fsl_ssi.c 27.7 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41 42
#include <linux/of_address.h>
#include <linux/of_irq.h>
43
#include <linux/of_platform.h>
44 45 46 47 48 49

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
50
#include <sound/dmaengine_pcm.h>
51 52

#include "fsl_ssi.h"
53
#include "imx-pcm.h"
54

55 56 57 58
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
59
#else
60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

109 110 111 112 113 114 115
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

116 117 118 119 120 121
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
122 123
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
124 125 126 127 128
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
129
 * @name: name for this device
130 131 132 133 134
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
135 136
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
137
	unsigned int fifo_depth;
138
	struct snd_soc_dai_driver cpu_dai_drv;
139
	struct device_attribute dev_attr;
140
	struct platform_device *pdev;
141

142 143
	bool new_binding;
	bool ssi_on_imx;
144
	bool use_dma;
145
	struct clk *clk;
146 147 148 149
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
150
	struct imx_pcm_fiq_params fiq_params;
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
175 176

	char name[1];
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
203
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
318
		write_ssi(sisr2, &ssi->sisr);
319 320 321 322 323 324 325 326 327 328 329 330

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
331 332
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
333 334
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 336 337
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
338 339 340 341 342

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
343
	if (!ssi_private->first_stream) {
344 345
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

346 347
		ssi_private->first_stream = substream;

348 349 350 351 352
		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
353
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
354 355 356 357 358 359 360

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
361
		write_ssi_mask(&ssi->scr,
362 363
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
364
			| (synchronous ? CCSR_SSI_SCR_SYN : 0));
365

366
		write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
367
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
368
			 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
369

370
		write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
371
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
372
			 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
373 374 375 376 377 378

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

379
		/* Enable the interrupts and DMA requests */
380 381 382 383 384 385
		if (ssi_private->use_dma)
			write_ssi(SIER_FLAGS, &ssi->sier);
		else
			write_ssi(CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN |
					CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN, &ssi->sier);
386 387 388

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
389 390 391 392 393 394 395 396 397 398
		 * don't use FIFO 1.  We program the transmit water to signal a
		 * DMA transfer if there are only two (or fewer) elements left
		 * in the FIFO.  Two elements equals one frame (left channel,
		 * right channel).  This value, however, depends on the depth of
		 * the transmit buffer.
		 *
		 * We program the receive FIFO to notify us if at least two
		 * elements (one frame) have been written to the FIFO.  We could
		 * make this value larger (and maybe we should), but this way
		 * data will be written to memory as soon as it's available.
399
		 */
400 401 402
		write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
			CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
			&ssi->sfcsr);
403 404 405 406 407 408 409 410 411 412

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
			if (!first_runtime->sample_bits) {
				dev_err(substream->pcm->card->dev,
					"set sample size in %s stream first\n",
					substream->stream ==
					SNDRV_PCM_STREAM_PLAYBACK
					? "capture" : "playback");
				return -EAGAIN;
			}
444

445 446 447 448
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
449
		}
450 451 452 453

		ssi_private->second_stream = substream;
	}

454 455 456 457
	return 0;
}

/**
458
 * fsl_ssi_hw_params - program the sample size
459 460 461 462 463 464 465 466 467 468 469
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
470 471
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
472
{
473
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
474 475 476 477
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
478
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
479

480 481 482 483 484 485
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
486

487 488 489 490 491 492 493 494 495
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
496

497 498 499
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
500
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
501
	else
502
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
503 504 505 506 507 508 509 510 511 512 513 514 515

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
516 517
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
518 519
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
520
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
521 522 523 524 525
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
526
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
527
			write_ssi_mask(&ssi->scr, 0,
528
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
529
		else
530
			write_ssi_mask(&ssi->scr, 0,
531
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
532 533 534 535 536
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
537
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
538
		else
539
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
540 541 542

		if ((read_ssi(&ssi->scr) & (CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
543 544 545 546 547 548 549 550 551 552 553 554 555 556
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
557 558
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
559 560
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
561
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
562

563 564 565 566
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;
567 568
}

569 570 571 572
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

573
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
574 575 576 577 578 579 580
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

581
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
582 583 584 585 586 587
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

588 589
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
590
	.probe = fsl_ssi_dai_probe,
591 592 593 594 595 596 597 598 599 600 601 602 603
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
604
	.ops = &fsl_ssi_dai_ops,
605 606
};

607 608 609 610
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

611 612 613 614 615 616 617 618 619 620 621 622
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


623 624 625
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
626 627
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
628 629 630 631 632
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
657 658 659 660 661

	return length;
}

/**
662
 * Make every character in a string lower-case
663
 */
664 665 666 667 668 669 670 671 672 673 674 675
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

676
static int fsl_ssi_probe(struct platform_device *pdev)
677 678 679
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
680
	struct device_attribute *dev_attr = NULL;
681
	struct device_node *np = pdev->dev.of_node;
682
	const char *p, *sprop;
683
	const uint32_t *iprop;
684 685
	struct resource res;
	char name[64];
686
	bool shared;
687

688 689 690
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
691
	 */
692
	if (!of_device_is_available(np))
693 694 695 696 697
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (!sprop || strcmp(sprop, "i2s-slave")) {
698
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
699 700 701 702 703
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
704
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
705
			      GFP_KERNEL);
706
	if (!ssi_private) {
707
		dev_err(&pdev->dev, "could not allocate DAI object\n");
708
		return -ENOMEM;
709 710
	}

711
	strcpy(ssi_private->name, p);
712

713 714 715
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");

716 717 718 719 720 721 722 723
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
	       sizeof(fsl_ssi_dai_template));
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
724
		dev_err(&pdev->dev, "could not determine device resources\n");
725
		return ret;
726
	}
727 728 729
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
730
		return -ENOMEM;
731
	}
732
	ssi_private->ssi_phys = res.start;
733

734
	ssi_private->irq = irq_of_parse_and_map(np, 0);
735 736
	if (ssi_private->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
737
		return -ENXIO;
738 739
	}

740 741 742 743 744 745 746 747 748 749
	if (ssi_private->use_dma) {
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
			goto error_irqmap;
		}
750
	}
751

752
	/* Are the RX and the TX clocks locked? */
753
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
754
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
755

756 757 758
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
759
		ssi_private->fifo_depth = be32_to_cpup(iprop);
760 761 762 763
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

764 765 766
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
767

768
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
769 770 771
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
772
			goto error_irqmap;
773
		}
774 775 776 777 778 779
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
780

781 782 783 784
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
785
		ssi_private->dma_params_tx.maxburst =
786
			ssi_private->fifo_depth - 2;
787
		ssi_private->dma_params_rx.maxburst =
788
			ssi_private->fifo_depth - 2;
789
		ssi_private->dma_params_tx.addr =
790
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
791
		ssi_private->dma_params_rx.addr =
792
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
793 794 795 796
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
797 798 799 800 801 802 803 804
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
805
					"fsl,ssi-dma-events", dma_events, 2);
806 807 808 809
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
810
		}
811 812 813 814

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

815
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
816
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
817
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
818
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
819 820
	}

821
	/* Initialize the the device_attribute structure */
822
	dev_attr = &ssi_private->dev_attr;
823
	sysfs_attr_init(&dev_attr->attr);
824
	dev_attr->attr.name = "statistics";
825 826 827
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

828
	ret = device_create_file(&pdev->dev, dev_attr);
829
	if (ret) {
830
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
831
			ssi_private->dev_attr.attr.name);
832
		goto error_clk;
833 834
	}

835
	/* Register with ASoC */
836
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
837

838 839
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
840
	if (ret) {
841
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
842
		goto error_dev;
843 844
	}

845
	if (ssi_private->ssi_on_imx) {
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
				goto error_dev;
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
				goto error_dev;
		}
870 871 872 873 874 875 876 877 878 879 880 881
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

882
	/* Trigger the machine driver's probe function.  The platform driver
883
	 * name of the machine driver is taken from /compatible property of the
884 885 886
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
887 888
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
889 890 891 892 893 894 895
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
896
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
897 898
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
899
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
900
		goto error_dai;
M
Mark Brown 已提交
901
	}
902

903
done:
904
	return 0;
905

906
error_dai:
907
	if (ssi_private->ssi_on_imx)
908
		imx_pcm_dma_exit(pdev);
909
	snd_soc_unregister_component(&pdev->dev);
910 911

error_dev:
912
	dev_set_drvdata(&pdev->dev, NULL);
913 914
	device_remove_file(&pdev->dev, dev_attr);

915
error_clk:
916
	if (ssi_private->ssi_on_imx)
917
		clk_disable_unprepare(ssi_private->clk);
918 919

error_irqmap:
920
	irq_dispose_mapping(ssi_private->irq);
921

922
	return ret;
923 924
}

925
static int fsl_ssi_remove(struct platform_device *pdev)
926
{
927
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
928

929 930
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
931
	if (ssi_private->ssi_on_imx)
932
		imx_pcm_dma_exit(pdev);
933
	snd_soc_unregister_component(&pdev->dev);
934
	dev_set_drvdata(&pdev->dev, NULL);
935
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
936 937
	if (ssi_private->ssi_on_imx)
		clk_disable_unprepare(ssi_private->clk);
938
	irq_dispose_mapping(ssi_private->irq);
939 940

	return 0;
941
}
942 943 944

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
945
	{ .compatible = "fsl,imx21-ssi", },
946 947 948 949
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

950
static struct platform_driver fsl_ssi_driver = {
951 952 953 954 955 956 957 958
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
959

960
module_platform_driver(fsl_ssi_driver);
961

962
MODULE_ALIAS("platform:fsl-ssi-dai");
963 964
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
965
MODULE_LICENSE("GPL v2");