fsl_ssi.c 50.9 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38
#include <linux/ctype.h>
39 40
#include <linux/device.h>
#include <linux/delay.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/spinlock.h>
44
#include <linux/of.h>
45 46
#include <linux/of_address.h>
#include <linux/of_irq.h>
47
#include <linux/of_platform.h>
48 49 50 51 52 53

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
54
#include <sound/dmaengine_pcm.h>
55 56

#include "fsl_ssi.h"
57
#include "imx-pcm.h"
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

81 82 83 84 85 86
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
87 88 89 90

enum fsl_ssi_type {
	FSL_SSI_MCP8610,
	FSL_SSI_MX21,
91
	FSL_SSI_MX35,
92 93 94
	FSL_SSI_MX51,
};

95 96 97 98 99 100 101 102 103 104 105
struct fsl_ssi_reg_val {
	u32 sier;
	u32 srcr;
	u32 stcr;
	u32 scr;
};

struct fsl_ssi_rxtx_reg_val {
	struct fsl_ssi_reg_val rx;
	struct fsl_ssi_reg_val tx;
};
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_SACCEN:
	case CCSR_SSI_SACCDIS:
		return false;
	default:
		return true;
	}
}

static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_STX0:
	case CCSR_SSI_STX1:
	case CCSR_SSI_SRX0:
	case CCSR_SSI_SRX1:
	case CCSR_SSI_SISR:
	case CCSR_SSI_SFCSR:
127
	case CCSR_SSI_SACNT:
128 129 130 131
	case CCSR_SSI_SACADD:
	case CCSR_SSI_SACDAT:
	case CCSR_SSI_SATAG:
	case CCSR_SSI_SACCST:
132
	case CCSR_SSI_SOR:
133 134 135 136 137 138
		return true;
	default:
		return false;
	}
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_SRX0:
	case CCSR_SSI_SRX1:
	case CCSR_SSI_SISR:
	case CCSR_SSI_SACADD:
	case CCSR_SSI_SACDAT:
	case CCSR_SSI_SATAG:
		return true;
	default:
		return false;
	}
}

154 155 156 157 158 159 160 161 162 163 164 165
static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CCSR_SSI_SRX0:
	case CCSR_SSI_SRX1:
	case CCSR_SSI_SACCST:
		return false;
	default:
		return true;
	}
}

M
Markus Pargmann 已提交
166 167 168 169 170 171
static const struct regmap_config fsl_ssi_regconfig = {
	.max_register = CCSR_SSI_SACCDIS,
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = 4,
	.val_format_endian = REGMAP_ENDIAN_NATIVE,
172
	.num_reg_defaults_raw = CCSR_SSI_SACCDIS / sizeof(uint32_t) + 1,
173 174
	.readable_reg = fsl_ssi_readable_reg,
	.volatile_reg = fsl_ssi_volatile_reg,
175
	.precious_reg = fsl_ssi_precious_reg,
176
	.writeable_reg = fsl_ssi_writeable_reg,
177
	.cache_type = REGCACHE_FLAT,
M
Markus Pargmann 已提交
178
};
179

180 181
struct fsl_ssi_soc_data {
	bool imx;
182
	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
183 184 185 186
	bool offline_config;
	u32 sisr_write_mask;
};

187 188 189
/**
 * fsl_ssi_private: per-SSI private data
 *
M
Markus Pargmann 已提交
190
 * @reg: Pointer to the regmap registers
191
 * @irq: IRQ of this SSI
192 193 194 195 196 197 198 199 200
 * @cpu_dai_drv: CPU DAI driver for this device
 *
 * @dai_fmt: DAI configuration this device is currently used with
 * @i2s_mode: i2s and network mode configuration of the device. Is used to
 * switch between normal and i2s/network mode
 * mode depending on the number of channels
 * @use_dma: DMA is used or FIQ with stream filter
 * @use_dual_fifo: DMA with support for both FIFOs used
 * @fifo_deph: Depth of the SSI FIFOs
201 202
 * @slot_width: width of each DAI slot
 * @slots: number of slots
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
 *
 * @clk: SSI clock
 * @baudclk: SSI baud clock for master mode
 * @baudclk_streams: Active streams that are using baudclk
 *
 * @dma_params_tx: DMA transmit parameters
 * @dma_params_rx: DMA receive parameters
 * @ssi_phys: physical address of the SSI registers
 *
 * @fiq_params: FIQ stream filtering parameters
 *
 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
 *
 * @dbg_stats: Debugging statistics
 *
219
 * @soc: SoC specific data
220 221 222 223 224 225
 *
 * @fifo_watermark: the FIFO watermark setting.  Notifies DMA when
 *             there are @fifo_watermark or fewer words in TX fifo or
 *             @fifo_watermark or more empty words in RX fifo.
 * @dma_maxburst: max number of words to transfer in one go.  So far,
 *             this is always the same as fifo_watermark.
226 227
 */
struct fsl_ssi_private {
M
Markus Pargmann 已提交
228
	struct regmap *regs;
229
	int irq;
230
	struct snd_soc_dai_driver cpu_dai_drv;
231

232 233
	unsigned int dai_fmt;
	u8 i2s_mode;
234
	bool use_dma;
235
	bool use_dual_fifo;
236
	bool has_ipg_clk_name;
237
	unsigned int fifo_depth;
238 239
	unsigned int slot_width;
	unsigned int slots;
240 241
	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;

242
	struct clk *clk;
243
	struct clk *baudclk;
244
	unsigned int baudclk_streams;
245

246
	/* regcache for volatile regs */
247
	u32 regcache_sfcsr;
248
	u32 regcache_sacnt;
249

250
	/* DMA params */
251 252
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
253 254 255
	dma_addr_t ssi_phys;

	/* params for non-dma FIQ stream filtered mode */
256
	struct imx_pcm_fiq_params fiq_params;
257 258 259 260

	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
	 * should be replaced with simple-sound-card. */
	struct platform_device *pdev;
261

262
	struct fsl_ssi_dbg dbg_stats;
263

264
	const struct fsl_ssi_soc_data *soc;
265
	struct device *dev;
266 267 268

	u32 fifo_watermark;
	u32 dma_maxburst;
269 270

	struct mutex ac97_reg_lock;
271
};
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

/*
 * imx51 and later SoCs have a slightly different IP that allows the
 * SSI configuration while the SSI unit is running.
 *
 * More important, it is necessary on those SoCs to configure the
 * sperate TX/RX DMA bits just before starting the stream
 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
 * sends any DMA requests to the SDMA unit, otherwise it is not defined
 * how the SDMA unit handles the DMA request.
 *
 * SDMA units are present on devices starting at imx35 but the imx35
 * reference manual states that the DMA bits should not be changed
 * while the SSI unit is running (SSIEN). So we support the necessary
 * online configuration of fsl-ssi starting at imx51.
 */

289 290 291 292 293 294 295 296 297 298
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
	.imx = false,
	.offline_config = true,
	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
};

static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
	.imx = true,
299
	.imx21regs = true,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	.offline_config = true,
	.sisr_write_mask = 0,
};

static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
	.imx = true,
	.offline_config = true,
	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
};

static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
	.imx = true,
	.offline_config = false,
	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
};

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
{
330 331
	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
		SND_SOC_DAIFMT_AC97;
332 333
}

334 335 336 337 338 339
static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
{
	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
		SND_SOC_DAIFMT_CBS_CFS;
}

340 341 342 343 344
static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
{
	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
		SND_SOC_DAIFMT_CBM_CFS;
}
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
M
Markus Pargmann 已提交
360
	struct regmap *regs = ssi_private->regs;
361
	__be32 sisr;
362
	__be32 sisr2;
363 364 365 366 367

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
M
Markus Pargmann 已提交
368
	regmap_read(regs, CCSR_SSI_SISR, &sisr);
369

370
	sisr2 = sisr & ssi_private->soc->sisr_write_mask;
371 372
	/* Clear the bits that we set */
	if (sisr2)
M
Markus Pargmann 已提交
373
		regmap_write(regs, CCSR_SSI_SISR, sisr2);
374

375
	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
376

377
	return IRQ_HANDLED;
378 379
}

380 381 382 383 384 385
/*
 * Enable/Disable all rx/tx config flags at once.
 */
static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
		bool enable)
{
M
Markus Pargmann 已提交
386
	struct regmap *regs = ssi_private->regs;
387 388 389
	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;

	if (enable) {
M
Markus Pargmann 已提交
390 391 392 393 394 395 396 397 398
		regmap_update_bits(regs, CCSR_SSI_SIER,
				vals->rx.sier | vals->tx.sier,
				vals->rx.sier | vals->tx.sier);
		regmap_update_bits(regs, CCSR_SSI_SRCR,
				vals->rx.srcr | vals->tx.srcr,
				vals->rx.srcr | vals->tx.srcr);
		regmap_update_bits(regs, CCSR_SSI_STCR,
				vals->rx.stcr | vals->tx.stcr,
				vals->rx.stcr | vals->tx.stcr);
399
	} else {
M
Markus Pargmann 已提交
400 401 402 403 404 405
		regmap_update_bits(regs, CCSR_SSI_SRCR,
				vals->rx.srcr | vals->tx.srcr, 0);
		regmap_update_bits(regs, CCSR_SSI_STCR,
				vals->rx.stcr | vals->tx.stcr, 0);
		regmap_update_bits(regs, CCSR_SSI_SIER,
				vals->rx.sier | vals->tx.sier, 0);
406 407 408
	}
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * Clear RX or TX FIFO to remove samples from the previous
 * stream session which may be still present in the FIFO and
 * may introduce bad samples and/or channel slipping.
 *
 * Note: The SOR is not documented in recent IMX datasheet, but
 * is described in IMX51 reference manual at section 56.3.3.15.
 */
static void fsl_ssi_fifo_clear(struct fsl_ssi_private *ssi_private,
		bool is_rx)
{
	if (is_rx) {
		regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
			CCSR_SSI_SOR_RX_CLR, CCSR_SSI_SOR_RX_CLR);
	} else {
		regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
			CCSR_SSI_SOR_TX_CLR, CCSR_SSI_SOR_TX_CLR);
	}
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * Calculate the bits that have to be disabled for the current stream that is
 * getting disabled. This keeps the bits enabled that are necessary for the
 * second stream to work if 'stream_active' is true.
 *
 * Detailed calculation:
 * These are the values that need to be active after disabling. For non-active
 * second stream, this is 0:
 *	vals_stream * !!stream_active
 *
 * The following computes the overall differences between the setup for the
 * to-disable stream and the active stream, a simple XOR:
 *	vals_disable ^ (vals_stream * !!(stream_active))
 *
 * The full expression adds a mask on all values we care about
 */
#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
	((vals_disable) & \
	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))

449 450 451 452 453 454 455
/*
 * Enable/Disable a ssi configuration. You have to pass either
 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
 */
static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
		struct fsl_ssi_reg_val *vals)
{
M
Markus Pargmann 已提交
456
	struct regmap *regs = ssi_private->regs;
457
	struct fsl_ssi_reg_val *avals;
M
Markus Pargmann 已提交
458 459
	int nr_active_streams;
	u32 scr_val;
460 461
	int keep_active;

M
Markus Pargmann 已提交
462 463 464 465 466
	regmap_read(regs, CCSR_SSI_SCR, &scr_val);

	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
				!!(scr_val & CCSR_SSI_SCR_RE);

467 468 469 470
	if (nr_active_streams - 1 > 0)
		keep_active = 1;
	else
		keep_active = 0;
471 472 473 474 475 476 477 478 479 480

	/* Find the other direction values rx or tx which we do not want to
	 * modify */
	if (&ssi_private->rxtx_reg_val.rx == vals)
		avals = &ssi_private->rxtx_reg_val.tx;
	else
		avals = &ssi_private->rxtx_reg_val.rx;

	/* If vals should be disabled, start with disabling the unit */
	if (!enable) {
481 482
		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
				keep_active);
M
Markus Pargmann 已提交
483
		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
484 485 486 487 488 489 490
	}

	/*
	 * We are running on a SoC which does not support online SSI
	 * reconfiguration, so we have to enable all necessary flags at once
	 * even if we do not use them later (capture and playback configuration)
	 */
491
	if (ssi_private->soc->offline_config) {
492
		if ((enable && !nr_active_streams) ||
493
				(!enable && !keep_active))
494 495 496 497 498 499 500 501 502 503
			fsl_ssi_rxtx_config(ssi_private, enable);

		goto config_done;
	}

	/*
	 * Configure single direction units while the SSI unit is running
	 * (online configuration)
	 */
	if (enable) {
504 505
		fsl_ssi_fifo_clear(ssi_private, vals->scr & CCSR_SSI_SCR_RE);

M
Markus Pargmann 已提交
506 507
		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
508
		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	} else {
		u32 sier;
		u32 srcr;
		u32 stcr;

		/*
		 * Disabling the necessary flags for one of rx/tx while the
		 * other stream is active is a little bit more difficult. We
		 * have to disable only those flags that differ between both
		 * streams (rx XOR tx) and that are set in the stream that is
		 * disabled now. Otherwise we could alter flags of the other
		 * stream
		 */

		/* These assignments are simply vals without bits set in avals*/
524 525 526 527 528 529
		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
				keep_active);
		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
				keep_active);
		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
				keep_active);
530

M
Markus Pargmann 已提交
531 532 533
		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
534 535 536 537
	}

config_done:
	/* Enabling of subunits is done after configuration */
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	if (enable) {
		if (ssi_private->use_dma && (vals->scr & CCSR_SSI_SCR_TE)) {
			/*
			 * Be sure the Tx FIFO is filled when TE is set.
			 * Otherwise, there are some chances to start the
			 * playback with some void samples inserted first,
			 * generating a channel slip.
			 *
			 * First, SSIEN must be set, to let the FIFO be filled.
			 *
			 * Notes:
			 * - Limit this fix to the DMA case until FIQ cases can
			 *   be tested.
			 * - Limit the length of the busy loop to not lock the
			 *   system too long, even if 1-2 loops are sufficient
			 *   in general.
			 */
			int i;
			int max_loop = 100;
			regmap_update_bits(regs, CCSR_SSI_SCR,
					CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);
			for (i = 0; i < max_loop; i++) {
				u32 sfcsr;
				regmap_read(regs, CCSR_SSI_SFCSR, &sfcsr);
				if (CCSR_SSI_SFCSR_TFCNT0(sfcsr))
					break;
			}
			if (i == max_loop) {
				dev_err(ssi_private->dev,
					"Timeout waiting TX FIFO filling\n");
			}
		}
M
Markus Pargmann 已提交
570
		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
571
	}
572 573 574 575 576 577 578 579
}


static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi_private *ssi_private)
{
	struct regmap *regs = ssi_private->regs;

	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
	if (!ssi_private->soc->imx21regs) {
		/*
		 * Note that these below aren't just normal registers.
		 * They are a way to disable or enable bits in SACCST
		 * register:
		 * - writing a '1' bit at some position in SACCEN sets the
		 * relevant bit in SACCST,
		 * - writing a '1' bit at some position in SACCDIS unsets
		 * the relevant bit in SACCST register.
		 *
		 * The two writes below first disable all channels slots,
		 * then enable just slots 3 & 4 ("PCM Playback Left Channel"
		 * and "PCM Playback Right Channel").
		 */
		regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
		regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
	}
}

604 605
static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	/*
	 * Why are we setting up SACCST everytime we are starting a
	 * playback?
	 * Some CODECs (like VT1613 CODEC on UDOO board) like to
	 * (sometimes) set extra bits in their SLOTREQ requests.
	 * When a bit is set in a SLOTREQ request then SSI sets the
	 * relevant bit in SACCST automatically (it is enough if a bit was
	 * set in a SLOTREQ just once, bits in SACCST are 'sticky').
	 * If an extra slot gets enabled that's a disaster for playback
	 * because some of normal left or right channel samples are
	 * redirected instead to this extra slot.
	 *
	 * A workaround implemented in fsl-asoc-card of setting an
	 * appropriate CODEC register so that slots 3 & 4 (the normal
	 * stereo playback slots) are used for S/PDIF seems to mostly fix
	 * this issue on the UDOO board but since this CODEC is so
	 * untrustworthy let's play safe here and make sure that no extra
	 * slots are enabled every time a playback is started.
	 */
	if (enable && fsl_ssi_is_ac97(ssi_private))
		fsl_ssi_tx_ac97_saccst_setup(ssi_private);

628 629 630
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Setup rx/tx register values used to enable/disable the streams. These will
 * be used later in fsl_ssi_config to setup the streams without the need to
 * check for all different SSI modes.
 */
static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
{
	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;

	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
	reg->rx.scr = 0;
	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
	reg->tx.scr = 0;

647
	if (!fsl_ssi_is_ac97(ssi_private)) {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
	}

	if (ssi_private->use_dma) {
		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
	} else {
		reg->rx.sier |= CCSR_SSI_SIER_RIE;
		reg->tx.sier |= CCSR_SSI_SIER_TIE;
	}

	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
}

664 665
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
M
Markus Pargmann 已提交
666
	struct regmap *regs = ssi_private->regs;
667 668 669 670

	/*
	 * Setup the clock control register
	 */
M
Markus Pargmann 已提交
671 672 673 674
	regmap_write(regs, CCSR_SSI_STCCR,
			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
	regmap_write(regs, CCSR_SSI_SRCCR,
			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
675 676 677 678

	/*
	 * Enable AC97 mode and startup the SSI
	 */
M
Markus Pargmann 已提交
679 680
	regmap_write(regs, CCSR_SSI_SACNT,
			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
681

682 683 684 685
	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
M
Markus Pargmann 已提交
686 687 688
	regmap_update_bits(regs, CCSR_SSI_SCR,
			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
689

M
Markus Pargmann 已提交
690
	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
691 692
}

693 694 695 696 697 698 699 700
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
701 702
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
703 704
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
705 706
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
707 708 709 710 711
	int ret;

	ret = clk_prepare_enable(ssi_private->clk);
	if (ret)
		return ret;
712

713 714 715 716 717 718 719 720 721
	/* When using dual fifo mode, it is safer to ensure an even period
	 * size. If appearing to an odd number while DMA always starts its
	 * task from fifo0, fifo1 would be neglected at the end of each
	 * period. But SSI would still access fifo1 with an invalid data.
	 */
	if (ssi_private->use_dual_fifo)
		snd_pcm_hw_constraint_step(substream->runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);

722 723 724
	return 0;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 */
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
				struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);

	clk_disable_unprepare(ssi_private->clk);

}

740
/**
741
 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
742 743 744 745
 *
 * Note: This function can be only called when using SSI as DAI master
 *
 * Quick instruction for parameters:
746 747
 * freq: Output BCLK frequency = samplerate * slots * slot_width
 *       (In 2-channel I2S Master mode, slot_width is fixed 32)
748
 */
749 750 751
static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai,
		struct snd_pcm_hw_params *hw_params)
752 753
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
M
Markus Pargmann 已提交
754
	struct regmap *regs = ssi_private->regs;
755 756
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
757
	unsigned long clkrate, baudrate, tmprate;
758 759
	unsigned int slots = params_channels(hw_params);
	unsigned int slot_width = 32;
760
	u64 sub, savesub = 100000;
761
	unsigned int freq;
762
	bool baudclk_is_used;
763

764 765 766 767 768 769 770 771 772
	/* Override slots and slot_width if being specifically set... */
	if (ssi_private->slots)
		slots = ssi_private->slots;
	/* ...but keep 32 bits if slots is 2 -- I2S Master mode */
	if (ssi_private->slot_width && slots != 2)
		slot_width = ssi_private->slot_width;

	/* Generate bit clock based on the slot number and slot width */
	freq = slots * slot_width * params_rate(hw_params);
773 774 775 776 777

	/* Don't apply it to any non-baudclk circumstance */
	if (IS_ERR(ssi_private->baudclk))
		return -EINVAL;

778 779 780 781 782 783 784 785 786
	/*
	 * Hardware limitation: The bclk rate must be
	 * never greater than 1/5 IPG clock rate
	 */
	if (freq * 5 > clk_get_rate(ssi_private->clk)) {
		dev_err(cpu_dai->dev, "bitclk > ipgclk/5\n");
		return -EINVAL;
	}

787 788
	baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));

789 790 791 792 793 794 795
	/* It should be already enough to divide clock by setting pm alone */
	psr = 0;
	div2 = 0;

	factor = (div2 + 1) * (7 * psr + 1) * 2;

	for (i = 0; i < 255; i++) {
796
		tmprate = freq * factor * (i + 1);
797 798 799 800 801

		if (baudclk_is_used)
			clkrate = clk_get_rate(ssi_private->baudclk);
		else
			clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
802

803 804
		clkrate /= factor;
		afreq = clkrate / (i + 1);
805 806 807 808 809 810 811 812 813 814 815 816 817 818

		if (freq == afreq)
			sub = 0;
		else if (freq / afreq == 1)
			sub = freq - afreq;
		else if (afreq / freq == 1)
			sub = afreq - freq;
		else
			continue;

		/* Calculate the fraction */
		sub *= 100000;
		do_div(sub, freq);

819
		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
			baudrate = tmprate;
			savesub = sub;
			pm = i;
		}

		/* We are lucky */
		if (savesub == 0)
			break;
	}

	/* No proper pm found if it is still remaining the initial value */
	if (pm == 999) {
		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
		return -EINVAL;
	}

	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
		(psr ? CCSR_SSI_SxCCR_PSR : 0);
	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
		CCSR_SSI_SxCCR_PSR;

841
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
M
Markus Pargmann 已提交
842
		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
843
	else
M
Markus Pargmann 已提交
844
		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
845

846
	if (!baudclk_is_used) {
847 848 849 850 851 852 853 854 855 856
		ret = clk_set_rate(ssi_private->baudclk, baudrate);
		if (ret) {
			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
			return -EINVAL;
		}
	}

	return 0;
}

857
/**
858
 * fsl_ssi_hw_params - program the sample size
859 860 861 862 863 864 865 866 867 868 869
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
870 871
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
872
{
873
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
M
Markus Pargmann 已提交
874
	struct regmap *regs = ssi_private->regs;
875
	unsigned int channels = params_channels(hw_params);
876
	unsigned int sample_size = params_width(hw_params);
877
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
878
	int ret;
M
Markus Pargmann 已提交
879 880 881 882 883
	u32 scr_val;
	int enabled;

	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
884

885 886 887 888 889 890
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
891

892 893 894 895
	if (fsl_ssi_is_i2s_master(ssi_private)) {
		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
		if (ret)
			return ret;
896 897 898 899 900 901 902 903 904

		/* Do not enable the clock if it is already enabled */
		if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(ssi_private->baudclk);
			if (ret)
				return ret;

			ssi_private->baudclk_streams |= BIT(substream->stream);
		}
905 906
	}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	if (!fsl_ssi_is_ac97(ssi_private)) {
		u8 i2smode;
		/*
		 * Switch to normal net mode in order to have a frame sync
		 * signal every 32 bits instead of 16 bits
		 */
		if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
				CCSR_SSI_SCR_NET;
		else
			i2smode = ssi_private->i2s_mode;

		regmap_update_bits(regs, CCSR_SSI_SCR,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : i2smode);
	}

924 925 926 927 928 929 930 931 932
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
933

934 935 936
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
M
Markus Pargmann 已提交
937 938
		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
				wl);
939
	else
M
Markus Pargmann 已提交
940 941
		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
				wl);
942 943 944 945

	return 0;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);

	if (fsl_ssi_is_i2s_master(ssi_private) &&
			ssi_private->baudclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(ssi_private->baudclk);
		ssi_private->baudclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}

962 963 964
static int _fsl_ssi_set_dai_fmt(struct device *dev,
				struct fsl_ssi_private *ssi_private,
				unsigned int fmt)
965
{
M
Markus Pargmann 已提交
966
	struct regmap *regs = ssi_private->regs;
967
	u32 strcr = 0, stcr, srcr, scr, mask;
968 969
	u8 wm;

970 971
	ssi_private->dai_fmt = fmt;

972
	if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
973
		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
974 975 976
		return -EINVAL;
	}

977
	fsl_ssi_setup_reg_vals(ssi_private);
978

M
Markus Pargmann 已提交
979 980
	regmap_read(regs, CCSR_SSI_SCR, &scr);
	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
981
	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
982 983 984 985

	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
		CCSR_SSI_STCR_TEFS;
M
Markus Pargmann 已提交
986 987 988 989
	regmap_read(regs, CCSR_SSI_STCR, &stcr);
	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
	stcr &= ~mask;
	srcr &= ~mask;
990

991
	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
992 993
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
994 995 996 997 998 999
		regmap_update_bits(regs, CCSR_SSI_STCCR,
				   CCSR_SSI_SxCCR_DC_MASK,
				   CCSR_SSI_SxCCR_DC(2));
		regmap_update_bits(regs, CCSR_SSI_SRCCR,
				   CCSR_SSI_SxCCR_DC_MASK,
				   CCSR_SSI_SxCCR_DC(2));
1000
		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1001
		case SND_SOC_DAIFMT_CBM_CFS:
1002
		case SND_SOC_DAIFMT_CBS_CFS:
1003
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
1004 1005
			break;
		case SND_SOC_DAIFMT_CBM_CFM:
1006
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			break;
		default:
			return -EINVAL;
		}

		/* Data on rising edge of bclk, frame low, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0;
		break;
1030
	case SND_SOC_DAIFMT_AC97:
1031
		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
1032
		break;
1033 1034 1035
	default:
		return -EINVAL;
	}
1036
	scr |= ssi_private->i2s_mode;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
1069 1070 1071 1072 1073
	case SND_SOC_DAIFMT_CBM_CFS:
		strcr &= ~CCSR_SSI_STCR_TXDIR;
		strcr |= CCSR_SSI_STCR_TFDIR;
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
1074
	default:
1075 1076
		if (!fsl_ssi_is_ac97(ssi_private))
			return -EINVAL;
1077 1078 1079 1080 1081
	}

	stcr |= strcr;
	srcr |= strcr;

1082 1083 1084
	if (ssi_private->cpu_dai_drv.symmetric_rates
			|| fsl_ssi_is_ac97(ssi_private)) {
		/* Need to clear RXDIR when using SYNC or AC97 mode */
1085 1086 1087 1088
		srcr &= ~CCSR_SSI_SRCR_RXDIR;
		scr |= CCSR_SSI_SCR_SYN;
	}

M
Markus Pargmann 已提交
1089 1090 1091
	regmap_write(regs, CCSR_SSI_STCR, stcr);
	regmap_write(regs, CCSR_SSI_SRCR, srcr);
	regmap_write(regs, CCSR_SSI_SCR, scr);
1092

1093
	wm = ssi_private->fifo_watermark;
1094

M
Markus Pargmann 已提交
1095 1096 1097
	regmap_write(regs, CCSR_SSI_SFCSR,
			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1098 1099

	if (ssi_private->use_dual_fifo) {
M
Markus Pargmann 已提交
1100
		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1101
				CCSR_SSI_SRCR_RFEN1);
M
Markus Pargmann 已提交
1102
		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1103
				CCSR_SSI_STCR_TFEN1);
M
Markus Pargmann 已提交
1104
		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1105 1106 1107
				CCSR_SSI_SCR_TCH_EN);
	}

1108
	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1109 1110
		fsl_ssi_setup_ac97(ssi_private);

1111
	return 0;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

}

/**
 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
 */
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);

1122 1123 1124
	if (fsl_ssi_is_ac97(ssi_private))
		return 0;

1125
	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

/**
 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
 *
 * Note: This function can be only called when using SSI as DAI master
 */
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
M
Markus Pargmann 已提交
1137
	struct regmap *regs = ssi_private->regs;
1138 1139
	u32 val;

1140 1141 1142 1143 1144 1145
	/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
	if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
		dev_err(cpu_dai->dev, "invalid slot width: %d\n", slot_width);
		return -EINVAL;
	}

1146
	/* The slot number should be >= 2 if using Network mode or I2S mode */
M
Markus Pargmann 已提交
1147 1148
	regmap_read(regs, CCSR_SSI_SCR, &val);
	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1149 1150 1151 1152 1153
	if (val && slots < 2) {
		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
		return -EINVAL;
	}

M
Markus Pargmann 已提交
1154
	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1155
			CCSR_SSI_SxCCR_DC(slots));
M
Markus Pargmann 已提交
1156
	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1157 1158 1159 1160 1161
			CCSR_SSI_SxCCR_DC(slots));

	/* The register SxMSKs needs SSI to provide essential clock due to
	 * hardware design. So we here temporarily enable SSI to set them.
	 */
M
Markus Pargmann 已提交
1162 1163 1164 1165
	regmap_read(regs, CCSR_SSI_SCR, &val);
	val &= CCSR_SSI_SCR_SSIEN;
	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
			CCSR_SSI_SCR_SSIEN);
1166

1167 1168
	regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
	regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1169

M
Markus Pargmann 已提交
1170
	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1171

1172 1173 1174
	ssi_private->slot_width = slot_width;
	ssi_private->slots = slots;

1175 1176 1177
	return 0;
}

1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
1187 1188
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
1189 1190
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1191
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
M
Markus Pargmann 已提交
1192
	struct regmap *regs = ssi_private->regs;
1193

1194 1195
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
1196
	case SNDRV_PCM_TRIGGER_RESUME:
1197
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1198
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1199
			fsl_ssi_tx_config(ssi_private, true);
1200
		else
1201
			fsl_ssi_rx_config(ssi_private, true);
1202 1203 1204
		break;

	case SNDRV_PCM_TRIGGER_STOP:
1205
	case SNDRV_PCM_TRIGGER_SUSPEND:
1206 1207
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1208
			fsl_ssi_tx_config(ssi_private, false);
1209
		else
1210
			fsl_ssi_rx_config(ssi_private, false);
1211 1212 1213 1214 1215 1216
		break;

	default:
		return -EINVAL;
	}

1217
	if (fsl_ssi_is_ac97(ssi_private)) {
1218
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
M
Markus Pargmann 已提交
1219
			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1220
		else
M
Markus Pargmann 已提交
1221
			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1222
	}
1223

1224 1225 1226
	return 0;
}

1227 1228 1229 1230
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

1231
	if (ssi_private->soc->imx && ssi_private->use_dma) {
1232 1233 1234 1235 1236 1237 1238
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

1239
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1240
	.startup	= fsl_ssi_startup,
1241
	.shutdown       = fsl_ssi_shutdown,
1242
	.hw_params	= fsl_ssi_hw_params,
1243
	.hw_free	= fsl_ssi_hw_free,
1244 1245
	.set_fmt	= fsl_ssi_set_dai_fmt,
	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1246 1247 1248
	.trigger	= fsl_ssi_trigger,
};

1249 1250
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1251
	.probe = fsl_ssi_dai_probe,
1252
	.playback = {
1253
		.stream_name = "CPU-Playback",
1254
		.channels_min = 1,
1255
		.channels_max = 32,
1256
		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1257 1258 1259
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
1260
		.stream_name = "CPU-Capture",
1261
		.channels_min = 1,
1262
		.channels_max = 32,
1263
		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1264 1265
		.formats = FSLSSI_I2S_FORMATS,
	},
1266
	.ops = &fsl_ssi_dai_ops,
1267 1268
};

1269 1270 1271 1272
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

1273
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1274
	.bus_control = true,
1275
	.probe = fsl_ssi_dai_probe,
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
1290
	.ops = &fsl_ssi_dai_ops,
1291 1292 1293 1294 1295
};


static struct fsl_ssi_private *fsl_ac97_data;

1296
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1297 1298
		unsigned short val)
{
M
Markus Pargmann 已提交
1299
	struct regmap *regs = fsl_ac97_data->regs;
1300 1301
	unsigned int lreg;
	unsigned int lval;
1302
	int ret;
1303 1304 1305 1306

	if (reg > 0x7f)
		return;

1307 1308
	mutex_lock(&fsl_ac97_data->ac97_reg_lock);

1309 1310 1311 1312
	ret = clk_prepare_enable(fsl_ac97_data->clk);
	if (ret) {
		pr_err("ac97 write clk_prepare_enable failed: %d\n",
			ret);
1313
		goto ret_unlock;
1314
	}
1315 1316

	lreg = reg <<  12;
M
Markus Pargmann 已提交
1317
	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1318 1319

	lval = val << 4;
M
Markus Pargmann 已提交
1320
	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1321

M
Markus Pargmann 已提交
1322
	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1323 1324
			CCSR_SSI_SACNT_WR);
	udelay(100);
1325 1326

	clk_disable_unprepare(fsl_ac97_data->clk);
1327 1328 1329

ret_unlock:
	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1330 1331
}

1332
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1333 1334
		unsigned short reg)
{
M
Markus Pargmann 已提交
1335
	struct regmap *regs = fsl_ac97_data->regs;
1336

1337
	unsigned short val = 0;
M
Markus Pargmann 已提交
1338
	u32 reg_val;
1339
	unsigned int lreg;
1340 1341
	int ret;

1342 1343
	mutex_lock(&fsl_ac97_data->ac97_reg_lock);

1344 1345 1346 1347
	ret = clk_prepare_enable(fsl_ac97_data->clk);
	if (ret) {
		pr_err("ac97 read clk_prepare_enable failed: %d\n",
			ret);
1348
		goto ret_unlock;
1349
	}
1350 1351

	lreg = (reg & 0x7f) <<  12;
M
Markus Pargmann 已提交
1352 1353
	regmap_write(regs, CCSR_SSI_SACADD, lreg);
	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1354 1355 1356 1357
			CCSR_SSI_SACNT_RD);

	udelay(100);

M
Markus Pargmann 已提交
1358 1359
	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
	val = (reg_val >> 4) & 0xffff;
1360

1361 1362
	clk_disable_unprepare(fsl_ac97_data->clk);

1363 1364
ret_unlock:
	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1365 1366 1367 1368 1369 1370 1371 1372
	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

1373
/**
1374
 * Make every character in a string lower-case
1375
 */
1376 1377
static void make_lowercase(char *s)
{
1378 1379 1380 1381
	if (!s)
		return;
	for (; *s; s++)
		*s = tolower(*s);
1382 1383
}

1384
static int fsl_ssi_imx_probe(struct platform_device *pdev,
1385
		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1386 1387
{
	struct device_node *np = pdev->dev.of_node;
1388
	u32 dmas[4];
1389 1390
	int ret;

1391 1392 1393 1394
	if (ssi_private->has_ipg_clk_name)
		ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
	else
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1395 1396 1397 1398 1399 1400
	if (IS_ERR(ssi_private->clk)) {
		ret = PTR_ERR(ssi_private->clk);
		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
		return ret;
	}

1401 1402 1403 1404 1405 1406
	if (!ssi_private->has_ipg_clk_name) {
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
			return ret;
		}
1407 1408
	}

1409
	/* For those SLAVE implementations, we ignore non-baudclk cases
1410 1411 1412 1413 1414 1415 1416
	 * and, instead, abandon MASTER mode that needs baud clock.
	 */
	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
	if (IS_ERR(ssi_private->baudclk))
		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
			 PTR_ERR(ssi_private->baudclk));

1417 1418
	ssi_private->dma_params_tx.maxburst = ssi_private->dma_maxburst;
	ssi_private->dma_params_rx.maxburst = ssi_private->dma_maxburst;
M
Markus Pargmann 已提交
1419 1420
	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1421

1422
	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1423
	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1424 1425 1426 1427 1428 1429 1430 1431
		ssi_private->use_dual_fifo = true;
		/* When using dual fifo mode, we need to keep watermark
		 * as even numbers due to dma script limitation.
		 */
		ssi_private->dma_params_tx.maxburst &= ~0x1;
		ssi_private->dma_params_rx.maxburst &= ~0x1;
	}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (!ssi_private->use_dma) {

		/*
		 * Some boards use an incompatible codec. To get it
		 * working, we are using imx-fiq-pcm-audio, that
		 * can handle those codecs. DMA is not possible in this
		 * situation.
		 */

		ssi_private->fiq_params.irq = ssi_private->irq;
		ssi_private->fiq_params.base = iomem;
		ssi_private->fiq_params.dma_params_rx =
			&ssi_private->dma_params_rx;
		ssi_private->fiq_params.dma_params_tx =
			&ssi_private->dma_params_tx;

		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
		if (ret)
			goto error_pcm;
	} else {
1452
		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1453 1454 1455 1456
		if (ret)
			goto error_pcm;
	}

1457
	return 0;
1458 1459 1460

error_pcm:

1461 1462
	if (!ssi_private->has_ipg_clk_name)
		clk_disable_unprepare(ssi_private->clk);
1463
	return ret;
1464 1465 1466 1467 1468
}

static void fsl_ssi_imx_clean(struct platform_device *pdev,
		struct fsl_ssi_private *ssi_private)
{
1469 1470
	if (!ssi_private->use_dma)
		imx_pcm_fiq_exit(pdev);
1471 1472
	if (!ssi_private->has_ipg_clk_name)
		clk_disable_unprepare(ssi_private->clk);
1473 1474
}

1475
static int fsl_ssi_probe(struct platform_device *pdev)
1476 1477 1478
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
1479
	struct device_node *np = pdev->dev.of_node;
1480
	const struct of_device_id *of_id;
1481
	const char *p, *sprop;
1482
	const uint32_t *iprop;
1483
	struct resource *res;
M
Markus Pargmann 已提交
1484
	void __iomem *iomem;
1485
	char name[64];
1486
	struct regmap_config regconfig = fsl_ssi_regconfig;
1487

1488
	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1489
	if (!of_id || !of_id->data)
1490 1491
		return -EINVAL;

1492 1493
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
			GFP_KERNEL);
1494
	if (!ssi_private)
1495
		return -ENOMEM;
1496

1497
	ssi_private->soc = of_id->data;
1498
	ssi_private->dev = &pdev->dev;
1499

1500 1501 1502 1503 1504 1505
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (sprop) {
		if (!strcmp(sprop, "ac97-slave"))
			ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
	}

1506 1507 1508
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");

1509
	if (fsl_ssi_is_ac97(ssi_private)) {
1510 1511 1512 1513 1514 1515 1516 1517 1518
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
1519
	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1520

1521 1522 1523 1524 1525
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	iomem = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(iomem))
		return PTR_ERR(iomem);
	ssi_private->ssi_phys = res->start;
M
Markus Pargmann 已提交
1526

1527 1528 1529 1530 1531 1532
	if (ssi_private->soc->imx21regs) {
		/*
		 * According to datasheet imx21-class SSI
		 * don't have SACC{ST,EN,DIS} regs.
		 */
		regconfig.max_register = CCSR_SSI_SRMSK;
1533 1534
		regconfig.num_reg_defaults_raw =
			CCSR_SSI_SRMSK / sizeof(uint32_t) + 1;
1535 1536
	}

1537 1538 1539 1540
	ret = of_property_match_string(np, "clock-names", "ipg");
	if (ret < 0) {
		ssi_private->has_ipg_clk_name = false;
		ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1541
			&regconfig);
1542 1543 1544
	} else {
		ssi_private->has_ipg_clk_name = true;
		ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1545
			"ipg", iomem, &regconfig);
1546
	}
M
Markus Pargmann 已提交
1547 1548 1549 1550
	if (IS_ERR(ssi_private->regs)) {
		dev_err(&pdev->dev, "Failed to init register map\n");
		return PTR_ERR(ssi_private->regs);
	}
1551

F
Fabio Estevam 已提交
1552
	ssi_private->irq = platform_get_irq(pdev, 0);
1553
	if (ssi_private->irq < 0) {
1554
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1555
		return ssi_private->irq;
1556 1557
	}

1558
	/* Are the RX and the TX clocks locked? */
1559
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1560 1561 1562
		if (!fsl_ssi_is_ac97(ssi_private))
			ssi_private->cpu_dai_drv.symmetric_rates = 1;

1563 1564 1565
		ssi_private->cpu_dai_drv.symmetric_channels = 1;
		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
	}
1566

1567 1568 1569
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
1570
		ssi_private->fifo_depth = be32_to_cpup(iprop);
1571 1572 1573 1574
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Set the watermark for transmit FIFO 0 and receive FIFO 0. We don't
	 * use FIFO 1 but set the watermark appropriately nontheless.
	 * We program the transmit water to signal a DMA transfer
	 * if there are N elements left in the FIFO. For chips with 15-deep
	 * FIFOs, set watermark to 8.  This allows the SSI to operate at a
	 * high data rate without channel slipping. Behavior is unchanged
	 * for the older chips with a fifo depth of only 8.  A value of 4
	 * might be appropriate for the older chips, but is left at
	 * fifo_depth-2 until sombody has a chance to test.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	switch (ssi_private->fifo_depth) {
	case 15:
		/*
		 * 2 samples is not enough when running at high data
		 * rates (like 48kHz @ 16 bits/channel, 16 channels)
		 * 8 seems to split things evenly and leave enough time
		 * for the DMA to fill the FIFO before it's over/under
		 * run.
		 */
		ssi_private->fifo_watermark = 8;
		ssi_private->dma_maxburst = 8;
		break;
	case 8:
	default:
		/*
		 * maintain old behavior for older chips.
		 * Keeping it the same because I don't have an older
		 * board to test with.
		 * I suspect this could be changed to be something to
		 * leave some more space in the fifo.
		 */
		ssi_private->fifo_watermark = ssi_private->fifo_depth - 2;
		ssi_private->dma_maxburst = ssi_private->fifo_depth - 2;
		break;
	}

1616 1617
	dev_set_drvdata(&pdev->dev, ssi_private);

1618
	if (ssi_private->soc->imx) {
M
Markus Pargmann 已提交
1619
		ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1620
		if (ret)
F
Fabio Estevam 已提交
1621
			return ret;
1622 1623
	}

1624
	if (fsl_ssi_is_ac97(ssi_private)) {
1625
		mutex_init(&ssi_private->ac97_reg_lock);
1626 1627 1628 1629 1630 1631 1632
		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
		if (ret) {
			dev_err(&pdev->dev, "could not set AC'97 ops\n");
			goto error_ac97_ops;
		}
	}

1633 1634
	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					      &ssi_private->cpu_dai_drv, 1);
1635 1636 1637 1638 1639
	if (ret) {
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
		goto error_asoc_register;
	}

1640
	if (ssi_private->use_dma) {
1641
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1642
					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1643 1644 1645 1646
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
1647
			goto error_asoc_register;
1648
		}
1649 1650
	}

1651
	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1652
	if (ret)
1653
		goto error_asoc_register;
1654 1655 1656 1657 1658 1659

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
1660
	if (!of_get_property(np, "codec-handle", NULL))
1661 1662
		goto done;

1663
	/* Trigger the machine driver's probe function.  The platform driver
1664
	 * name of the machine driver is taken from /compatible property of the
1665 1666 1667
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1668 1669
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1670 1671 1672 1673 1674 1675 1676
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1677
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1678 1679
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1680
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1681
		goto error_sound_card;
M
Mark Brown 已提交
1682
	}
1683

1684
done:
1685
	if (ssi_private->dai_fmt)
1686 1687
		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
				     ssi_private->dai_fmt);
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (fsl_ssi_is_ac97(ssi_private)) {
		u32 ssi_idx;

		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
		if (ret) {
			dev_err(&pdev->dev, "cannot get SSI index property\n");
			goto error_sound_card;
		}

		ssi_private->pdev =
			platform_device_register_data(NULL,
					"ac97-codec", ssi_idx, NULL, 0);
		if (IS_ERR(ssi_private->pdev)) {
			ret = PTR_ERR(ssi_private->pdev);
			dev_err(&pdev->dev,
				"failed to register AC97 codec platform: %d\n",
				ret);
			goto error_sound_card;
		}
	}

1710
	return 0;
1711

1712
error_sound_card:
1713
	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1714

1715
error_asoc_register:
1716 1717 1718 1719
	if (fsl_ssi_is_ac97(ssi_private))
		snd_soc_set_ac97_ops(NULL);

error_ac97_ops:
1720 1721 1722
	if (fsl_ssi_is_ac97(ssi_private))
		mutex_destroy(&ssi_private->ac97_reg_lock);

1723
	if (ssi_private->soc->imx)
1724
		fsl_ssi_imx_clean(pdev, ssi_private);
1725

1726
	return ret;
1727 1728
}

1729
static int fsl_ssi_remove(struct platform_device *pdev)
1730
{
1731
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1732

1733
	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1734

1735
	if (ssi_private->pdev)
1736
		platform_device_unregister(ssi_private->pdev);
1737

1738
	if (ssi_private->soc->imx)
1739 1740
		fsl_ssi_imx_clean(pdev, ssi_private);

1741
	if (fsl_ssi_is_ac97(ssi_private)) {
1742
		snd_soc_set_ac97_ops(NULL);
1743 1744
		mutex_destroy(&ssi_private->ac97_reg_lock);
	}
1745

1746
	return 0;
1747
}
1748

1749 1750 1751 1752 1753 1754 1755 1756
#ifdef CONFIG_PM_SLEEP
static int fsl_ssi_suspend(struct device *dev)
{
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
	struct regmap *regs = ssi_private->regs;

	regmap_read(regs, CCSR_SSI_SFCSR,
			&ssi_private->regcache_sfcsr);
1757 1758
	regmap_read(regs, CCSR_SSI_SACNT,
			&ssi_private->regcache_sacnt);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	regcache_cache_only(regs, true);
	regcache_mark_dirty(regs);

	return 0;
}

static int fsl_ssi_resume(struct device *dev)
{
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
	struct regmap *regs = ssi_private->regs;

	regcache_cache_only(regs, false);

	regmap_update_bits(regs, CCSR_SSI_SFCSR,
			CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
			CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
			ssi_private->regcache_sfcsr);
1777 1778
	regmap_write(regs, CCSR_SSI_SACNT,
			ssi_private->regcache_sacnt);
1779 1780 1781 1782 1783 1784 1785 1786 1787

	return regcache_sync(regs);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops fsl_ssi_pm = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
};

1788
static struct platform_driver fsl_ssi_driver = {
1789 1790 1791
	.driver = {
		.name = "fsl-ssi-dai",
		.of_match_table = fsl_ssi_ids,
1792
		.pm = &fsl_ssi_pm,
1793 1794 1795 1796
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1797

1798
module_platform_driver(fsl_ssi_driver);
1799

1800
MODULE_ALIAS("platform:fsl-ssi-dai");
1801 1802
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1803
MODULE_LICENSE("GPL v2");