fsl_ssi.c 48.8 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38
#include <linux/ctype.h>
39 40
#include <linux/device.h>
#include <linux/delay.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/spinlock.h>
44
#include <linux/of.h>
45 46
#include <linux/of_address.h>
#include <linux/of_irq.h>
47
#include <linux/of_platform.h>
48 49 50 51 52 53

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
54
#include <sound/dmaengine_pcm.h>
55 56

#include "fsl_ssi.h"
57
#include "imx-pcm.h"
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

81 82 83 84 85 86
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
87 88 89 90

enum fsl_ssi_type {
	FSL_SSI_MCP8610,
	FSL_SSI_MX21,
91
	FSL_SSI_MX35,
92 93 94
	FSL_SSI_MX51,
};

95 96 97 98 99 100 101 102 103 104 105
struct fsl_ssi_reg_val {
	u32 sier;
	u32 srcr;
	u32 stcr;
	u32 scr;
};

struct fsl_ssi_rxtx_reg_val {
	struct fsl_ssi_reg_val rx;
	struct fsl_ssi_reg_val tx;
};
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_SACCEN:
	case CCSR_SSI_SACCDIS:
		return false;
	default:
		return true;
	}
}

static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_STX0:
	case CCSR_SSI_STX1:
	case CCSR_SSI_SRX0:
	case CCSR_SSI_SRX1:
	case CCSR_SSI_SISR:
	case CCSR_SSI_SFCSR:
127
	case CCSR_SSI_SACNT:
128 129 130 131
	case CCSR_SSI_SACADD:
	case CCSR_SSI_SACDAT:
	case CCSR_SSI_SATAG:
	case CCSR_SSI_SACCST:
132
	case CCSR_SSI_SOR:
133 134 135 136 137 138
		return true;
	default:
		return false;
	}
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_SRX0:
	case CCSR_SSI_SRX1:
	case CCSR_SSI_SISR:
	case CCSR_SSI_SACADD:
	case CCSR_SSI_SACDAT:
	case CCSR_SSI_SATAG:
		return true;
	default:
		return false;
	}
}

154 155 156 157 158 159 160 161 162 163 164 165
static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_SRX0:
	case CCSR_SSI_SRX1:
	case CCSR_SSI_SACCST:
		return false;
	default:
		return true;
	}
}

M
Markus Pargmann 已提交
166 167 168 169 170 171
static const struct regmap_config fsl_ssi_regconfig = {
	.max_register = CCSR_SSI_SACCDIS,
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = 4,
	.val_format_endian = REGMAP_ENDIAN_NATIVE,
172
	.num_reg_defaults_raw = CCSR_SSI_SACCDIS / sizeof(uint32_t) + 1,
173 174
	.readable_reg = fsl_ssi_readable_reg,
	.volatile_reg = fsl_ssi_volatile_reg,
175
	.precious_reg = fsl_ssi_precious_reg,
176
	.writeable_reg = fsl_ssi_writeable_reg,
177
	.cache_type = REGCACHE_FLAT,
M
Markus Pargmann 已提交
178
};
179

180 181
struct fsl_ssi_soc_data {
	bool imx;
182
	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
183 184 185 186
	bool offline_config;
	u32 sisr_write_mask;
};

187
/**
188
 * fsl_ssi: per-SSI private data
189
 *
M
Markus Pargmann 已提交
190
 * @reg: Pointer to the regmap registers
191
 * @irq: IRQ of this SSI
192 193 194 195 196 197 198 199 200
 * @cpu_dai_drv: CPU DAI driver for this device
 *
 * @dai_fmt: DAI configuration this device is currently used with
 * @i2s_mode: i2s and network mode configuration of the device. Is used to
 * switch between normal and i2s/network mode
 * mode depending on the number of channels
 * @use_dma: DMA is used or FIQ with stream filter
 * @use_dual_fifo: DMA with support for both FIFOs used
 * @fifo_deph: Depth of the SSI FIFOs
201 202
 * @slot_width: width of each DAI slot
 * @slots: number of slots
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
 *
 * @clk: SSI clock
 * @baudclk: SSI baud clock for master mode
 * @baudclk_streams: Active streams that are using baudclk
 *
 * @dma_params_tx: DMA transmit parameters
 * @dma_params_rx: DMA receive parameters
 * @ssi_phys: physical address of the SSI registers
 *
 * @fiq_params: FIQ stream filtering parameters
 *
 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
 *
 * @dbg_stats: Debugging statistics
 *
219
 * @soc: SoC specific data
220 221 222 223 224 225
 *
 * @fifo_watermark: the FIFO watermark setting.  Notifies DMA when
 *             there are @fifo_watermark or fewer words in TX fifo or
 *             @fifo_watermark or more empty words in RX fifo.
 * @dma_maxburst: max number of words to transfer in one go.  So far,
 *             this is always the same as fifo_watermark.
226
 */
227
struct fsl_ssi {
M
Markus Pargmann 已提交
228
	struct regmap *regs;
229
	int irq;
230
	struct snd_soc_dai_driver cpu_dai_drv;
231

232 233
	unsigned int dai_fmt;
	u8 i2s_mode;
234
	bool use_dma;
235
	bool use_dual_fifo;
236
	bool has_ipg_clk_name;
237
	unsigned int fifo_depth;
238 239
	unsigned int slot_width;
	unsigned int slots;
240 241
	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;

242
	struct clk *clk;
243
	struct clk *baudclk;
244
	unsigned int baudclk_streams;
245

246
	/* regcache for volatile regs */
247
	u32 regcache_sfcsr;
248
	u32 regcache_sacnt;
249

250
	/* DMA params */
251 252
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
253 254 255
	dma_addr_t ssi_phys;

	/* params for non-dma FIQ stream filtered mode */
256
	struct imx_pcm_fiq_params fiq_params;
257 258 259 260

	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
	 * should be replaced with simple-sound-card. */
	struct platform_device *pdev;
261

262
	struct fsl_ssi_dbg dbg_stats;
263

264
	const struct fsl_ssi_soc_data *soc;
265
	struct device *dev;
266 267 268

	u32 fifo_watermark;
	u32 dma_maxburst;
269 270

	struct mutex ac97_reg_lock;
271
};
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

/*
 * imx51 and later SoCs have a slightly different IP that allows the
 * SSI configuration while the SSI unit is running.
 *
 * More important, it is necessary on those SoCs to configure the
 * sperate TX/RX DMA bits just before starting the stream
 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
 * sends any DMA requests to the SDMA unit, otherwise it is not defined
 * how the SDMA unit handles the DMA request.
 *
 * SDMA units are present on devices starting at imx35 but the imx35
 * reference manual states that the DMA bits should not be changed
 * while the SSI unit is running (SSIEN). So we support the necessary
 * online configuration of fsl-ssi starting at imx51.
 */

289 290 291 292 293 294 295 296 297 298
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
	.imx = false,
	.offline_config = true,
	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
};

static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
	.imx = true,
299
	.imx21regs = true,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	.offline_config = true,
	.sisr_write_mask = 0,
};

static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
	.imx = true,
	.offline_config = true,
	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
};

static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
	.imx = true,
	.offline_config = false,
	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
};

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

328
static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
329
{
330
	return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
331
		SND_SOC_DAIFMT_AC97;
332 333
}

334
static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi)
335
{
336
	return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
337 338 339
		SND_SOC_DAIFMT_CBS_CFS;
}

340
static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
341
{
342
	return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
343 344
		SND_SOC_DAIFMT_CBM_CFS;
}
345 346 347 348 349 350 351 352 353 354
/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
355
 * @dev_id: pointer to the fsl_ssi structure for this SSI device
356 357 358
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
359 360
	struct fsl_ssi *ssi = dev_id;
	struct regmap *regs = ssi->regs;
361
	__be32 sisr;
362
	__be32 sisr2;
363 364 365 366 367

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
M
Markus Pargmann 已提交
368
	regmap_read(regs, CCSR_SSI_SISR, &sisr);
369

370
	sisr2 = sisr & ssi->soc->sisr_write_mask;
371 372
	/* Clear the bits that we set */
	if (sisr2)
M
Markus Pargmann 已提交
373
		regmap_write(regs, CCSR_SSI_SISR, sisr2);
374

375
	fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
376

377
	return IRQ_HANDLED;
378 379
}

380 381 382
/*
 * Enable/Disable all rx/tx config flags at once.
 */
383
static void fsl_ssi_rxtx_config(struct fsl_ssi *ssi, bool enable)
384
{
385 386
	struct regmap *regs = ssi->regs;
	struct fsl_ssi_rxtx_reg_val *vals = &ssi->rxtx_reg_val;
387 388

	if (enable) {
M
Markus Pargmann 已提交
389 390 391 392 393 394 395 396 397
		regmap_update_bits(regs, CCSR_SSI_SIER,
				vals->rx.sier | vals->tx.sier,
				vals->rx.sier | vals->tx.sier);
		regmap_update_bits(regs, CCSR_SSI_SRCR,
				vals->rx.srcr | vals->tx.srcr,
				vals->rx.srcr | vals->tx.srcr);
		regmap_update_bits(regs, CCSR_SSI_STCR,
				vals->rx.stcr | vals->tx.stcr,
				vals->rx.stcr | vals->tx.stcr);
398
	} else {
M
Markus Pargmann 已提交
399 400 401 402 403 404
		regmap_update_bits(regs, CCSR_SSI_SRCR,
				vals->rx.srcr | vals->tx.srcr, 0);
		regmap_update_bits(regs, CCSR_SSI_STCR,
				vals->rx.stcr | vals->tx.stcr, 0);
		regmap_update_bits(regs, CCSR_SSI_SIER,
				vals->rx.sier | vals->tx.sier, 0);
405 406 407
	}
}

408 409 410 411 412 413 414 415
/*
 * Clear RX or TX FIFO to remove samples from the previous
 * stream session which may be still present in the FIFO and
 * may introduce bad samples and/or channel slipping.
 *
 * Note: The SOR is not documented in recent IMX datasheet, but
 * is described in IMX51 reference manual at section 56.3.3.15.
 */
416
static void fsl_ssi_fifo_clear(struct fsl_ssi *ssi, bool is_rx)
417 418
{
	if (is_rx) {
419
		regmap_update_bits(ssi->regs, CCSR_SSI_SOR,
420 421
			CCSR_SSI_SOR_RX_CLR, CCSR_SSI_SOR_RX_CLR);
	} else {
422
		regmap_update_bits(ssi->regs, CCSR_SSI_SOR,
423 424 425 426
			CCSR_SSI_SOR_TX_CLR, CCSR_SSI_SOR_TX_CLR);
	}
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * Calculate the bits that have to be disabled for the current stream that is
 * getting disabled. This keeps the bits enabled that are necessary for the
 * second stream to work if 'stream_active' is true.
 *
 * Detailed calculation:
 * These are the values that need to be active after disabling. For non-active
 * second stream, this is 0:
 *	vals_stream * !!stream_active
 *
 * The following computes the overall differences between the setup for the
 * to-disable stream and the active stream, a simple XOR:
 *	vals_disable ^ (vals_stream * !!(stream_active))
 *
 * The full expression adds a mask on all values we care about
 */
#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
	((vals_disable) & \
	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))

447 448
/*
 * Enable/Disable a ssi configuration. You have to pass either
449
 * ssi->rxtx_reg_val.rx or tx as vals parameter.
450
 */
451
static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
452 453
		struct fsl_ssi_reg_val *vals)
{
454
	struct regmap *regs = ssi->regs;
455
	struct fsl_ssi_reg_val *avals;
M
Markus Pargmann 已提交
456 457
	int nr_active_streams;
	u32 scr_val;
458 459
	int keep_active;

M
Markus Pargmann 已提交
460 461 462 463 464
	regmap_read(regs, CCSR_SSI_SCR, &scr_val);

	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
				!!(scr_val & CCSR_SSI_SCR_RE);

465 466 467 468
	if (nr_active_streams - 1 > 0)
		keep_active = 1;
	else
		keep_active = 0;
469 470 471

	/* Find the other direction values rx or tx which we do not want to
	 * modify */
472 473
	if (&ssi->rxtx_reg_val.rx == vals)
		avals = &ssi->rxtx_reg_val.tx;
474
	else
475
		avals = &ssi->rxtx_reg_val.rx;
476 477 478

	/* If vals should be disabled, start with disabling the unit */
	if (!enable) {
479 480
		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
				keep_active);
M
Markus Pargmann 已提交
481
		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
482 483 484 485 486 487 488
	}

	/*
	 * We are running on a SoC which does not support online SSI
	 * reconfiguration, so we have to enable all necessary flags at once
	 * even if we do not use them later (capture and playback configuration)
	 */
489
	if (ssi->soc->offline_config) {
490
		if ((enable && !nr_active_streams) ||
491
				(!enable && !keep_active))
492
			fsl_ssi_rxtx_config(ssi, enable);
493 494 495 496 497 498 499 500 501

		goto config_done;
	}

	/*
	 * Configure single direction units while the SSI unit is running
	 * (online configuration)
	 */
	if (enable) {
502
		fsl_ssi_fifo_clear(ssi, vals->scr & CCSR_SSI_SCR_RE);
503

M
Markus Pargmann 已提交
504 505
		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
506
		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	} else {
		u32 sier;
		u32 srcr;
		u32 stcr;

		/*
		 * Disabling the necessary flags for one of rx/tx while the
		 * other stream is active is a little bit more difficult. We
		 * have to disable only those flags that differ between both
		 * streams (rx XOR tx) and that are set in the stream that is
		 * disabled now. Otherwise we could alter flags of the other
		 * stream
		 */

		/* These assignments are simply vals without bits set in avals*/
522 523 524 525 526 527
		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
				keep_active);
		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
				keep_active);
		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
				keep_active);
528

M
Markus Pargmann 已提交
529 530 531
		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
532 533 534 535
	}

config_done:
	/* Enabling of subunits is done after configuration */
536
	if (enable) {
537
		if (ssi->use_dma && (vals->scr & CCSR_SSI_SCR_TE)) {
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
			/*
			 * Be sure the Tx FIFO is filled when TE is set.
			 * Otherwise, there are some chances to start the
			 * playback with some void samples inserted first,
			 * generating a channel slip.
			 *
			 * First, SSIEN must be set, to let the FIFO be filled.
			 *
			 * Notes:
			 * - Limit this fix to the DMA case until FIQ cases can
			 *   be tested.
			 * - Limit the length of the busy loop to not lock the
			 *   system too long, even if 1-2 loops are sufficient
			 *   in general.
			 */
			int i;
			int max_loop = 100;
			regmap_update_bits(regs, CCSR_SSI_SCR,
					CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);
			for (i = 0; i < max_loop; i++) {
				u32 sfcsr;
				regmap_read(regs, CCSR_SSI_SFCSR, &sfcsr);
				if (CCSR_SSI_SFCSR_TFCNT0(sfcsr))
					break;
			}
			if (i == max_loop) {
564
				dev_err(ssi->dev,
565 566 567
					"Timeout waiting TX FIFO filling\n");
			}
		}
M
Markus Pargmann 已提交
568
		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
569
	}
570 571 572
}


573
static void fsl_ssi_rx_config(struct fsl_ssi *ssi, bool enable)
574
{
575
	fsl_ssi_config(ssi, enable, &ssi->rxtx_reg_val.rx);
576 577
}

578
static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
579
{
580
	struct regmap *regs = ssi->regs;
581 582

	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
583
	if (!ssi->soc->imx21regs) {
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		/*
		 * Note that these below aren't just normal registers.
		 * They are a way to disable or enable bits in SACCST
		 * register:
		 * - writing a '1' bit at some position in SACCEN sets the
		 * relevant bit in SACCST,
		 * - writing a '1' bit at some position in SACCDIS unsets
		 * the relevant bit in SACCST register.
		 *
		 * The two writes below first disable all channels slots,
		 * then enable just slots 3 & 4 ("PCM Playback Left Channel"
		 * and "PCM Playback Right Channel").
		 */
		regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
		regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
	}
}

602
static void fsl_ssi_tx_config(struct fsl_ssi *ssi, bool enable)
603
{
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	/*
	 * Why are we setting up SACCST everytime we are starting a
	 * playback?
	 * Some CODECs (like VT1613 CODEC on UDOO board) like to
	 * (sometimes) set extra bits in their SLOTREQ requests.
	 * When a bit is set in a SLOTREQ request then SSI sets the
	 * relevant bit in SACCST automatically (it is enough if a bit was
	 * set in a SLOTREQ just once, bits in SACCST are 'sticky').
	 * If an extra slot gets enabled that's a disaster for playback
	 * because some of normal left or right channel samples are
	 * redirected instead to this extra slot.
	 *
	 * A workaround implemented in fsl-asoc-card of setting an
	 * appropriate CODEC register so that slots 3 & 4 (the normal
	 * stereo playback slots) are used for S/PDIF seems to mostly fix
	 * this issue on the UDOO board but since this CODEC is so
	 * untrustworthy let's play safe here and make sure that no extra
	 * slots are enabled every time a playback is started.
	 */
623 624
	if (enable && fsl_ssi_is_ac97(ssi))
		fsl_ssi_tx_ac97_saccst_setup(ssi);
625

626
	fsl_ssi_config(ssi, enable, &ssi->rxtx_reg_val.tx);
627 628
}

629 630 631 632 633
/*
 * Setup rx/tx register values used to enable/disable the streams. These will
 * be used later in fsl_ssi_config to setup the streams without the need to
 * check for all different SSI modes.
 */
634
static void fsl_ssi_setup_reg_vals(struct fsl_ssi *ssi)
635
{
636
	struct fsl_ssi_rxtx_reg_val *reg = &ssi->rxtx_reg_val;
637 638 639 640 641 642 643 644

	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
	reg->rx.scr = 0;
	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
	reg->tx.scr = 0;

645
	if (!fsl_ssi_is_ac97(ssi)) {
646 647 648 649
		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
	}

650
	if (ssi->use_dma) {
651 652 653 654 655 656 657 658 659 660 661
		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
	} else {
		reg->rx.sier |= CCSR_SSI_SIER_RIE;
		reg->tx.sier |= CCSR_SSI_SIER_TIE;
	}

	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
}

662
static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
663
{
664
	struct regmap *regs = ssi->regs;
665 666 667 668

	/*
	 * Setup the clock control register
	 */
M
Markus Pargmann 已提交
669 670 671 672
	regmap_write(regs, CCSR_SSI_STCCR,
			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
	regmap_write(regs, CCSR_SSI_SRCCR,
			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
673 674 675 676

	/*
	 * Enable AC97 mode and startup the SSI
	 */
M
Markus Pargmann 已提交
677 678
	regmap_write(regs, CCSR_SSI_SACNT,
			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
679

680 681 682 683
	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
M
Markus Pargmann 已提交
684 685 686
	regmap_update_bits(regs, CCSR_SSI_SCR,
			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
687

M
Markus Pargmann 已提交
688
	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
689 690
}

691 692 693 694 695 696 697 698
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
699 700
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
701 702
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
703
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
704 705
	int ret;

706
	ret = clk_prepare_enable(ssi->clk);
707 708
	if (ret)
		return ret;
709

710 711 712 713 714
	/* When using dual fifo mode, it is safer to ensure an even period
	 * size. If appearing to an odd number while DMA always starts its
	 * task from fifo0, fifo1 would be neglected at the end of each
	 * period. But SSI would still access fifo1 with an invalid data.
	 */
715
	if (ssi->use_dual_fifo)
716 717 718
		snd_pcm_hw_constraint_step(substream->runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);

719 720 721
	return 0;
}

722 723 724 725 726 727 728 729
/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 */
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
				struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
730
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
731

732
	clk_disable_unprepare(ssi->clk);
733 734 735

}

736
/**
737
 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
738 739 740 741
 *
 * Note: This function can be only called when using SSI as DAI master
 *
 * Quick instruction for parameters:
742 743
 * freq: Output BCLK frequency = samplerate * slots * slot_width
 *       (In 2-channel I2S Master mode, slot_width is fixed 32)
744
 */
745 746 747
static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai,
		struct snd_pcm_hw_params *hw_params)
748
{
749 750 751
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regs = ssi->regs;
	int synchronous = ssi->cpu_dai_drv.symmetric_rates, ret;
752
	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
753
	unsigned long clkrate, baudrate, tmprate;
754 755
	unsigned int slots = params_channels(hw_params);
	unsigned int slot_width = 32;
756
	u64 sub, savesub = 100000;
757
	unsigned int freq;
758
	bool baudclk_is_used;
759

760
	/* Override slots and slot_width if being specifically set... */
761 762
	if (ssi->slots)
		slots = ssi->slots;
763
	/* ...but keep 32 bits if slots is 2 -- I2S Master mode */
764 765
	if (ssi->slot_width && slots != 2)
		slot_width = ssi->slot_width;
766 767 768

	/* Generate bit clock based on the slot number and slot width */
	freq = slots * slot_width * params_rate(hw_params);
769 770

	/* Don't apply it to any non-baudclk circumstance */
771
	if (IS_ERR(ssi->baudclk))
772 773
		return -EINVAL;

774 775 776 777
	/*
	 * Hardware limitation: The bclk rate must be
	 * never greater than 1/5 IPG clock rate
	 */
778
	if (freq * 5 > clk_get_rate(ssi->clk)) {
779 780 781 782
		dev_err(cpu_dai->dev, "bitclk > ipgclk/5\n");
		return -EINVAL;
	}

783
	baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
784

785 786 787 788 789 790 791
	/* It should be already enough to divide clock by setting pm alone */
	psr = 0;
	div2 = 0;

	factor = (div2 + 1) * (7 * psr + 1) * 2;

	for (i = 0; i < 255; i++) {
792
		tmprate = freq * factor * (i + 1);
793 794

		if (baudclk_is_used)
795
			clkrate = clk_get_rate(ssi->baudclk);
796
		else
797
			clkrate = clk_round_rate(ssi->baudclk, tmprate);
798

799 800
		clkrate /= factor;
		afreq = clkrate / (i + 1);
801 802 803 804 805 806 807 808 809 810 811 812 813 814

		if (freq == afreq)
			sub = 0;
		else if (freq / afreq == 1)
			sub = freq - afreq;
		else if (afreq / freq == 1)
			sub = afreq - freq;
		else
			continue;

		/* Calculate the fraction */
		sub *= 100000;
		do_div(sub, freq);

815
		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
			baudrate = tmprate;
			savesub = sub;
			pm = i;
		}

		/* We are lucky */
		if (savesub == 0)
			break;
	}

	/* No proper pm found if it is still remaining the initial value */
	if (pm == 999) {
		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
		return -EINVAL;
	}

	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
		(psr ? CCSR_SSI_SxCCR_PSR : 0);
	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
		CCSR_SSI_SxCCR_PSR;

837
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
M
Markus Pargmann 已提交
838
		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
839
	else
M
Markus Pargmann 已提交
840
		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
841

842
	if (!baudclk_is_used) {
843
		ret = clk_set_rate(ssi->baudclk, baudrate);
844 845 846 847 848 849 850 851 852
		if (ret) {
			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
			return -EINVAL;
		}
	}

	return 0;
}

853
/**
854
 * fsl_ssi_hw_params - program the sample size
855 856 857 858 859 860 861 862 863 864 865
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
866 867
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
868
{
869 870
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regs = ssi->regs;
871
	unsigned int channels = params_channels(hw_params);
872
	unsigned int sample_size = params_width(hw_params);
873
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
874
	int ret;
M
Markus Pargmann 已提交
875 876 877 878 879
	u32 scr_val;
	int enabled;

	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
880

881 882 883 884
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
885
	if (enabled && ssi->cpu_dai_drv.symmetric_rates)
886
		return 0;
887

888
	if (fsl_ssi_is_i2s_master(ssi)) {
889 890 891
		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
		if (ret)
			return ret;
892 893

		/* Do not enable the clock if it is already enabled */
894 895
		if (!(ssi->baudclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(ssi->baudclk);
896 897 898
			if (ret)
				return ret;

899
			ssi->baudclk_streams |= BIT(substream->stream);
900
		}
901 902
	}

903
	if (!fsl_ssi_is_ac97(ssi)) {
904 905 906 907 908
		u8 i2smode;
		/*
		 * Switch to normal net mode in order to have a frame sync
		 * signal every 32 bits instead of 16 bits
		 */
909
		if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
910 911 912
			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
				CCSR_SSI_SCR_NET;
		else
913
			i2smode = ssi->i2s_mode;
914 915 916 917 918 919

		regmap_update_bits(regs, CCSR_SSI_SCR,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : i2smode);
	}

920 921 922 923 924 925 926 927 928
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
929

930 931
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
932
	    ssi->cpu_dai_drv.symmetric_rates)
M
Markus Pargmann 已提交
933 934
		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
				wl);
935
	else
M
Markus Pargmann 已提交
936 937
		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
				wl);
938 939 940 941

	return 0;
}

942 943 944 945
static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
946
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
947

948 949 950 951
	if (fsl_ssi_is_i2s_master(ssi) &&
			ssi->baudclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(ssi->baudclk);
		ssi->baudclk_streams &= ~BIT(substream->stream);
952 953 954 955 956
	}

	return 0;
}

957
static int _fsl_ssi_set_dai_fmt(struct device *dev,
958
				struct fsl_ssi *ssi, unsigned int fmt)
959
{
960
	struct regmap *regs = ssi->regs;
961
	u32 strcr = 0, stcr, srcr, scr, mask;
962 963
	u8 wm;

964
	ssi->dai_fmt = fmt;
965

966
	if (fsl_ssi_is_i2s_master(ssi) && IS_ERR(ssi->baudclk)) {
967
		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
968 969 970
		return -EINVAL;
	}

971
	fsl_ssi_setup_reg_vals(ssi);
972

M
Markus Pargmann 已提交
973 974
	regmap_read(regs, CCSR_SSI_SCR, &scr);
	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
975
	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
976 977 978 979

	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
		CCSR_SSI_STCR_TEFS;
M
Markus Pargmann 已提交
980 981 982 983
	regmap_read(regs, CCSR_SSI_STCR, &stcr);
	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
	stcr &= ~mask;
	srcr &= ~mask;
984

985
	ssi->i2s_mode = CCSR_SSI_SCR_NET;
986 987
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
988 989 990 991 992 993
		regmap_update_bits(regs, CCSR_SSI_STCCR,
				   CCSR_SSI_SxCCR_DC_MASK,
				   CCSR_SSI_SxCCR_DC(2));
		regmap_update_bits(regs, CCSR_SSI_SRCCR,
				   CCSR_SSI_SxCCR_DC_MASK,
				   CCSR_SSI_SxCCR_DC(2));
994
		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
995
		case SND_SOC_DAIFMT_CBM_CFS:
996
		case SND_SOC_DAIFMT_CBS_CFS:
997
			ssi->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
998 999
			break;
		case SND_SOC_DAIFMT_CBM_CFM:
1000
			ssi->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			break;
		default:
			return -EINVAL;
		}

		/* Data on rising edge of bclk, frame low, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0;
		break;
1024
	case SND_SOC_DAIFMT_AC97:
1025
		ssi->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
1026
		break;
1027 1028 1029
	default:
		return -EINVAL;
	}
1030
	scr |= ssi->i2s_mode;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
1063 1064 1065 1066 1067
	case SND_SOC_DAIFMT_CBM_CFS:
		strcr &= ~CCSR_SSI_STCR_TXDIR;
		strcr |= CCSR_SSI_STCR_TFDIR;
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
1068
	default:
1069
		if (!fsl_ssi_is_ac97(ssi))
1070
			return -EINVAL;
1071 1072 1073 1074 1075
	}

	stcr |= strcr;
	srcr |= strcr;

1076
	if (ssi->cpu_dai_drv.symmetric_rates || fsl_ssi_is_ac97(ssi)) {
1077
		/* Need to clear RXDIR when using SYNC or AC97 mode */
1078 1079 1080 1081
		srcr &= ~CCSR_SSI_SRCR_RXDIR;
		scr |= CCSR_SSI_SCR_SYN;
	}

M
Markus Pargmann 已提交
1082 1083 1084
	regmap_write(regs, CCSR_SSI_STCR, stcr);
	regmap_write(regs, CCSR_SSI_SRCR, srcr);
	regmap_write(regs, CCSR_SSI_SCR, scr);
1085

1086
	wm = ssi->fifo_watermark;
1087

M
Markus Pargmann 已提交
1088 1089 1090
	regmap_write(regs, CCSR_SSI_SFCSR,
			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1091

1092
	if (ssi->use_dual_fifo) {
M
Markus Pargmann 已提交
1093
		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1094
				CCSR_SSI_SRCR_RFEN1);
M
Markus Pargmann 已提交
1095
		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1096
				CCSR_SSI_STCR_TFEN1);
M
Markus Pargmann 已提交
1097
		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1098 1099 1100
				CCSR_SSI_SCR_TCH_EN);
	}

1101
	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1102
		fsl_ssi_setup_ac97(ssi);
1103

1104
	return 0;
1105 1106 1107 1108 1109 1110 1111 1112

}

/**
 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
 */
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
1113
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(cpu_dai);
1114

1115
	if (fsl_ssi_is_ac97(ssi))
1116 1117
		return 0;

1118
	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi, fmt);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
}

/**
 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
 *
 * Note: This function can be only called when using SSI as DAI master
 */
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
1129 1130
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regs = ssi->regs;
1131 1132
	u32 val;

1133 1134 1135 1136 1137 1138
	/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
	if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
		dev_err(cpu_dai->dev, "invalid slot width: %d\n", slot_width);
		return -EINVAL;
	}

1139
	/* The slot number should be >= 2 if using Network mode or I2S mode */
M
Markus Pargmann 已提交
1140 1141
	regmap_read(regs, CCSR_SSI_SCR, &val);
	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1142 1143 1144 1145 1146
	if (val && slots < 2) {
		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
		return -EINVAL;
	}

M
Markus Pargmann 已提交
1147
	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1148
			CCSR_SSI_SxCCR_DC(slots));
M
Markus Pargmann 已提交
1149
	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1150 1151 1152 1153 1154
			CCSR_SSI_SxCCR_DC(slots));

	/* The register SxMSKs needs SSI to provide essential clock due to
	 * hardware design. So we here temporarily enable SSI to set them.
	 */
M
Markus Pargmann 已提交
1155 1156 1157 1158
	regmap_read(regs, CCSR_SSI_SCR, &val);
	val &= CCSR_SSI_SCR_SSIEN;
	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
			CCSR_SSI_SCR_SSIEN);
1159

1160 1161
	regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
	regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1162

M
Markus Pargmann 已提交
1163
	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1164

1165 1166
	ssi->slot_width = slot_width;
	ssi->slots = slots;
1167

1168 1169 1170
	return 0;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179
/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
1180 1181
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
1182 1183
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1184 1185
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
	struct regmap *regs = ssi->regs;
1186

1187 1188
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
1189
	case SNDRV_PCM_TRIGGER_RESUME:
1190
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1191
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1192
			fsl_ssi_tx_config(ssi, true);
1193
		else
1194
			fsl_ssi_rx_config(ssi, true);
1195 1196 1197
		break;

	case SNDRV_PCM_TRIGGER_STOP:
1198
	case SNDRV_PCM_TRIGGER_SUSPEND:
1199 1200
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1201
			fsl_ssi_tx_config(ssi, false);
1202
		else
1203
			fsl_ssi_rx_config(ssi, false);
1204 1205 1206 1207 1208 1209
		break;

	default:
		return -EINVAL;
	}

1210
	if (fsl_ssi_is_ac97(ssi)) {
1211
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
M
Markus Pargmann 已提交
1212
			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1213
		else
M
Markus Pargmann 已提交
1214
			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1215
	}
1216

1217 1218 1219
	return 0;
}

1220 1221
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
1222
	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1223

1224 1225 1226
	if (ssi->soc->imx && ssi->use_dma) {
		dai->playback_dma_data = &ssi->dma_params_tx;
		dai->capture_dma_data = &ssi->dma_params_rx;
1227 1228 1229 1230 1231
	}

	return 0;
}

1232
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1233
	.startup	= fsl_ssi_startup,
1234
	.shutdown       = fsl_ssi_shutdown,
1235
	.hw_params	= fsl_ssi_hw_params,
1236
	.hw_free	= fsl_ssi_hw_free,
1237 1238
	.set_fmt	= fsl_ssi_set_dai_fmt,
	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1239 1240 1241
	.trigger	= fsl_ssi_trigger,
};

1242 1243
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1244
	.probe = fsl_ssi_dai_probe,
1245
	.playback = {
1246
		.stream_name = "CPU-Playback",
1247
		.channels_min = 1,
1248
		.channels_max = 32,
1249
		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1250 1251 1252
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
1253
		.stream_name = "CPU-Capture",
1254
		.channels_min = 1,
1255
		.channels_max = 32,
1256
		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1257 1258
		.formats = FSLSSI_I2S_FORMATS,
	},
1259
	.ops = &fsl_ssi_dai_ops,
1260 1261
};

1262 1263 1264 1265
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

1266
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1267
	.bus_control = true,
1268
	.probe = fsl_ssi_dai_probe,
1269 1270 1271 1272 1273
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
1274
		.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1275 1276 1277 1278 1279 1280
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
1281 1282
		/* 16-bit capture is broken (errata ERR003778) */
		.formats = SNDRV_PCM_FMTBIT_S20,
1283
	},
1284
	.ops = &fsl_ssi_dai_ops,
1285 1286 1287
};


1288
static struct fsl_ssi *fsl_ac97_data;
1289

1290
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1291 1292
		unsigned short val)
{
M
Markus Pargmann 已提交
1293
	struct regmap *regs = fsl_ac97_data->regs;
1294 1295
	unsigned int lreg;
	unsigned int lval;
1296
	int ret;
1297 1298 1299 1300

	if (reg > 0x7f)
		return;

1301 1302
	mutex_lock(&fsl_ac97_data->ac97_reg_lock);

1303 1304 1305 1306
	ret = clk_prepare_enable(fsl_ac97_data->clk);
	if (ret) {
		pr_err("ac97 write clk_prepare_enable failed: %d\n",
			ret);
1307
		goto ret_unlock;
1308
	}
1309 1310

	lreg = reg <<  12;
M
Markus Pargmann 已提交
1311
	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1312 1313

	lval = val << 4;
M
Markus Pargmann 已提交
1314
	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1315

M
Markus Pargmann 已提交
1316
	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1317 1318
			CCSR_SSI_SACNT_WR);
	udelay(100);
1319 1320

	clk_disable_unprepare(fsl_ac97_data->clk);
1321 1322 1323

ret_unlock:
	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1324 1325
}

1326
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1327 1328
		unsigned short reg)
{
M
Markus Pargmann 已提交
1329
	struct regmap *regs = fsl_ac97_data->regs;
1330

1331
	unsigned short val = 0;
M
Markus Pargmann 已提交
1332
	u32 reg_val;
1333
	unsigned int lreg;
1334 1335
	int ret;

1336 1337
	mutex_lock(&fsl_ac97_data->ac97_reg_lock);

1338 1339 1340 1341
	ret = clk_prepare_enable(fsl_ac97_data->clk);
	if (ret) {
		pr_err("ac97 read clk_prepare_enable failed: %d\n",
			ret);
1342
		goto ret_unlock;
1343
	}
1344 1345

	lreg = (reg & 0x7f) <<  12;
M
Markus Pargmann 已提交
1346 1347
	regmap_write(regs, CCSR_SSI_SACADD, lreg);
	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1348 1349 1350 1351
			CCSR_SSI_SACNT_RD);

	udelay(100);

M
Markus Pargmann 已提交
1352 1353
	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
	val = (reg_val >> 4) & 0xffff;
1354

1355 1356
	clk_disable_unprepare(fsl_ac97_data->clk);

1357 1358
ret_unlock:
	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1359 1360 1361 1362 1363 1364 1365 1366
	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

1367
/**
1368
 * Make every character in a string lower-case
1369
 */
1370 1371
static void make_lowercase(char *s)
{
1372 1373 1374 1375
	if (!s)
		return;
	for (; *s; s++)
		*s = tolower(*s);
1376 1377
}

1378
static int fsl_ssi_imx_probe(struct platform_device *pdev,
1379
		struct fsl_ssi *ssi, void __iomem *iomem)
1380 1381
{
	struct device_node *np = pdev->dev.of_node;
1382
	u32 dmas[4];
1383 1384
	int ret;

1385 1386
	if (ssi->has_ipg_clk_name)
		ssi->clk = devm_clk_get(&pdev->dev, "ipg");
1387
	else
1388 1389 1390
		ssi->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(ssi->clk)) {
		ret = PTR_ERR(ssi->clk);
1391 1392 1393 1394
		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
		return ret;
	}

1395 1396
	if (!ssi->has_ipg_clk_name) {
		ret = clk_prepare_enable(ssi->clk);
1397 1398 1399 1400
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
			return ret;
		}
1401 1402
	}

1403
	/* For those SLAVE implementations, we ignore non-baudclk cases
1404 1405
	 * and, instead, abandon MASTER mode that needs baud clock.
	 */
1406 1407
	ssi->baudclk = devm_clk_get(&pdev->dev, "baud");
	if (IS_ERR(ssi->baudclk))
1408
		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1409
			 PTR_ERR(ssi->baudclk));
1410

1411 1412 1413 1414
	ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
	ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
	ssi->dma_params_tx.addr = ssi->ssi_phys + CCSR_SSI_STX0;
	ssi->dma_params_rx.addr = ssi->ssi_phys + CCSR_SSI_SRX0;
1415

1416
	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1417 1418
	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
		ssi->use_dual_fifo = true;
1419 1420 1421
		/* When using dual fifo mode, we need to keep watermark
		 * as even numbers due to dma script limitation.
		 */
1422 1423
		ssi->dma_params_tx.maxburst &= ~0x1;
		ssi->dma_params_rx.maxburst &= ~0x1;
1424 1425
	}

1426
	if (!ssi->use_dma) {
1427 1428 1429 1430 1431 1432 1433 1434

		/*
		 * Some boards use an incompatible codec. To get it
		 * working, we are using imx-fiq-pcm-audio, that
		 * can handle those codecs. DMA is not possible in this
		 * situation.
		 */

1435 1436 1437 1438
		ssi->fiq_params.irq = ssi->irq;
		ssi->fiq_params.base = iomem;
		ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
		ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1439

1440
		ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1441 1442 1443
		if (ret)
			goto error_pcm;
	} else {
1444
		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1445 1446 1447 1448
		if (ret)
			goto error_pcm;
	}

1449
	return 0;
1450 1451 1452

error_pcm:

1453 1454
	if (!ssi->has_ipg_clk_name)
		clk_disable_unprepare(ssi->clk);
1455
	return ret;
1456 1457 1458
}

static void fsl_ssi_imx_clean(struct platform_device *pdev,
1459
		struct fsl_ssi *ssi)
1460
{
1461
	if (!ssi->use_dma)
1462
		imx_pcm_fiq_exit(pdev);
1463 1464
	if (!ssi->has_ipg_clk_name)
		clk_disable_unprepare(ssi->clk);
1465 1466
}

1467
static int fsl_ssi_probe(struct platform_device *pdev)
1468
{
1469
	struct fsl_ssi *ssi;
1470
	int ret = 0;
1471
	struct device_node *np = pdev->dev.of_node;
1472
	const struct of_device_id *of_id;
1473
	const char *p, *sprop;
1474
	const uint32_t *iprop;
1475
	struct resource *res;
M
Markus Pargmann 已提交
1476
	void __iomem *iomem;
1477
	char name[64];
1478
	struct regmap_config regconfig = fsl_ssi_regconfig;
1479

1480
	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1481
	if (!of_id || !of_id->data)
1482 1483
		return -EINVAL;

1484
	ssi = devm_kzalloc(&pdev->dev, sizeof(*ssi),
1485
			GFP_KERNEL);
1486
	if (!ssi)
1487
		return -ENOMEM;
1488

1489 1490
	ssi->soc = of_id->data;
	ssi->dev = &pdev->dev;
1491

1492 1493 1494
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (sprop) {
		if (!strcmp(sprop, "ac97-slave"))
1495
			ssi->dai_fmt = SND_SOC_DAIFMT_AC97;
1496 1497
	}

1498
	ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1499

1500 1501
	if (fsl_ssi_is_ac97(ssi)) {
		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1502 1503
				sizeof(fsl_ssi_ac97_dai));

1504
		fsl_ac97_data = ssi;
1505 1506
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
1507
		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1508 1509
		       sizeof(fsl_ssi_dai_template));
	}
1510
	ssi->cpu_dai_drv.name = dev_name(&pdev->dev);
1511

1512 1513 1514 1515
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	iomem = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(iomem))
		return PTR_ERR(iomem);
1516
	ssi->ssi_phys = res->start;
M
Markus Pargmann 已提交
1517

1518
	if (ssi->soc->imx21regs) {
1519 1520 1521 1522 1523
		/*
		 * According to datasheet imx21-class SSI
		 * don't have SACC{ST,EN,DIS} regs.
		 */
		regconfig.max_register = CCSR_SSI_SRMSK;
1524 1525
		regconfig.num_reg_defaults_raw =
			CCSR_SSI_SRMSK / sizeof(uint32_t) + 1;
1526 1527
	}

1528 1529
	ret = of_property_match_string(np, "clock-names", "ipg");
	if (ret < 0) {
1530 1531
		ssi->has_ipg_clk_name = false;
		ssi->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1532
			&regconfig);
1533
	} else {
1534 1535
		ssi->has_ipg_clk_name = true;
		ssi->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1536
			"ipg", iomem, &regconfig);
1537
	}
1538
	if (IS_ERR(ssi->regs)) {
M
Markus Pargmann 已提交
1539
		dev_err(&pdev->dev, "Failed to init register map\n");
1540
		return PTR_ERR(ssi->regs);
M
Markus Pargmann 已提交
1541
	}
1542

1543 1544
	ssi->irq = platform_get_irq(pdev, 0);
	if (ssi->irq < 0) {
1545
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1546
		return ssi->irq;
1547 1548
	}

1549
	/* Are the RX and the TX clocks locked? */
1550
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1551 1552 1553
		if (!fsl_ssi_is_ac97(ssi)) {
			ssi->cpu_dai_drv.symmetric_rates = 1;
			ssi->cpu_dai_drv.symmetric_samplebits = 1;
1554
		}
1555

1556
		ssi->cpu_dai_drv.symmetric_channels = 1;
1557
	}
1558

1559 1560 1561
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
1562
		ssi->fifo_depth = be32_to_cpup(iprop);
1563 1564
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
1565
		ssi->fifo_depth = 8;
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * Set the watermark for transmit FIFO 0 and receive FIFO 0. We don't
	 * use FIFO 1 but set the watermark appropriately nontheless.
	 * We program the transmit water to signal a DMA transfer
	 * if there are N elements left in the FIFO. For chips with 15-deep
	 * FIFOs, set watermark to 8.  This allows the SSI to operate at a
	 * high data rate without channel slipping. Behavior is unchanged
	 * for the older chips with a fifo depth of only 8.  A value of 4
	 * might be appropriate for the older chips, but is left at
	 * fifo_depth-2 until sombody has a chance to test.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
1582
	switch (ssi->fifo_depth) {
1583 1584 1585 1586 1587 1588 1589 1590
	case 15:
		/*
		 * 2 samples is not enough when running at high data
		 * rates (like 48kHz @ 16 bits/channel, 16 channels)
		 * 8 seems to split things evenly and leave enough time
		 * for the DMA to fill the FIFO before it's over/under
		 * run.
		 */
1591 1592
		ssi->fifo_watermark = 8;
		ssi->dma_maxburst = 8;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		break;
	case 8:
	default:
		/*
		 * maintain old behavior for older chips.
		 * Keeping it the same because I don't have an older
		 * board to test with.
		 * I suspect this could be changed to be something to
		 * leave some more space in the fifo.
		 */
1603 1604
		ssi->fifo_watermark = ssi->fifo_depth - 2;
		ssi->dma_maxburst = ssi->fifo_depth - 2;
1605 1606 1607
		break;
	}

1608
	dev_set_drvdata(&pdev->dev, ssi);
1609

1610 1611
	if (ssi->soc->imx) {
		ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1612
		if (ret)
F
Fabio Estevam 已提交
1613
			return ret;
1614 1615
	}

1616 1617
	if (fsl_ssi_is_ac97(ssi)) {
		mutex_init(&ssi->ac97_reg_lock);
1618 1619 1620 1621 1622 1623 1624
		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
		if (ret) {
			dev_err(&pdev->dev, "could not set AC'97 ops\n");
			goto error_ac97_ops;
		}
	}

1625
	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1626
					      &ssi->cpu_dai_drv, 1);
1627 1628 1629 1630 1631
	if (ret) {
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
		goto error_asoc_register;
	}

1632 1633
	if (ssi->use_dma) {
		ret = devm_request_irq(&pdev->dev, ssi->irq,
1634
					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1635
					ssi);
1636 1637
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
1638
					ssi->irq);
1639
			goto error_asoc_register;
1640
		}
1641 1642
	}

1643
	ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, &pdev->dev);
1644
	if (ret)
1645
		goto error_asoc_register;
1646 1647 1648 1649 1650 1651

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
1652
	if (!of_get_property(np, "codec-handle", NULL))
1653 1654
		goto done;

1655
	/* Trigger the machine driver's probe function.  The platform driver
1656
	 * name of the machine driver is taken from /compatible property of the
1657 1658 1659
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1660 1661
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1662 1663 1664 1665 1666 1667
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

1668 1669 1670
	ssi->pdev = platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
	if (IS_ERR(ssi->pdev)) {
		ret = PTR_ERR(ssi->pdev);
1671
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1672
		goto error_sound_card;
M
Mark Brown 已提交
1673
	}
1674

1675
done:
1676 1677
	if (ssi->dai_fmt)
		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi, ssi->dai_fmt);
1678

1679
	if (fsl_ssi_is_ac97(ssi)) {
1680 1681 1682 1683 1684 1685 1686 1687
		u32 ssi_idx;

		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
		if (ret) {
			dev_err(&pdev->dev, "cannot get SSI index property\n");
			goto error_sound_card;
		}

1688
		ssi->pdev = platform_device_register_data(NULL,
1689
					"ac97-codec", ssi_idx, NULL, 0);
1690 1691
		if (IS_ERR(ssi->pdev)) {
			ret = PTR_ERR(ssi->pdev);
1692 1693 1694 1695 1696 1697 1698
			dev_err(&pdev->dev,
				"failed to register AC97 codec platform: %d\n",
				ret);
			goto error_sound_card;
		}
	}

1699
	return 0;
1700

1701
error_sound_card:
1702
	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1703

1704
error_asoc_register:
1705
	if (fsl_ssi_is_ac97(ssi))
1706 1707 1708
		snd_soc_set_ac97_ops(NULL);

error_ac97_ops:
1709 1710
	if (fsl_ssi_is_ac97(ssi))
		mutex_destroy(&ssi->ac97_reg_lock);
1711

1712 1713
	if (ssi->soc->imx)
		fsl_ssi_imx_clean(pdev, ssi);
1714

1715
	return ret;
1716 1717
}

1718
static int fsl_ssi_remove(struct platform_device *pdev)
1719
{
1720
	struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1721

1722
	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1723

1724 1725
	if (ssi->pdev)
		platform_device_unregister(ssi->pdev);
1726

1727 1728
	if (ssi->soc->imx)
		fsl_ssi_imx_clean(pdev, ssi);
1729

1730
	if (fsl_ssi_is_ac97(ssi)) {
1731
		snd_soc_set_ac97_ops(NULL);
1732
		mutex_destroy(&ssi->ac97_reg_lock);
1733
	}
1734

1735
	return 0;
1736
}
1737

1738 1739 1740
#ifdef CONFIG_PM_SLEEP
static int fsl_ssi_suspend(struct device *dev)
{
1741 1742
	struct fsl_ssi *ssi = dev_get_drvdata(dev);
	struct regmap *regs = ssi->regs;
1743

1744 1745
	regmap_read(regs, CCSR_SSI_SFCSR, &ssi->regcache_sfcsr);
	regmap_read(regs, CCSR_SSI_SACNT, &ssi->regcache_sacnt);
1746 1747 1748 1749 1750 1751 1752 1753 1754

	regcache_cache_only(regs, true);
	regcache_mark_dirty(regs);

	return 0;
}

static int fsl_ssi_resume(struct device *dev)
{
1755 1756
	struct fsl_ssi *ssi = dev_get_drvdata(dev);
	struct regmap *regs = ssi->regs;
1757 1758 1759 1760 1761 1762

	regcache_cache_only(regs, false);

	regmap_update_bits(regs, CCSR_SSI_SFCSR,
			CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
			CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
1763 1764
			ssi->regcache_sfcsr);
	regmap_write(regs, CCSR_SSI_SACNT, ssi->regcache_sacnt);
1765 1766 1767 1768 1769 1770 1771 1772 1773

	return regcache_sync(regs);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops fsl_ssi_pm = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
};

1774
static struct platform_driver fsl_ssi_driver = {
1775 1776 1777
	.driver = {
		.name = "fsl-ssi-dai",
		.of_match_table = fsl_ssi_ids,
1778
		.pm = &fsl_ssi_pm,
1779 1780 1781 1782
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1783

1784
module_platform_driver(fsl_ssi_driver);
1785

1786
MODULE_ALIAS("platform:fsl-ssi-dai");
1787 1788
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1789
MODULE_LICENSE("GPL v2");