	if (!regs)
		return;

7559
	if (!is_sampling_event(event))
7560
		return;
7561

7562 7563 7564 7565 7566 7567
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7568
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7569
		return perf_swevent_overflow(event, 1, data, regs);
7570

7571
	if (local64_add_negative(nr, &hwc->period_left))
7572
		return;
7573

7574
	perf_swevent_overflow(event, 0, data, regs);
7575 7576
}

7577 7578 7579
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7580
	if (event->hw.state & PERF_HES_STOPPED)
7581
		return 1;
P
Peter Zijlstra 已提交
7582

7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7594
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7595
				enum perf_type_id type,
L
Li Zefan 已提交
7596 7597 7598
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7599
{
7600
	if (event->attr.type != type)
7601
		return 0;
7602

7603
	if (event->attr.config != event_id)
7604 7605
		return 0;

7606 7607
	if (perf_exclude_event(event, regs))
		return 0;
7608 7609 7610 7611

	return 1;
}

7612 7613 7614 7615 7616 7617 7618
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7619 7620
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7621
{
7622 7623 7624 7625
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7626

7627 7628
/* For the read side: events when they trigger */
static inline struct hlist_head *
7629
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7630 7631
{
	struct swevent_hlist *hlist;
7632

7633
	hlist = rcu_dereference(swhash->swevent_hlist);
7634 7635 7636
	if (!hlist)
		return NULL;

7637 7638 7639 7640 7641
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7642
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7653
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7654 7655 7656 7657 7658
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7659 7660 7661
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7662
				    u64 nr,
7663 7664
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7665
{
7666
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7667
	struct perf_event *event;
7668
	struct hlist_head *head;
7669

7670
	rcu_read_lock();
7671
	head = find_swevent_head_rcu(swhash, type, event_id);
7672 7673 7674
	if (!head)
		goto end;

7675
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7676
		if (perf_swevent_match(event, type, event_id, data, regs))
7677
			perf_swevent_event(event, nr, data, regs);
7678
	}
7679 7680
end:
	rcu_read_unlock();
7681 7682
}

7683 7684
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7685
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7686
{
7687
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7688

7689
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7690
}
I
Ingo Molnar 已提交
7691
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7692

7693
void perf_swevent_put_recursion_context(int rctx)
7694
{
7695
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7696

7697
	put_recursion_context(swhash->recursion, rctx);
7698
}
7699

7700
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7701
{
7702
	struct perf_sample_data data;
7703

7704
	if (WARN_ON_ONCE(!regs))
7705
		return;
7706

7707
	perf_sample_data_init(&data, addr, 0);
7708
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7721 7722

	perf_swevent_put_recursion_context(rctx);
7723
fail:
7724
	preempt_enable_notrace();
7725 7726
}

7727
static void perf_swevent_read(struct perf_event *event)
7728 7729 7730
{
}

P
Peter Zijlstra 已提交
7731
static int perf_swevent_add(struct perf_event *event, int flags)
7732
{
7733
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7734
	struct hw_perf_event *hwc = &event->hw;
7735 7736
	struct hlist_head *head;

7737
	if (is_sampling_event(event)) {
7738
		hwc->last_period = hwc->sample_period;
7739
		perf_swevent_set_period(event);
7740
	}
7741

P
Peter Zijlstra 已提交
7742 7743
	hwc->state = !(flags & PERF_EF_START);

7744
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7745
	if (WARN_ON_ONCE(!head))
7746 7747 7748
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7749
	perf_event_update_userpage(event);
7750

7751 7752 7753
	return 0;
}

P
Peter Zijlstra 已提交
7754
static void perf_swevent_del(struct perf_event *event, int flags)
7755
{
7756
	hlist_del_rcu(&event->hlist_entry);
7757 7758
}

P
Peter Zijlstra 已提交
7759
static void perf_swevent_start(struct perf_event *event, int flags)
7760
{
P
Peter Zijlstra 已提交
7761
	event->hw.state = 0;
7762
}
I
Ingo Molnar 已提交
7763

P
Peter Zijlstra 已提交
7764
static void perf_swevent_stop(struct perf_event *event, int flags)
7765
{
P
Peter Zijlstra 已提交
7766
	event->hw.state = PERF_HES_STOPPED;
7767 7768
}

7769 7770
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7771
swevent_hlist_deref(struct swevent_htable *swhash)
7772
{
7773 7774
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7775 7776
}

7777
static void swevent_hlist_release(struct swevent_htable *swhash)
7778
{
7779
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7780

7781
	if (!hlist)
7782 7783
		return;

7784
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7785
	kfree_rcu(hlist, rcu_head);
7786 7787
}

7788
static void swevent_hlist_put_cpu(int cpu)
7789
{
7790
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7791

7792
	mutex_lock(&swhash->hlist_mutex);
7793

7794 7795
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7796

7797
	mutex_unlock(&swhash->hlist_mutex);
7798 7799
}

7800
static void swevent_hlist_put(void)
7801 7802 7803 7804
{
	int cpu;

	for_each_possible_cpu(cpu)
7805
		swevent_hlist_put_cpu(cpu);
7806 7807
}

7808
static int swevent_hlist_get_cpu(int cpu)
7809
{
7810
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7811 7812
	int err = 0;

7813
	mutex_lock(&swhash->hlist_mutex);
7814 7815
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7816 7817 7818 7819 7820 7821 7822
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7823
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7824
	}
7825
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7826
exit:
7827
	mutex_unlock(&swhash->hlist_mutex);
7828 7829 7830 7831

	return err;
}

7832
static int swevent_hlist_get(void)
7833
{
7834
	int err, cpu, failed_cpu;
7835

7836
	mutex_lock(&pmus_lock);
7837
	for_each_possible_cpu(cpu) {
7838
		err = swevent_hlist_get_cpu(cpu);
7839 7840 7841 7842 7843
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7844
	mutex_unlock(&pmus_lock);
7845
	return 0;
P
Peter Zijlstra 已提交
7846
fail:
7847 7848 7849
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7850
		swevent_hlist_put_cpu(cpu);
7851
	}
7852
	mutex_unlock(&pmus_lock);
7853 7854 7855
	return err;
}

7856
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7857

7858 7859 7860
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7861

7862 7863
	WARN_ON(event->parent);

7864
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7865
	swevent_hlist_put();
7866 7867 7868 7869
}

static int perf_swevent_init(struct perf_event *event)
{
7870
	u64 event_id = event->attr.config;
7871 7872 7873 7874

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7875 7876 7877 7878 7879 7880
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7881 7882 7883 7884 7885 7886 7887 7888 7889
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7890
	if (event_id >= PERF_COUNT_SW_MAX)
7891 7892 7893 7894 7895
		return -ENOENT;

	if (!event->parent) {
		int err;

7896
		err = swevent_hlist_get();
7897 7898 7899
		if (err)
			return err;

7900
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7901 7902 7903 7904 7905 7906 7907
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7908
	.task_ctx_nr	= perf_sw_context,
7909

7910 7911
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7912
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7913 7914 7915 7916
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7917 7918 7919
	.read		= perf_swevent_read,
};

7920 7921
#ifdef CONFIG_EVENT_TRACING

7922 7923 7924
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7925
	void *record = data->raw->frag.data;
7926

7927 7928 7929 7930
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7931 7932 7933 7934 7935 7936 7937 7938 7939
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7940 7941
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7942 7943 7944 7945
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7946 7947 7948 7949 7950 7951 7952 7953
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7954 7955 7956 7957 7958
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
7959
	if (bpf_prog_array_valid(call)) {
7960
		*(struct pt_regs **)raw_data = regs;
7961
		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7962 7963 7964 7965 7966
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7967
		      rctx, task, NULL);
7968 7969 7970
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7971
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7972
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7973
		   struct task_struct *task, struct perf_event *event)
7974 7975
{
	struct perf_sample_data data;
7976

7977
	struct perf_raw_record raw = {
7978 7979 7980 7981
		.frag = {
			.size = entry_size,
			.data = record,
		},
7982 7983
	};

7984
	perf_sample_data_init(&data, 0, 0);
7985 7986
	data.raw = &raw;

7987 7988
	perf_trace_buf_update(record, event_type);

7989 7990
	/* Use the given event instead of the hlist */
	if (event) {
7991
		if (perf_tp_event_match(event, &data, regs))
7992
			perf_swevent_event(event, count, &data, regs);
7993 7994 7995 7996 7997
	} else {
		hlist_for_each_entry_rcu(event, head, hlist_entry) {
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
7998
	}
7999

8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

8025
	perf_swevent_put_recursion_context(rctx);
8026 8027 8028
}
EXPORT_SYMBOL_GPL(perf_tp_event);

8029
static void tp_perf_event_destroy(struct perf_event *event)
8030
{
8031
	perf_trace_destroy(event);
8032 8033
}

8034
static int perf_tp_event_init(struct perf_event *event)
8035
{
8036 8037
	int err;

8038 8039 8040
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

8041 8042 8043 8044 8045 8046
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8047 8048
	err = perf_trace_init(event);
	if (err)
8049
		return err;
8050

8051
	event->destroy = tp_perf_event_destroy;
8052

8053 8054 8055 8056
	return 0;
}

static struct pmu perf_tracepoint = {
8057 8058
	.task_ctx_nr	= perf_sw_context,

8059
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
8060 8061 8062 8063
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8064 8065 8066 8067 8068
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
8069
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8070
}
L
Li Zefan 已提交
8071 8072 8073 8074 8075 8076

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

8077 8078 8079 8080 8081 8082 8083 8084
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
8085
		.event = event,
8086 8087 8088 8089 8090 8091 8092
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
8093
	ret = BPF_PROG_RUN(event->prog, &ctx);
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8146 8147
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8148
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8149
	struct bpf_prog *prog;
8150
	int ret;
8151 8152

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8153
		return perf_event_set_bpf_handler(event, prog_fd);
8154

8155 8156
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8157 8158
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8159
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8160 8161 8162 8163 8164 8165
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8166
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8167 8168
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8169 8170 8171 8172 8173
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8174
	if (is_tracepoint || is_syscall_tp) {
8175 8176 8177 8178 8179 8180 8181
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8182

8183 8184 8185 8186
	ret = perf_event_attach_bpf_prog(event, prog);
	if (ret)
		bpf_prog_put(prog);
	return ret;
8187 8188 8189 8190
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
8191 8192
	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
		perf_event_free_bpf_handler(event);
8193
		return;
8194
	}
8195
	perf_event_detach_bpf_prog(event);
8196 8197
}

8198
#else
L
Li Zefan 已提交
8199

8200
static inline void perf_tp_register(void)
8201 8202
{
}
L
Li Zefan 已提交
8203 8204 8205 8206 8207

static void perf_event_free_filter(struct perf_event *event)
{
}

8208 8209 8210 8211 8212 8213 8214 8215
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8216
#endif /* CONFIG_EVENT_TRACING */
8217

8218
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8219
void perf_bp_event(struct perf_event *bp, void *data)
8220
{
8221 8222 8223
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8224
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8225

P
Peter Zijlstra 已提交
8226
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8227
		perf_swevent_event(bp, 1, &sample, regs);
8228 8229 8230
}
#endif

8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8336 8337 8338
	if (!ifh->nr_file_filters)
		return;

8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8349 8350 8351 8352 8353
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8368
	perf_event_stop(event, 1);
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8390
	IF_ACT_NONE = -1,
8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8414
	{ IF_ACT_NONE,		NULL },
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8486 8487 8488 8489
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8509
			ret = -EINVAL;
8510 8511 8512 8513 8514 8515 8516
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8544 8545

				event->addr_filters.nr_file_filters++;
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8587
		goto fail_clear_files;
8588 8589

	ret = event->pmu->addr_filters_validate(&filters);
8590 8591
	if (ret)
		goto fail_free_filters;
8592 8593 8594 8595 8596 8597 8598

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8599 8600 8601 8602 8603 8604 8605 8606
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8607 8608 8609
	return ret;
}

8610 8611 8612 8613 8614
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8615 8616 8617
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8628 8629
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8630 8631 8632 8633 8634

	kfree(filter_str);
	return ret;
}

8635 8636 8637
/*
 * hrtimer based swevent callback
 */
8638

8639
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8640
{
8641 8642 8643 8644 8645
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8646

8647
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8648 8649 8650 8651

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8652
	event->pmu->read(event);
8653

8654
	perf_sample_data_init(&data, 0, event->hw.last_period);
8655 8656 8657
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8658
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8659
			if (__perf_event_overflow(event, 1, &data, regs))
8660 8661
				ret = HRTIMER_NORESTART;
	}
8662

8663 8664
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8665

8666
	return ret;
8667 8668
}

8669
static void perf_swevent_start_hrtimer(struct perf_event *event)
8670
{
8671
	struct hw_perf_event *hwc = &event->hw;
8672 8673 8674 8675
	s64 period;

	if (!is_sampling_event(event))
		return;
8676

8677 8678 8679 8680
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8681

8682 8683 8684 8685
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8686 8687
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8688
}
8689 8690

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8691
{
8692 8693
	struct hw_perf_event *hwc = &event->hw;

8694
	if (is_sampling_event(event)) {
8695
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8696
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8697 8698 8699

		hrtimer_cancel(&hwc->hrtimer);
	}
8700 8701
}

P
Peter Zijlstra 已提交
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8722
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8723 8724 8725 8726
		event->attr.freq = 0;
	}
}

8727 8728 8729 8730 8731
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8732
{
8733 8734 8735
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8736
	now = local_clock();
8737 8738
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8739 8740
}

P
Peter Zijlstra 已提交
8741
static void cpu_clock_event_start(struct perf_event *event, int flags)
8742
{
P
Peter Zijlstra 已提交
8743
	local64_set(&event->hw.prev_count, local_clock());
8744 8745 8746
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8747
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8748
{
8749 8750 8751
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8752

P
Peter Zijlstra 已提交
8753 8754 8755 8756
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8757
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8758 8759 8760 8761 8762 8763 8764 8765 8766

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8767 8768 8769 8770
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8771

8772 8773 8774 8775 8776 8777 8778 8779
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8780 8781 8782 8783 8784 8785
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8786 8787
	perf_swevent_init_hrtimer(event);

8788
	return 0;
8789 8790
}

8791
static struct pmu perf_cpu_clock = {
8792 8793
	.task_ctx_nr	= perf_sw_context,

8794 8795
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8796
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8797 8798 8799 8800
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8801 8802 8803 8804 8805 8806 8807 8808
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8809
{
8810 8811
	u64 prev;
	s64 delta;
8812

8813 8814 8815 8816
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8817

P
Peter Zijlstra 已提交
8818
static void task_clock_event_start(struct perf_event *event, int flags)
8819
{
P
Peter Zijlstra 已提交
8820
	local64_set(&event->hw.prev_count, event->ctx->time);
8821 8822 8823
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8824
static void task_clock_event_stop(struct perf_event *event, int flags)
8825 8826 8827
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8828 8829 8830 8831 8832 8833
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8834
	perf_event_update_userpage(event);
8835

P
Peter Zijlstra 已提交
8836 8837 8838 8839 8840 8841
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8842 8843 8844 8845
}

static void task_clock_event_read(struct perf_event *event)
{
8846 8847 8848
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8849 8850 8851 8852 8853

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8854
{
8855 8856 8857 8858 8859 8860
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8861 8862 8863 8864 8865 8866
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8867 8868
	perf_swevent_init_hrtimer(event);

8869
	return 0;
L
Li Zefan 已提交
8870 8871
}

8872
static struct pmu perf_task_clock = {
8873 8874
	.task_ctx_nr	= perf_sw_context,

8875 8876
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8877
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8878 8879 8880 8881
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8882 8883
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8884

P
Peter Zijlstra 已提交
8885
static void perf_pmu_nop_void(struct pmu *pmu)
8886 8887
{
}
L
Li Zefan 已提交
8888

8889 8890 8891 8892
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8893
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8894
{
P
Peter Zijlstra 已提交
8895
	return 0;
L
Li Zefan 已提交
8896 8897
}

8898
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8899 8900

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8901
{
8902 8903 8904 8905 8906
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8907
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8908 8909
}

P
Peter Zijlstra 已提交
8910 8911
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8912 8913 8914 8915 8916 8917 8918
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8919 8920 8921
	perf_pmu_enable(pmu);
	return 0;
}
8922

P
Peter Zijlstra 已提交
8923
static void perf_pmu_cancel_txn(struct pmu *pmu)
8924
{
8925 8926 8927 8928 8929 8930 8931
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8932
	perf_pmu_enable(pmu);
8933 8934
}

8935 8936
static int perf_event_idx_default(struct perf_event *event)
{
8937
	return 0;
8938 8939
}

P
Peter Zijlstra 已提交
8940 8941 8942 8943
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8944
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8945
{
P
Peter Zijlstra 已提交
8946
	struct pmu *pmu;
8947

P
Peter Zijlstra 已提交
8948 8949
	if (ctxn < 0)
		return NULL;
8950

P
Peter Zijlstra 已提交
8951 8952 8953 8954
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8955

P
Peter Zijlstra 已提交
8956
	return NULL;
8957 8958
}

8959 8960
static void free_pmu_context(struct pmu *pmu)
{
8961 8962 8963 8964 8965 8966 8967 8968
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
8969
	mutex_lock(&pmus_lock);
8970
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8971
	mutex_unlock(&pmus_lock);
8972
}
8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8987
static struct idr pmu_idr;
8988

P
Peter Zijlstra 已提交
8989 8990 8991 8992 8993 8994 8995
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8996
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8997

8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

9008 9009
static DEFINE_MUTEX(mux_interval_mutex);

9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

9029
	mutex_lock(&mux_interval_mutex);
9030 9031 9032
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
9033
	cpus_read_lock();
9034
	for_each_online_cpu(cpu) {
9035 9036 9037 9038
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

9039 9040
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9041
	}
9042
	cpus_read_unlock();
9043
	mutex_unlock(&mux_interval_mutex);
9044 9045 9046

	return count;
}
9047
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9048

9049 9050 9051 9052
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
9053
};
9054
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
9055 9056 9057 9058

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
9059
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

9075
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

9088 9089 9090 9091 9092 9093 9094
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9095 9096 9097
out:
	return ret;

9098 9099 9100
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9101 9102 9103 9104 9105
free_dev:
	put_device(pmu->dev);
	goto out;
}

9106
static struct lock_class_key cpuctx_mutex;
9107
static struct lock_class_key cpuctx_lock;
9108

9109
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9110
{
P
Peter Zijlstra 已提交
9111
	int cpu, ret;
9112

9113
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9114 9115 9116 9117
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9118

P
Peter Zijlstra 已提交
9119 9120 9121 9122 9123 9124
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9125 9126 9127
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9128 9129 9130 9131 9132
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9133 9134 9135 9136 9137 9138
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9139
skip_type:
9140 9141 9142
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9143 9144 9145 9146 9147 9148 9149
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9150 9151 9152 9153 9154
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9155 9156 9157
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9158

W
Wei Yongjun 已提交
9159
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9160 9161
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9162
		goto free_dev;
9163

P
Peter Zijlstra 已提交
9164 9165 9166 9167
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9168
		__perf_event_init_context(&cpuctx->ctx);
9169
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9170
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9171
		cpuctx->ctx.pmu = pmu;
9172
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9173

9174
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9175
	}
9176

P
Peter Zijlstra 已提交
9177
got_cpu_context:
P
Peter Zijlstra 已提交
9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9189
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9190 9191
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9192
		}
9193
	}
9194

P
Peter Zijlstra 已提交
9195 9196 9197 9198 9199
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9200 9201 9202
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9203
	list_add_rcu(&pmu->entry, &pmus);
9204
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9205 9206
	ret = 0;
unlock:
9207 9208
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9209
	return ret;
P
Peter Zijlstra 已提交
9210

P
Peter Zijlstra 已提交
9211 9212 9213 9214
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9215 9216 9217 9218
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9219 9220 9221
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9222
}
9223
EXPORT_SYMBOL_GPL(perf_pmu_register);
9224

9225
void perf_pmu_unregister(struct pmu *pmu)
9226
{
9227 9228
	int remove_device;

9229
	mutex_lock(&pmus_lock);
9230
	remove_device = pmu_bus_running;
9231 9232
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9233

9234
	/*
P
Peter Zijlstra 已提交
9235 9236
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9237
	 */
9238
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9239
	synchronize_rcu();
9240

P
Peter Zijlstra 已提交
9241
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9242 9243
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9244 9245 9246 9247 9248 9249
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9250
	free_pmu_context(pmu);
9251
}
9252
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9253

9254 9255
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9256
	struct perf_event_context *ctx = NULL;
9257 9258 9259 9260
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9261 9262

	if (event->group_leader != event) {
9263 9264 9265 9266 9267 9268
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9269 9270 9271
		BUG_ON(!ctx);
	}

9272 9273
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9274 9275 9276 9277

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9278 9279 9280 9281 9282 9283
	if (ret)
		module_put(pmu->module);

	return ret;
}

9284
static struct pmu *perf_init_event(struct perf_event *event)
9285
{
D
Dan Carpenter 已提交
9286
	struct pmu *pmu;
9287
	int idx;
9288
	int ret;
9289 9290

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9291

9292 9293 9294 9295 9296 9297 9298 9299
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9300 9301 9302
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9303
	if (pmu) {
9304
		ret = perf_try_init_event(pmu, event);
9305 9306
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9307
		goto unlock;
9308
	}
P
Peter Zijlstra 已提交
9309

9310
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9311
		ret = perf_try_init_event(pmu, event);
9312
		if (!ret)
P
Peter Zijlstra 已提交
9313
			goto unlock;
9314

9315 9316
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9317
			goto unlock;
9318
		}
9319
	}
P
Peter Zijlstra 已提交
9320 9321
	pmu = ERR_PTR(-ENOENT);
unlock:
9322
	srcu_read_unlock(&pmus_srcu, idx);
9323

9324
	return pmu;
9325 9326
}

9327 9328 9329 9330 9331 9332 9333 9334 9335
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9336 9337 9338 9339 9340 9341 9342
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9343 9344
static void account_pmu_sb_event(struct perf_event *event)
{
9345
	if (is_sb_event(event))
9346 9347 9348
		attach_sb_event(event);
}

9349 9350 9351 9352 9353 9354 9355 9356 9357
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9379 9380
static void account_event(struct perf_event *event)
{
9381 9382
	bool inc = false;

9383 9384 9385
	if (event->parent)
		return;

9386
	if (event->attach_state & PERF_ATTACH_TASK)
9387
		inc = true;
9388 9389 9390 9391
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9392 9393
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9394 9395
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9396 9397
	if (event->attr.freq)
		account_freq_event();
9398 9399
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9400
		inc = true;
9401
	}
9402
	if (has_branch_stack(event))
9403
		inc = true;
9404
	if (is_cgroup_event(event))
9405 9406
		inc = true;

9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9429 9430

	account_event_cpu(event, event->cpu);
9431 9432

	account_pmu_sb_event(event);
9433 9434
}

T
Thomas Gleixner 已提交
9435
/*
9436
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9437
 */
9438
static struct perf_event *
9439
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9440 9441 9442
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9443
		 perf_overflow_handler_t overflow_handler,
9444
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9445
{
P
Peter Zijlstra 已提交
9446
	struct pmu *pmu;
9447 9448
	struct perf_event *event;
	struct hw_perf_event *hwc;
9449
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9450

9451 9452 9453 9454 9455
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9456
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9457
	if (!event)
9458
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9459

9460
	/*
9461
	 * Single events are their own group leaders, with an
9462 9463 9464
	 * empty sibling list:
	 */
	if (!group_leader)
9465
		group_leader = event;
9466

9467 9468
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9469

9470 9471 9472
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9473
	INIT_LIST_HEAD(&event->rb_entry);
9474
	INIT_LIST_HEAD(&event->active_entry);
9475
	INIT_LIST_HEAD(&event->addr_filters.list);
9476 9477
	INIT_HLIST_NODE(&event->hlist_entry);

9478

9479
	init_waitqueue_head(&event->waitq);
9480
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9481

9482
	mutex_init(&event->mmap_mutex);
9483
	raw_spin_lock_init(&event->addr_filters.lock);
9484

9485
	atomic_long_set(&event->refcount, 1);
9486 9487 9488 9489 9490
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9491

9492
	event->parent		= parent_event;
9493

9494
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9495
	event->id		= atomic64_inc_return(&perf_event_id);
9496

9497
	event->state		= PERF_EVENT_STATE_INACTIVE;
9498

9499 9500 9501
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9502 9503 9504
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9505
		 */
9506
		event->hw.target = task;
9507 9508
	}

9509 9510 9511 9512
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9513
	if (!overflow_handler && parent_event) {
9514
		overflow_handler = parent_event->overflow_handler;
9515
		context = parent_event->overflow_handler_context;
9516
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9529
	}
9530

9531 9532 9533
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9534 9535 9536
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9537
	} else {
9538
		event->overflow_handler = perf_event_output_forward;
9539 9540
		event->overflow_handler_context = NULL;
	}
9541

J
Jiri Olsa 已提交
9542
	perf_event__state_init(event);
9543

9544
	pmu = NULL;
9545

9546
	hwc = &event->hw;
9547
	hwc->sample_period = attr->sample_period;
9548
	if (attr->freq && attr->sample_freq)
9549
		hwc->sample_period = 1;
9550
	hwc->last_period = hwc->sample_period;
9551

9552
	local64_set(&hwc->period_left, hwc->sample_period);
9553

9554
	/*
9555 9556
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9557
	 */
9558
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9559
		goto err_ns;
9560 9561 9562

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9563

9564 9565 9566 9567 9568 9569
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9570
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9571
	if (IS_ERR(pmu)) {
9572
		err = PTR_ERR(pmu);
9573
		goto err_ns;
I
Ingo Molnar 已提交
9574
	}
9575

9576 9577 9578 9579
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9580 9581 9582 9583
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9584 9585
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9586
			goto err_per_task;
9587
		}
9588 9589 9590 9591 9592

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9593
	if (!event->parent) {
9594
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9595
			err = get_callchain_buffers(attr->sample_max_stack);
9596
			if (err)
9597
				goto err_addr_filters;
9598
		}
9599
	}
9600

9601 9602 9603
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9604
	return event;
9605

9606 9607 9608
err_addr_filters:
	kfree(event->addr_filters_offs);

9609 9610 9611
err_per_task:
	exclusive_event_destroy(event);

9612 9613 9614
err_pmu:
	if (event->destroy)
		event->destroy(event);
9615
	module_put(pmu->module);
9616
err_ns:
9617 9618
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9619 9620 9621 9622 9623
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9624 9625
}

9626 9627
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9628 9629
{
	u32 size;
9630
	int ret;
9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9655 9656 9657
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9658 9659
	 */
	if (size > sizeof(*attr)) {
9660 9661 9662
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9663

9664 9665
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9666

9667
		for (; addr < end; addr++) {
9668 9669 9670 9671 9672 9673
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9674
		size = sizeof(*attr);
9675 9676 9677 9678 9679 9680
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9681 9682
	attr->size = size;

9683
	if (attr->__reserved_1)
9684 9685 9686 9687 9688 9689 9690 9691
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9720 9721
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9722 9723
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9724
	}
9725

9726
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9727
		ret = perf_reg_validate(attr->sample_regs_user);
9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9746

9747 9748
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9749 9750 9751 9752 9753 9754 9755 9756 9757
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9758 9759
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9760
{
9761
	struct ring_buffer *rb = NULL;
9762 9763
	int ret = -EINVAL;

9764
	if (!output_event)
9765 9766
		goto set;

9767 9768
	/* don't allow circular references */
	if (event == output_event)
9769 9770
		goto out;

9771 9772 9773 9774 9775 9776 9777
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9778
	 * If its not a per-cpu rb, it must be the same task.
9779 9780 9781 9782
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9783 9784 9785 9786 9787 9788
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9789 9790 9791 9792 9793 9794 9795
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9796 9797 9798 9799 9800 9801 9802
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9803
set:
9804
	mutex_lock(&event->mmap_mutex);
9805 9806 9807
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9808

9809
	if (output_event) {
9810 9811 9812
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9813
			goto unlock;
9814 9815
	}

9816
	ring_buffer_attach(event, rb);
9817

9818
	ret = 0;
9819 9820 9821
unlock:
	mutex_unlock(&event->mmap_mutex);

9822 9823 9824 9825
out:
	return ret;
}

P
Peter Zijlstra 已提交
9826 9827 9828 9829 9830 9831 9832 9833 9834
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9903
/**
9904
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9905
 *
9906
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9907
 * @pid:		target pid
I
Ingo Molnar 已提交
9908
 * @cpu:		target cpu
9909
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9910
 */
9911 9912
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9913
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9914
{
9915 9916
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9917
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9918
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9919
	struct file *event_file = NULL;
9920
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9921
	struct task_struct *task = NULL;
9922
	struct pmu *pmu;
9923
	int event_fd;
9924
	int move_group = 0;
9925
	int err;
9926
	int f_flags = O_RDWR;
9927
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9928

9929
	/* for future expandability... */
S
Stephane Eranian 已提交
9930
	if (flags & ~PERF_FLAG_ALL)
9931 9932
		return -EINVAL;

9933 9934 9935
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9936

9937 9938 9939 9940 9941
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9942 9943 9944 9945 9946
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9947
	if (attr.freq) {
9948
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9949
			return -EINVAL;
9950 9951 9952
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9953 9954
	}

9955 9956 9957 9958 9959
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

9960 9961 9962
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9963 9964 9965 9966 9967 9968 9969 9970 9971
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9972 9973 9974 9975
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9976 9977 9978
	if (event_fd < 0)
		return event_fd;

9979
	if (group_fd != -1) {
9980 9981
		err = perf_fget_light(group_fd, &group);
		if (err)
9982
			goto err_fd;
9983
		group_leader = group.file->private_data;
9984 9985 9986 9987 9988 9989
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9990
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9991 9992 9993 9994 9995 9996 9997
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9998 9999 10000 10001 10002 10003
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

10004 10005 10006
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
10007
			goto err_task;
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

10022 10023 10024
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

10025
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10026
				 NULL, NULL, cgroup_fd);
10027 10028
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
10029
		goto err_cred;
10030 10031
	}

10032 10033
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10034
			err = -EOPNOTSUPP;
10035 10036 10037 10038
			goto err_alloc;
		}
	}

10039 10040 10041 10042 10043
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
10044

10045 10046 10047 10048 10049 10050
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

10051 10052 10053
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
10067
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10068 10069 10070 10071 10072 10073 10074 10075
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
10076 10077 10078 10079

	/*
	 * Get the target context (task or percpu):
	 */
10080
	ctx = find_get_context(pmu, task, event);
10081 10082
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10083
		goto err_alloc;
10084 10085
	}

10086 10087 10088 10089 10090
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10091
	/*
10092
	 * Look up the group leader (we will attach this event to it):
10093
	 */
10094
	if (group_leader) {
10095
		err = -EINVAL;
10096 10097

		/*
I
Ingo Molnar 已提交
10098 10099 10100 10101
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10102
			goto err_context;
10103 10104 10105 10106 10107

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10108
		/*
10109 10110 10111
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10112
		 */
10113 10114
		if (group_leader->cpu != event->cpu)
			goto err_context;
10115

10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10130

10131 10132 10133
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10134
		if (attr.exclusive || attr.pinned)
10135
			goto err_context;
10136 10137 10138 10139 10140
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10141
			goto err_context;
10142
	}
T
Thomas Gleixner 已提交
10143

10144 10145
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10146 10147
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10148
		event_file = NULL;
10149
		goto err_context;
10150
	}
10151

10152
	if (move_group) {
10153 10154
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10155 10156 10157 10158
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10178 10179 10180 10181
	} else {
		mutex_lock(&ctx->mutex);
	}

10182 10183 10184 10185 10186
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10187 10188 10189 10190 10191
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10209 10210 10211 10212 10213 10214 10215
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10216

10217 10218 10219
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10220

10221 10222
	WARN_ON_ONCE(ctx->parent_ctx);

10223 10224 10225 10226 10227
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10228
	if (move_group) {
P
Peter Zijlstra 已提交
10229 10230 10231 10232
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10233
		perf_remove_from_context(group_leader, 0);
10234
		put_ctx(gctx);
J
Jiri Olsa 已提交
10235

10236 10237
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10238
			perf_remove_from_context(sibling, 0);
10239 10240 10241
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10242 10243 10244 10245
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10246
		synchronize_rcu();
P
Peter Zijlstra 已提交
10247

10248 10249 10250 10251 10252 10253 10254 10255 10256 10257
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10258 10259
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10260
			perf_event__state_init(sibling);
10261
			perf_install_in_context(ctx, sibling, sibling->cpu);
10262 10263
			get_ctx(ctx);
		}
10264 10265 10266 10267 10268 10269 10270 10271 10272

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10273 10274
	}

10275 10276 10277 10278 10279 10280 10281 10282 10283
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10284 10285
	event->owner = current;

10286
	perf_install_in_context(ctx, event, event->cpu);
10287
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10288

10289
	if (move_group)
10290
		perf_event_ctx_unlock(group_leader, gctx);
10291
	mutex_unlock(&ctx->mutex);
10292

10293 10294 10295 10296 10297
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10298 10299 10300
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10301

10302 10303 10304 10305 10306 10307
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10308
	fdput(group);
10309 10310
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10311

10312 10313
err_locked:
	if (move_group)
10314
		perf_event_ctx_unlock(group_leader, gctx);
10315 10316 10317
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10318
err_context:
10319
	perf_unpin_context(ctx);
10320
	put_ctx(ctx);
10321
err_alloc:
P
Peter Zijlstra 已提交
10322 10323 10324 10325 10326 10327
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10328 10329 10330
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10331
err_task:
P
Peter Zijlstra 已提交
10332 10333
	if (task)
		put_task_struct(task);
10334
err_group_fd:
10335
	fdput(group);
10336 10337
err_fd:
	put_unused_fd(event_fd);
10338
	return err;
T
Thomas Gleixner 已提交
10339 10340
}

10341 10342 10343 10344 10345
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10346
 * @task: task to profile (NULL for percpu)
10347 10348 10349
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10350
				 struct task_struct *task,
10351 10352
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10353 10354
{
	struct perf_event_context *ctx;
10355
	struct perf_event *event;
10356
	int err;
10357

10358 10359 10360
	/*
	 * Get the target context (task or percpu):
	 */
10361

10362
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10363
				 overflow_handler, context, -1);
10364 10365 10366 10367
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10368

10369
	/* Mark owner so we could distinguish it from user events. */
10370
	event->owner = TASK_TOMBSTONE;
10371

10372
	ctx = find_get_context(event->pmu, task, event);
10373 10374
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10375
		goto err_free;
10376
	}
10377 10378 10379

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10380 10381 10382 10383 10384
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10400 10401
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10402
		goto err_unlock;
10403 10404
	}

10405
	perf_install_in_context(ctx, event, cpu);
10406
	perf_unpin_context(ctx);
10407 10408 10409 10410
	mutex_unlock(&ctx->mutex);

	return event;

10411 10412 10413 10414
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10415 10416 10417
err_free:
	free_event(event);
err:
10418
	return ERR_PTR(err);
10419
}
10420
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10421

10422 10423 10424 10425 10426 10427 10428 10429 10430 10431
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10432 10433 10434 10435 10436
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10437 10438
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10439
		perf_remove_from_context(event, 0);
10440
		unaccount_event_cpu(event, src_cpu);
10441
		put_ctx(src_ctx);
10442
		list_add(&event->migrate_entry, &events);
10443 10444
	}

10445 10446 10447
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10448 10449
	synchronize_rcu();

10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10474 10475
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10476 10477
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10478
		account_event_cpu(event, dst_cpu);
10479 10480 10481 10482
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10483
	mutex_unlock(&src_ctx->mutex);
10484 10485 10486
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10487
static void sync_child_event(struct perf_event *child_event,
10488
			       struct task_struct *child)
10489
{
10490
	struct perf_event *parent_event = child_event->parent;
10491
	u64 child_val;
10492

10493 10494
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10495

P
Peter Zijlstra 已提交
10496
	child_val = perf_event_count(child_event);
10497 10498 10499 10500

	/*
	 * Add back the child's count to the parent's count:
	 */
10501
	atomic64_add(child_val, &parent_event->child_count);
10502 10503 10504 10505
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10506 10507
}

10508
static void
10509 10510 10511
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10512
{
10513 10514
	struct perf_event *parent_event = child_event->parent;

10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10527 10528 10529
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10530
	if (parent_event)
10531 10532
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10533
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10534
	raw_spin_unlock_irq(&child_ctx->lock);
10535

10536
	/*
10537
	 * Parent events are governed by their filedesc, retain them.
10538
	 */
10539
	if (!parent_event) {
10540
		perf_event_wakeup(child_event);
10541
		return;
10542
	}
10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10563 10564
}

P
Peter Zijlstra 已提交
10565
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10566
{
10567
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10568 10569 10570
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10571

10572
	child_ctx = perf_pin_task_context(child, ctxn);
10573
	if (!child_ctx)
10574 10575
		return;

10576
	/*
10577 10578 10579 10580 10581 10582 10583 10584
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10585
	 */
10586
	mutex_lock(&child_ctx->mutex);
10587 10588

	/*
10589 10590 10591
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10592
	 */
10593
	raw_spin_lock_irq(&child_ctx->lock);
10594
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10595

10596
	/*
10597 10598
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10599
	 */
10600 10601 10602 10603
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10604

10605
	clone_ctx = unclone_ctx(child_ctx);
10606
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10607

10608 10609
	if (clone_ctx)
		put_ctx(clone_ctx);
10610

P
Peter Zijlstra 已提交
10611
	/*
10612 10613 10614
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10615
	 */
10616
	perf_event_task(child, child_ctx, 0);
10617

10618
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10619
		perf_event_exit_event(child_event, child_ctx, child);
10620

10621 10622 10623
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10624 10625
}

P
Peter Zijlstra 已提交
10626 10627
/*
 * When a child task exits, feed back event values to parent events.
10628 10629 10630
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10631 10632 10633
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10634
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10635 10636
	int ctxn;

P
Peter Zijlstra 已提交
10637 10638 10639 10640 10641 10642 10643 10644 10645 10646
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10647
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10648 10649 10650
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10651 10652
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10653 10654 10655 10656 10657 10658 10659 10660

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10661 10662
}

10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10675
	put_event(parent);
10676

P
Peter Zijlstra 已提交
10677
	raw_spin_lock_irq(&ctx->lock);
10678
	perf_group_detach(event);
10679
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10680
	raw_spin_unlock_irq(&ctx->lock);
10681 10682 10683
	free_event(event);
}

10684
/*
P
Peter Zijlstra 已提交
10685
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10686
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10687 10688 10689
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10690
 */
10691
void perf_event_free_task(struct task_struct *task)
10692
{
P
Peter Zijlstra 已提交
10693
	struct perf_event_context *ctx;
10694
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10695
	int ctxn;
10696

P
Peter Zijlstra 已提交
10697 10698 10699 10700
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10701

P
Peter Zijlstra 已提交
10702
		mutex_lock(&ctx->mutex);
10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10714

10715
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10716
			perf_free_event(event, ctx);
10717

P
Peter Zijlstra 已提交
10718 10719 10720
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10721 10722
}

10723 10724 10725 10726 10727 10728 10729 10730
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10731
struct file *perf_event_get(unsigned int fd)
10732
{
10733
	struct file *file;
10734

10735 10736 10737
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10738

10739 10740 10741 10742
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10743

10744
	return file;
10745 10746 10747 10748 10749 10750 10751 10752 10753 10754
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10755
/*
10756 10757 10758 10759 10760 10761
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10762 10763 10764 10765 10766 10767 10768 10769 10770
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10771
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10772
	struct perf_event *child_event;
10773
	unsigned long flags;
P
Peter Zijlstra 已提交
10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10786
					   child,
P
Peter Zijlstra 已提交
10787
					   group_leader, parent_event,
10788
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10789 10790
	if (IS_ERR(child_event))
		return child_event;
10791

10792 10793 10794 10795 10796 10797 10798
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10799 10800
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10801
		mutex_unlock(&parent_event->child_mutex);
10802 10803 10804 10805
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10806 10807 10808 10809 10810 10811 10812
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10813
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10830 10831
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10832

10833 10834 10835 10836
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10837
	perf_event__id_header_size(child_event);
10838

P
Peter Zijlstra 已提交
10839 10840 10841
	/*
	 * Link it up in the child's context:
	 */
10842
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10843
	add_event_to_ctx(child_event, child_ctx);
10844
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10845 10846 10847 10848 10849 10850 10851 10852 10853 10854

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10855 10856 10857 10858 10859 10860 10861 10862 10863 10864
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10879 10880 10881 10882 10883
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10884 10885 10886 10887 10888 10889 10890
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10891 10892
}

10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10904 10905 10906
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10907
		   struct task_struct *child, int ctxn,
10908 10909 10910
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10911
	struct perf_event_context *child_ctx;
10912 10913 10914 10915

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10916 10917
	}

10918
	child_ctx = child->perf_event_ctxp[ctxn];
10919 10920 10921 10922 10923 10924 10925
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10926
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10927 10928
		if (!child_ctx)
			return -ENOMEM;
10929

P
Peter Zijlstra 已提交
10930
		child->perf_event_ctxp[ctxn] = child_ctx;
10931 10932 10933 10934 10935 10936 10937 10938 10939
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10940 10941
}

10942
/*
10943
 * Initialize the perf_event context in task_struct
10944
 */
10945
static int perf_event_init_context(struct task_struct *child, int ctxn)
10946
{
10947
	struct perf_event_context *child_ctx, *parent_ctx;
10948 10949
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10950
	struct task_struct *parent = current;
10951
	int inherited_all = 1;
10952
	unsigned long flags;
10953
	int ret = 0;
10954

P
Peter Zijlstra 已提交
10955
	if (likely(!parent->perf_event_ctxp[ctxn]))
10956 10957
		return 0;

10958
	/*
10959 10960
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10961
	 */
P
Peter Zijlstra 已提交
10962
	parent_ctx = perf_pin_task_context(parent, ctxn);
10963 10964
	if (!parent_ctx)
		return 0;
10965

10966 10967 10968 10969 10970 10971 10972
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10973 10974 10975 10976
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10977
	mutex_lock(&parent_ctx->mutex);
10978 10979 10980 10981 10982

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10983
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10984 10985
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10986
		if (ret)
10987
			goto out_unlock;
10988
	}
10989

10990 10991 10992 10993 10994 10995 10996 10997 10998
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10999
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
11000 11001
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11002
		if (ret)
11003
			goto out_unlock;
11004 11005
	}

11006 11007 11008
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
11009
	child_ctx = child->perf_event_ctxp[ctxn];
11010

11011
	if (child_ctx && inherited_all) {
11012 11013 11014
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
11015 11016 11017
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
11018
		 */
P
Peter Zijlstra 已提交
11019
		cloned_ctx = parent_ctx->parent_ctx;
11020 11021
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
11022
			child_ctx->parent_gen = parent_ctx->parent_gen;
11023 11024 11025 11026 11027
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
11028 11029
	}

P
Peter Zijlstra 已提交
11030
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11031
out_unlock:
11032
	mutex_unlock(&parent_ctx->mutex);
11033

11034
	perf_unpin_context(parent_ctx);
11035
	put_ctx(parent_ctx);
11036

11037
	return ret;
11038 11039
}

P
Peter Zijlstra 已提交
11040 11041 11042 11043 11044 11045 11046
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

11047 11048 11049 11050
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
11051 11052
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
11053 11054
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
11055
			return ret;
P
Peter Zijlstra 已提交
11056
		}
P
Peter Zijlstra 已提交
11057 11058 11059 11060 11061
	}

	return 0;
}

11062 11063
static void __init perf_event_init_all_cpus(void)
{
11064
	struct swevent_htable *swhash;
11065 11066
	int cpu;

11067 11068
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

11069
	for_each_possible_cpu(cpu) {
11070 11071
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
11072
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11073 11074 11075

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11076

11077 11078 11079
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
11080
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11081 11082 11083
	}
}

11084
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11085
{
P
Peter Zijlstra 已提交
11086
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
11087

11088
	mutex_lock(&swhash->hlist_mutex);
11089
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11090 11091
		struct swevent_hlist *hlist;

11092 11093 11094
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11095
	}
11096
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11097 11098
}

11099
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11100
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11101
{
P
Peter Zijlstra 已提交
11102
	struct perf_event_context *ctx = __info;
11103 11104
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11105

11106 11107
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
11108
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11109
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11110
}
P
Peter Zijlstra 已提交
11111 11112 11113

static void perf_event_exit_cpu_context(int cpu)
{
11114
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11115 11116 11117
	struct perf_event_context *ctx;
	struct pmu *pmu;

11118 11119 11120 11121
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11122 11123 11124

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11125
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11126 11127
		mutex_unlock(&ctx->mutex);
	}
11128 11129
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11130
}
11131 11132 11133 11134 11135
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11136

11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11160
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11161
{
P
Peter Zijlstra 已提交
11162
	perf_event_exit_cpu_context(cpu);
11163
	return 0;
T
Thomas Gleixner 已提交
11164 11165
}

P
Peter Zijlstra 已提交
11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11186
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11187
{
11188 11189
	int ret;

P
Peter Zijlstra 已提交
11190 11191
	idr_init(&pmu_idr);

11192
	perf_event_init_all_cpus();
11193
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11194 11195 11196
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11197
	perf_tp_register();
11198
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11199
	register_reboot_notifier(&perf_reboot_notifier);
11200 11201 11202

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11203

11204 11205 11206 11207 11208 11209
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11210
}
P
Peter Zijlstra 已提交
11211

11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11223
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11224

P
Peter Zijlstra 已提交
11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11252 11253

#ifdef CONFIG_CGROUP_PERF
11254 11255
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11256 11257 11258
{
	struct perf_cgroup *jc;

11259
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11272
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11273
{
11274 11275
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11276 11277 11278 11279 11280 11281 11282
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11283
	rcu_read_lock();
S
Stephane Eranian 已提交
11284
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11285
	rcu_read_unlock();
S
Stephane Eranian 已提交
11286 11287 11288
	return 0;
}

11289
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11290
{
11291
	struct task_struct *task;
11292
	struct cgroup_subsys_state *css;
11293

11294
	cgroup_taskset_for_each(task, css, tset)
11295
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11296 11297
}

11298
struct cgroup_subsys perf_event_cgrp_subsys = {
11299 11300
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11301
	.attach		= perf_cgroup_attach,
11302 11303 11304 11305 11306 11307
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11308
	.threaded	= true,
S
Stephane Eranian 已提交
11309 11310
};
#endif /* CONFIG_CGROUP_PERF */