fsl_ssi.c 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
 * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
 * under the terms of the GNU General Public License version 2.  This
 * program is licensed "as is" without any warranty of any kind, whether
 * express or implied.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
17
#include <linux/slab.h>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

#include <asm/immap_86xx.h>

#include "fsl_ssi.h"

/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

64 65 66 67 68 69 70
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

71 72 73 74 75 76 77
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @name: short name for this device ("SSI0", "SSI1", etc)
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
78 79
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
80 81 82
 * @dev: struct device pointer
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
83
 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
84 85 86 87 88 89 90 91 92
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
 */
struct fsl_ssi_private {
	char name[8];
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
93 94
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
95 96 97
	struct device *dev;
	unsigned int playback;
	unsigned int capture;
98
	int asynchronous;
99
	struct snd_soc_dai cpu_dai;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	struct device_attribute dev_attr;

	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
151
	sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
		out_be32(&ssi->sisr, sisr2);

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
279 280
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
	if (!ssi_private->playback && !ssi_private->capture) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
		int ret;

		ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
				  ssi_private->name, ssi_private);
		if (ret < 0) {
			dev_err(substream->pcm->card->dev,
				"could not claim irq %u\n", ssi_private->irq);
			return ret;
		}

		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
314 315 316 317
		clrsetbits_be32(&ssi->scr,
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
			| (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

		out_be32(&ssi->stcr,
			 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
			 CCSR_SSI_STCR_TSCKP);

		out_be32(&ssi->srcr,
			 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
			 CCSR_SSI_SRCR_RSCKP);

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

		/* 4. Enable the interrupts and DMA requests */
335
		out_be32(&ssi->sier, SIER_FLAGS);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
		 * don't use FIFO 1.  Since the SSI only supports stereo, the
		 * watermark should never be an odd number.
		 */
		out_be32(&ssi->sfcsr,
			 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
	}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	if (!ssi_private->first_stream)
		ssi_private->first_stream = substream;
	else {
		/* This is the second stream open, so we need to impose sample
		 * rate and maybe sample size constraints.  Note that this can
		 * cause a race condition if the second stream is opened before
		 * the first stream is fully initialized.
		 *
		 * We provide some protection by checking to make sure the first
		 * stream is initialized, but it's not perfect.  ALSA sometimes
		 * re-initializes the driver with a different sample rate or
		 * size.  If the second stream is opened before the first stream
		 * has received its final parameters, then the second stream may
		 * be constrained to the wrong sample rate or size.
		 *
		 * FIXME: This code does not handle opening and closing streams
		 * repeatedly.  If you open two streams and then close the first
		 * one, you may not be able to open another stream until you
		 * close the second one as well.
		 */
		struct snd_pcm_runtime *first_runtime =
			ssi_private->first_stream->runtime;

379
		if (!first_runtime->sample_bits) {
380
			dev_err(substream->pcm->card->dev,
381
				"set sample size in %s stream first\n",
382 383 384 385 386
				substream->stream == SNDRV_PCM_STREAM_PLAYBACK
				? "capture" : "playback");
			return -EAGAIN;
		}

387 388 389 390 391 392 393 394 395
		/* If we're in synchronous mode, then we need to constrain
		 * the sample size as well.  We don't support independent sample
		 * rates in asynchronous mode.
		 */
		if (!ssi_private->asynchronous)
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
396 397 398 399

		ssi_private->second_stream = substream;
	}

400 401 402 403 404 405 406 407 408 409
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		ssi_private->playback++;

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		ssi_private->capture++;

	return 0;
}

/**
410
 * fsl_ssi_hw_params - program the sample size
411 412 413 414 415 416 417 418 419 420 421
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
422 423
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
424
{
425
	struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
426

427
	if (substream == ssi_private->first_stream) {
428 429 430
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
		unsigned int sample_size =
			snd_pcm_format_width(params_format(hw_params));
431
		u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
432

433
		/* The SSI should always be disabled at this points (SSIEN=0) */
434

435
		/* In synchronous mode, the SSI uses STCCR for capture */
436 437 438 439 440 441 442
		if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
		    !ssi_private->asynchronous)
			clrsetbits_be32(&ssi->stccr,
					CCSR_SSI_SxCCR_WL_MASK, wl);
		else
			clrsetbits_be32(&ssi->srccr,
					CCSR_SSI_SxCCR_WL_MASK, wl);
443
	}
444 445 446 447 448 449 450 451 452 453 454 455 456

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
457 458
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
459 460 461 462 463 464 465
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
466
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
467
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
468
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
469 470
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
471
		else
472 473
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
		else
			clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
496 497
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
498 499 500 501 502 503 504 505 506 507
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		ssi_private->playback--;

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		ssi_private->capture--;

508 509 510 511 512
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	/*
	 * If this is the last active substream, disable the SSI and release
	 * the IRQ.
	 */
	if (!ssi_private->playback && !ssi_private->capture) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		free_irq(ssi_private->irq, ssi_private);
	}
}

/**
 * fsl_ssi_set_sysclk: set the clock frequency and direction
 *
 * This function is called by the machine driver to tell us what the clock
 * frequency and direction are.
 *
 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
 * and we don't care about the frequency.  Return an error if the direction
 * is not SND_SOC_CLOCK_IN.
 *
 * @clk_id: reserved, should be zero
 * @freq: the frequency of the given clock ID, currently ignored
 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
 */
540
static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
			      int clk_id, unsigned int freq, int dir)
{

	return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
}

/**
 * fsl_ssi_set_fmt: set the serial format.
 *
 * This function is called by the machine driver to tell us what serial
 * format to use.
 *
 * Currently, we only support I2S mode.  Return an error if the format is
 * not SND_SOC_DAIFMT_I2S.
 *
 * @format: one of SND_SOC_DAIFMT_xxx
 */
558
static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
559 560 561 562 563 564 565
{
	return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
}

/**
 * fsl_ssi_dai_template: template CPU DAI for the SSI
 */
566 567 568 569 570 571 572 573 574
static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
	.set_sysclk	= fsl_ssi_set_sysclk,
	.set_fmt	= fsl_ssi_set_fmt,
};

575
static struct snd_soc_dai fsl_ssi_dai_template = {
576 577 578 579 580 581 582 583 584 585 586 587 588
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
589
	.ops = &fsl_ssi_dai_ops,
590 591
};

592 593 594 595 596 597 598 599 600 601 602 603
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


604 605 606
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
607 608
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
609 610 611 612 613
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
638 639 640 641 642

	return length;
}

/**
643
 * fsl_ssi_create_dai: create a snd_soc_dai structure
644
 *
645
 * This function is called by the machine driver to create a snd_soc_dai
646
 * structure.  The function creates an ssi_private object, which contains
647
 * the snd_soc_dai.  It also creates the sysfs statistics device.
648
 */
649
struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
650
{
651
	struct snd_soc_dai *fsl_ssi_dai;
652 653 654 655 656 657 658 659 660 661
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
	struct device_attribute *dev_attr;

	ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
	if (!ssi_private) {
		dev_err(ssi_info->dev, "could not allocate DAI object\n");
		return NULL;
	}
	memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
662
	       sizeof(struct snd_soc_dai));
663 664 665 666 667 668 669 670 671

	fsl_ssi_dai = &ssi_private->cpu_dai;
	dev_attr = &ssi_private->dev_attr;

	sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
	ssi_private->ssi = ssi_info->ssi;
	ssi_private->ssi_phys = ssi_info->ssi_phys;
	ssi_private->irq = ssi_info->irq;
	ssi_private->dev = ssi_info->dev;
672
	ssi_private->asynchronous = ssi_info->asynchronous;
673

J
Julia Lawall 已提交
674
	dev_set_drvdata(ssi_private->dev, fsl_ssi_dai);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	/* Initialize the the device_attribute structure */
	dev_attr->attr.name = "ssi-stats";
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

	ret = device_create_file(ssi_private->dev, dev_attr);
	if (ret) {
		dev_err(ssi_info->dev, "could not create sysfs %s file\n",
			ssi_private->dev_attr.attr.name);
		kfree(fsl_ssi_dai);
		return NULL;
	}

	fsl_ssi_dai->private_data = ssi_private;
	fsl_ssi_dai->name = ssi_private->name;
	fsl_ssi_dai->id = ssi_info->id;
M
Mark Brown 已提交
692
	fsl_ssi_dai->dev = ssi_info->dev;
693
	fsl_ssi_dai->symmetric_rates = 1;
M
Mark Brown 已提交
694 695 696 697 698 699 700

	ret = snd_soc_register_dai(fsl_ssi_dai);
	if (ret != 0) {
		dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret);
		kfree(fsl_ssi_dai);
		return NULL;
	}
701 702 703 704 705 706

	return fsl_ssi_dai;
}
EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);

/**
707
 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
708 709 710
 *
 * This function undoes the operations of fsl_ssi_create_dai()
 */
711
void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
712 713 714 715 716 717
{
	struct fsl_ssi_private *ssi_private =
	container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);

	device_remove_file(ssi_private->dev, &ssi_private->dev_attr);

M
Mark Brown 已提交
718 719
	snd_soc_unregister_dai(&ssi_private->cpu_dai);

720 721 722 723
	kfree(ssi_private);
}
EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);

724 725 726 727 728 729 730 731
static int __init fsl_ssi_init(void)
{
	printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");

	return 0;
}
module_init(fsl_ssi_init);

732 733 734
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
MODULE_LICENSE("GPL");