fsl_ssi.c 42.7 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38
#include <linux/debugfs.h>
39 40
#include <linux/device.h>
#include <linux/delay.h>
41
#include <linux/slab.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/of_address.h>
#include <linux/of_irq.h>
45
#include <linux/of_platform.h>
46 47 48 49 50 51

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
52
#include <sound/dmaengine_pcm.h>
53 54

#include "fsl_ssi.h"
55
#include "imx-pcm.h"
56

57 58 59 60
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
61
#else
62 63 64 65 66 67 68 69 70 71 72 73 74 75
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

76 77 78 79 80 81 82 83
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
84
#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

110 111 112 113 114 115 116 117
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
#define FSLSSI_SISR_MASK (FSLSSI_SIER_DBG_RX_FLAGS | FSLSSI_SIER_DBG_TX_FLAGS)

118 119 120 121

enum fsl_ssi_type {
	FSL_SSI_MCP8610,
	FSL_SSI_MX21,
122
	FSL_SSI_MX35,
123 124 125
	FSL_SSI_MX51,
};

126 127 128 129 130 131 132 133 134 135 136
struct fsl_ssi_reg_val {
	u32 sier;
	u32 srcr;
	u32 stcr;
	u32 scr;
};

struct fsl_ssi_rxtx_reg_val {
	struct fsl_ssi_reg_val rx;
	struct fsl_ssi_reg_val tx;
};
137

138 139 140 141 142 143 144 145 146 147 148
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
149
 * @name: name for this device
150 151 152 153 154
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
155
	unsigned int fifo_depth;
156 157
	struct snd_soc_dai_driver cpu_dai_drv;
	struct platform_device *pdev;
158

159
	enum fsl_ssi_type hw_type;
160 161
	bool new_binding;
	bool ssi_on_imx;
162
	bool imx_ac97;
163
	bool use_dma;
164
	bool baudclk_locked;
165
	bool irq_stats;
166
	bool offline_config;
167
	bool use_dual_fifo;
168
	u8 i2s_mode;
169 170
	spinlock_t baudclk_lock;
	struct clk *baudclk;
171
	struct clk *clk;
172 173 174 175
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
176
	struct imx_pcm_fiq_params fiq_params;
177 178
	/* Register values for rx/tx configuration */
	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
203 204
	struct dentry *dbg_dir;
	struct dentry *dbg_stats;
205 206

	char name[1];
207 208
};

209 210 211
static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", .data = (void *) FSL_SSI_MCP8610},
	{ .compatible = "fsl,imx51-ssi", .data = (void *) FSL_SSI_MX51},
212
	{ .compatible = "fsl,imx35-ssi", .data = (void *) FSL_SSI_MX35},
213 214 215 216 217
	{ .compatible = "fsl,imx21-ssi", .data = (void *) FSL_SSI_MX21},
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	__be32 sisr2;
	__be32 sisr_write_mask = 0;

	switch (ssi_private->hw_type) {
	case FSL_SSI_MX21:
		sisr_write_mask = 0;
		break;

	case FSL_SSI_MCP8610:
	case FSL_SSI_MX35:
		sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;

	case FSL_SSI_MX51:
		sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;
	}
256 257 258 259 260

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
261
	sisr = read_ssi(&ssi->sisr) & FSLSSI_SISR_MASK;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

368
	sisr2 = sisr & sisr_write_mask;
369 370
	/* Clear the bits that we set */
	if (sisr2)
371
		write_ssi(sisr2, &ssi->sisr);
372 373 374 375

	return ret;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
#if IS_ENABLED(CONFIG_DEBUG_FS)
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (FSLSSI_SISR_MASK & CCSR_SSI_SIER_##flag) \
			seq_printf(s, #name "=%u\n", ssi_private->stats.name); \
	} while (0)


/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
 */
394
static int fsl_ssi_stats_show(struct seq_file *s, void *unused)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	struct fsl_ssi_private *ssi_private = s->private;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);

	return 0;
}

static int fsl_ssi_stats_open(struct inode *inode, struct file *file)
{
	return single_open(file, fsl_ssi_stats_show, inode->i_private);
}

static const struct file_operations fsl_ssi_stats_ops = {
	.open = fsl_ssi_stats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int fsl_ssi_debugfs_create(struct fsl_ssi_private *ssi_private,
		struct device *dev)
{
	ssi_private->dbg_dir = debugfs_create_dir(dev_name(dev), NULL);
	if (!ssi_private->dbg_dir)
		return -ENOMEM;

	ssi_private->dbg_stats = debugfs_create_file("stats", S_IRUGO,
			ssi_private->dbg_dir, ssi_private, &fsl_ssi_stats_ops);
	if (!ssi_private->dbg_stats) {
		debugfs_remove(ssi_private->dbg_dir);
		return -ENOMEM;
	}

	return 0;
}

static void fsl_ssi_debugfs_remove(struct fsl_ssi_private *ssi_private)
{
	debugfs_remove(ssi_private->dbg_stats);
	debugfs_remove(ssi_private->dbg_dir);
}

#else

static int fsl_ssi_debugfs_create(struct fsl_ssi_private *ssi_private,
		struct device *dev)
{
	return 0;
}

static void fsl_ssi_debugfs_remove(struct fsl_ssi_private *ssi_private)
{
}

#endif /* IS_ENABLED(CONFIG_DEBUG_FS) */

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/*
 * Enable/Disable all rx/tx config flags at once.
 */
static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
		bool enable)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;

	if (enable) {
		write_ssi_mask(&ssi->sier, 0, vals->rx.sier | vals->tx.sier);
		write_ssi_mask(&ssi->srcr, 0, vals->rx.srcr | vals->tx.srcr);
		write_ssi_mask(&ssi->stcr, 0, vals->rx.stcr | vals->tx.stcr);
	} else {
		write_ssi_mask(&ssi->srcr, vals->rx.srcr | vals->tx.srcr, 0);
		write_ssi_mask(&ssi->stcr, vals->rx.stcr | vals->tx.stcr, 0);
		write_ssi_mask(&ssi->sier, vals->rx.sier | vals->tx.sier, 0);
	}
}

/*
 * Enable/Disable a ssi configuration. You have to pass either
 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
 */
static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
		struct fsl_ssi_reg_val *vals)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	struct fsl_ssi_reg_val *avals;
	u32 scr_val = read_ssi(&ssi->scr);
	int nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
				!!(scr_val & CCSR_SSI_SCR_RE);

	/* Find the other direction values rx or tx which we do not want to
	 * modify */
	if (&ssi_private->rxtx_reg_val.rx == vals)
		avals = &ssi_private->rxtx_reg_val.tx;
	else
		avals = &ssi_private->rxtx_reg_val.rx;

	/* If vals should be disabled, start with disabling the unit */
	if (!enable) {
		u32 scr = vals->scr & (vals->scr ^ avals->scr);
		write_ssi_mask(&ssi->scr, scr, 0);
	}

	/*
	 * We are running on a SoC which does not support online SSI
	 * reconfiguration, so we have to enable all necessary flags at once
	 * even if we do not use them later (capture and playback configuration)
	 */
	if (ssi_private->offline_config) {
		if ((enable && !nr_active_streams) ||
				(!enable && nr_active_streams == 1))
			fsl_ssi_rxtx_config(ssi_private, enable);

		goto config_done;
	}

	/*
	 * Configure single direction units while the SSI unit is running
	 * (online configuration)
	 */
	if (enable) {
		write_ssi_mask(&ssi->sier, 0, vals->sier);
		write_ssi_mask(&ssi->srcr, 0, vals->srcr);
		write_ssi_mask(&ssi->stcr, 0, vals->stcr);
	} else {
		u32 sier;
		u32 srcr;
		u32 stcr;

		/*
		 * Disabling the necessary flags for one of rx/tx while the
		 * other stream is active is a little bit more difficult. We
		 * have to disable only those flags that differ between both
		 * streams (rx XOR tx) and that are set in the stream that is
		 * disabled now. Otherwise we could alter flags of the other
		 * stream
		 */

		/* These assignments are simply vals without bits set in avals*/
		sier = vals->sier & (vals->sier ^ avals->sier);
		srcr = vals->srcr & (vals->srcr ^ avals->srcr);
		stcr = vals->stcr & (vals->stcr ^ avals->stcr);

		write_ssi_mask(&ssi->srcr, srcr, 0);
		write_ssi_mask(&ssi->stcr, stcr, 0);
		write_ssi_mask(&ssi->sier, sier, 0);
	}

config_done:
	/* Enabling of subunits is done after configuration */
	if (enable)
		write_ssi_mask(&ssi->scr, 0, vals->scr);
}


static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
}

static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
/*
 * Setup rx/tx register values used to enable/disable the streams. These will
 * be used later in fsl_ssi_config to setup the streams without the need to
 * check for all different SSI modes.
 */
static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
{
	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;

	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
	reg->rx.scr = 0;
	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
	reg->tx.scr = 0;

	if (!ssi_private->imx_ac97) {
		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
	}

	if (ssi_private->use_dma) {
		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
	} else {
		reg->rx.sier |= CCSR_SSI_SIER_RIE;
		reg->tx.sier |= CCSR_SSI_SIER_TIE;
	}

	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	/*
	 * Setup the clock control register
	 */
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->stccr);
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->srccr);

	/*
	 * Enable AC97 mode and startup the SSI
	 */
	write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
			&ssi->sacnt);
	write_ssi(0xff, &ssi->saccdis);
	write_ssi(0x300, &ssi->saccen);

	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
			CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);

	write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
}

645 646 647 648 649 650 651 652
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
653 654
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
655 656
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
657 658
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
659
	unsigned long flags;
660

661 662 663 664 665
	if (!dai->active && !ssi_private->imx_ac97) {
		spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
		ssi_private->baudclk_locked = false;
		spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
	}
666

667 668 669 670 671 672 673 674 675
	/* When using dual fifo mode, it is safer to ensure an even period
	 * size. If appearing to an odd number while DMA always starts its
	 * task from fifo0, fifo1 would be neglected at the end of each
	 * period. But SSI would still access fifo1 with an invalid data.
	 */
	if (ssi_private->use_dual_fifo)
		snd_pcm_hw_constraint_step(substream->runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);

676 677 678 679
	return 0;
}

/**
680
 * fsl_ssi_hw_params - program the sample size
681 682 683 684 685 686 687 688 689 690 691
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
692 693
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
694
{
695
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
696
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
697
	unsigned int channels = params_channels(hw_params);
698 699 700
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
701
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
702

703 704 705 706 707 708
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
709

710 711 712 713 714 715 716 717 718
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
719

720 721 722
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
723
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
724
	else
725
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
726

727 728 729 730 731
	if (!ssi_private->imx_ac97)
		write_ssi_mask(&ssi->scr,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : ssi_private->i2s_mode);

732 733 734
	return 0;
}

735 736 737 738 739 740 741 742
/**
 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
 */
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 strcr = 0, stcr, srcr, scr, mask;
743 744 745
	u8 wm;

	fsl_ssi_setup_reg_vals(ssi_private);
746 747 748 749 750 751 752 753 754

	scr = read_ssi(&ssi->scr) & ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);

	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
		CCSR_SSI_STCR_TEFS;
	stcr = read_ssi(&ssi->stcr) & ~mask;
	srcr = read_ssi(&ssi->srcr) & ~mask;

755
	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
756 757 758 759
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
		case SND_SOC_DAIFMT_CBS_CFS:
760
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
761 762
			break;
		case SND_SOC_DAIFMT_CBM_CFM:
763
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
			break;
		default:
			return -EINVAL;
		}

		/* Data on rising edge of bclk, frame low, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0;
		break;
787
	case SND_SOC_DAIFMT_AC97:
788
		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
789
		break;
790 791 792
	default:
		return -EINVAL;
	}
793
	scr |= ssi_private->i2s_mode;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	default:
		return -EINVAL;
	}

	stcr |= strcr;
	srcr |= strcr;

	if (ssi_private->cpu_dai_drv.symmetric_rates) {
		/* Need to clear RXDIR when using SYNC mode */
		srcr &= ~CCSR_SSI_SRCR_RXDIR;
		scr |= CCSR_SSI_SCR_SYN;
	}

	write_ssi(stcr, &ssi->stcr);
	write_ssi(srcr, &ssi->srcr);
	write_ssi(scr, &ssi->scr);

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
			&ssi->sfcsr);

	if (ssi_private->use_dual_fifo) {
		write_ssi_mask(&ssi->srcr, CCSR_SSI_SRCR_RFEN1,
				CCSR_SSI_SRCR_RFEN1);
		write_ssi_mask(&ssi->stcr, CCSR_SSI_STCR_TFEN1,
				CCSR_SSI_STCR_TFEN1);
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TCH_EN,
				CCSR_SSI_SCR_TCH_EN);
	}

	if (fmt & SND_SOC_DAIFMT_AC97)
		fsl_ssi_setup_ac97(ssi_private);

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	return 0;
}

/**
 * fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock
 *
 * Note: This function can be only called when using SSI as DAI master
 *
 * Quick instruction for parameters:
 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
 */
static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
				  int clk_id, unsigned int freq, int dir)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
	unsigned long flags, clkrate, baudrate, tmprate;
	u64 sub, savesub = 100000;

	/* Don't apply it to any non-baudclk circumstance */
	if (IS_ERR(ssi_private->baudclk))
		return -EINVAL;

	/* It should be already enough to divide clock by setting pm alone */
	psr = 0;
	div2 = 0;

	factor = (div2 + 1) * (7 * psr + 1) * 2;

	for (i = 0; i < 255; i++) {
		/* The bclk rate must be smaller than 1/5 sysclk rate */
		if (factor * (i + 1) < 5)
			continue;

		tmprate = freq * factor * (i + 2);
		clkrate = clk_round_rate(ssi_private->baudclk, tmprate);

		do_div(clkrate, factor);
		afreq = (u32)clkrate / (i + 1);

		if (freq == afreq)
			sub = 0;
		else if (freq / afreq == 1)
			sub = freq - afreq;
		else if (afreq / freq == 1)
			sub = afreq - freq;
		else
			continue;

		/* Calculate the fraction */
		sub *= 100000;
		do_div(sub, freq);

		if (sub < savesub) {
			baudrate = tmprate;
			savesub = sub;
			pm = i;
		}

		/* We are lucky */
		if (savesub == 0)
			break;
	}

	/* No proper pm found if it is still remaining the initial value */
	if (pm == 999) {
		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
		return -EINVAL;
	}

	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
		(psr ? CCSR_SSI_SxCCR_PSR : 0);
	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 | CCSR_SSI_SxCCR_PSR;

	if (dir == SND_SOC_CLOCK_OUT || synchronous)
		write_ssi_mask(&ssi->stccr, mask, stccr);
	else
		write_ssi_mask(&ssi->srccr, mask, stccr);

	spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
	if (!ssi_private->baudclk_locked) {
		ret = clk_set_rate(ssi_private->baudclk, baudrate);
		if (ret) {
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
			return -EINVAL;
		}
		ssi_private->baudclk_locked = true;
	}
	spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);

	return 0;
}

/**
 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
 *
 * Note: This function can be only called when using SSI as DAI master
 */
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 val;

	/* The slot number should be >= 2 if using Network mode or I2S mode */
	val = read_ssi(&ssi->scr) & (CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET);
	if (val && slots < 2) {
		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
		return -EINVAL;
	}

	write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));
	write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));

	/* The register SxMSKs needs SSI to provide essential clock due to
	 * hardware design. So we here temporarily enable SSI to set them.
	 */
	val = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN);

	write_ssi(tx_mask, &ssi->stmsk);
	write_ssi(rx_mask, &ssi->srmsk);

	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, val);

	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018
/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
1019 1020
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
1021 1022
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1023
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1024
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
1025
	unsigned long flags;
1026

1027 1028 1029
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1030
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1031
			fsl_ssi_tx_config(ssi_private, true);
1032
		else
1033
			fsl_ssi_rx_config(ssi_private, true);
1034 1035 1036 1037 1038
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1039
			fsl_ssi_tx_config(ssi_private, false);
1040
		else
1041
			fsl_ssi_rx_config(ssi_private, false);
1042

1043
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
1044 1045 1046 1047 1048
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0) {
			spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
			ssi_private->baudclk_locked = false;
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
		}
1049 1050 1051 1052 1053 1054
		break;

	default:
		return -EINVAL;
	}

1055 1056 1057 1058 1059 1060
	if (ssi_private->imx_ac97) {
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
		else
			write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
	}
1061

1062 1063 1064
	return 0;
}

1065 1066 1067 1068
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

1069
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
1070 1071 1072 1073 1074 1075 1076
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

1077
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1078 1079
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
1080 1081 1082
	.set_fmt	= fsl_ssi_set_dai_fmt,
	.set_sysclk	= fsl_ssi_set_dai_sysclk,
	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1083 1084 1085
	.trigger	= fsl_ssi_trigger,
};

1086 1087
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1088
	.probe = fsl_ssi_dai_probe,
1089
	.playback = {
1090
		.channels_min = 1,
1091 1092 1093 1094 1095
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
1096
		.channels_min = 1,
1097 1098 1099 1100
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
1101
	.ops = &fsl_ssi_dai_ops,
1102 1103
};

1104 1105 1106 1107
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
1124
	.ops = &fsl_ssi_dai_ops,
1125 1126 1127 1128 1129
};


static struct fsl_ssi_private *fsl_ac97_data;

1130
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

1152
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

1177
/**
1178
 * Make every character in a string lower-case
1179
 */
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

1192
static int fsl_ssi_probe(struct platform_device *pdev)
1193 1194 1195
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
1196
	struct device_attribute *dev_attr = NULL;
1197
	struct device_node *np = pdev->dev.of_node;
1198 1199
	const struct of_device_id *of_id;
	enum fsl_ssi_type hw_type;
1200
	const char *p, *sprop;
1201
	const uint32_t *iprop;
1202 1203
	struct resource res;
	char name[64];
1204
	bool shared;
1205
	bool ac97 = false;
1206

1207 1208 1209
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
1210
	 */
1211
	if (!of_device_is_available(np))
1212 1213
		return -ENODEV;

1214 1215 1216 1217 1218
	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
	if (!of_id)
		return -EINVAL;
	hw_type = (enum fsl_ssi_type) of_id->data;

1219
	sprop = of_get_property(np, "fsl,mode", NULL);
1220 1221 1222 1223
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
1224
	if (!strcmp(sprop, "ac97-slave"))
1225
		ac97 = true;
1226 1227 1228

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
1229
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
1230
			      GFP_KERNEL);
1231
	if (!ssi_private) {
1232
		dev_err(&pdev->dev, "could not allocate DAI object\n");
1233
		return -ENOMEM;
1234 1235
	}

1236
	strcpy(ssi_private->name, p);
1237

1238 1239
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");
1240
	ssi_private->hw_type = hw_type;
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
1255 1256 1257 1258 1259
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
1260
		dev_err(&pdev->dev, "could not determine device resources\n");
1261
		return ret;
1262
	}
1263 1264 1265
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
1266
		return -ENOMEM;
1267
	}
1268
	ssi_private->ssi_phys = res.start;
1269

1270
	ssi_private->irq = irq_of_parse_and_map(np, 0);
1271
	if (!ssi_private->irq) {
1272
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1273
		return -ENXIO;
1274 1275
	}

1276
	/* Are the RX and the TX clocks locked? */
1277
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1278
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
1279 1280 1281
		ssi_private->cpu_dai_drv.symmetric_channels = 1;
		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
	}
1282

1283 1284 1285
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
1286
		ssi_private->fifo_depth = be32_to_cpup(iprop);
1287 1288 1289 1290
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

1291 1292 1293
	ssi_private->baudclk_locked = false;
	spin_lock_init(&ssi_private->baudclk_lock);

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	/*
	 * imx51 and later SoCs have a slightly different IP that allows the
	 * SSI configuration while the SSI unit is running.
	 *
	 * More important, it is necessary on those SoCs to configure the
	 * sperate TX/RX DMA bits just before starting the stream
	 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
	 * sends any DMA requests to the SDMA unit, otherwise it is not defined
	 * how the SDMA unit handles the DMA request.
	 *
	 * SDMA units are present on devices starting at imx35 but the imx35
	 * reference manual states that the DMA bits should not be changed
	 * while the SSI unit is running (SSIEN). So we support the necessary
	 * online configuration of fsl-ssi starting at imx51.
	 */
	switch (hw_type) {
	case FSL_SSI_MCP8610:
	case FSL_SSI_MX21:
	case FSL_SSI_MX35:
		ssi_private->offline_config = true;
		break;
	case FSL_SSI_MX51:
		ssi_private->offline_config = false;
		break;
	}

1320 1321
	if (hw_type == FSL_SSI_MX21 || hw_type == FSL_SSI_MX51 ||
			hw_type == FSL_SSI_MX35) {
1322
		u32 dma_events[2], dmas[4];
1323
		ssi_private->ssi_on_imx = true;
1324

1325
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1326 1327 1328
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1329
			goto error_irqmap;
1330
		}
1331 1332 1333 1334 1335 1336
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
1337

1338 1339 1340 1341 1342
		/* For those SLAVE implementations, we ingore non-baudclk cases
		 * and, instead, abandon MASTER mode that needs baud clock.
		 */
		ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
		if (IS_ERR(ssi_private->baudclk))
1343
			dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1344
				 PTR_ERR(ssi_private->baudclk));
1345 1346 1347
		else
			clk_prepare_enable(ssi_private->baudclk);

1348 1349 1350 1351
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
1352
		ssi_private->dma_params_tx.maxburst =
1353
			ssi_private->fifo_depth - 2;
1354
		ssi_private->dma_params_rx.maxburst =
1355
			ssi_private->fifo_depth - 2;
1356
		ssi_private->dma_params_tx.addr =
1357
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
1358
		ssi_private->dma_params_rx.addr =
1359
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
1360 1361 1362 1363
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
1364 1365 1366 1367 1368 1369 1370 1371
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
1372
					"fsl,ssi-dma-events", dma_events, 2);
1373 1374 1375 1376
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
1377
		}
1378
		/* Should this be merge with the above? */
1379 1380 1381 1382 1383 1384 1385 1386 1387
		if (!of_property_read_u32_array(pdev->dev.of_node, "dmas", dmas, 4)
				&& dmas[2] == IMX_DMATYPE_SSI_DUAL) {
			ssi_private->use_dual_fifo = true;
			/* When using dual fifo mode, we need to keep watermark
			 * as even numbers due to dma script limitation.
			 */
			ssi_private->dma_params_tx.maxburst &= ~0x1;
			ssi_private->dma_params_rx.maxburst &= ~0x1;
		}
1388 1389 1390 1391

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

1392
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1393
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1394
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1395
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1396 1397 1398 1399 1400 1401 1402
	}

	/*
	 * Enable interrupts only for MCP8610 and MX51. The other MXs have
	 * different writeable interrupt status registers.
	 */
	if (ssi_private->use_dma) {
1403 1404 1405 1406
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
1407
		ssi_private->irq_stats = true;
1408 1409 1410
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
1411
			goto error_clk;
1412
		}
1413 1414
	}

1415
	/* Register with ASoC */
1416
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
1417

1418 1419
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
1420
	if (ret) {
1421
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1422
		goto error_dev;
1423 1424
	}

1425 1426 1427 1428
	ret = fsl_ssi_debugfs_create(ssi_private, &pdev->dev);
	if (ret)
		goto error_dbgfs;

1429
	if (ssi_private->ssi_on_imx) {
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
1448
				goto error_pcm;
1449 1450 1451
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
1452
				goto error_pcm;
1453
		}
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1466
	/* Trigger the machine driver's probe function.  The platform driver
1467
	 * name of the machine driver is taken from /compatible property of the
1468 1469 1470
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1471 1472
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1473 1474 1475 1476 1477 1478 1479
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1480
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1481 1482
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1483
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1484
		goto error_dai;
M
Mark Brown 已提交
1485
	}
1486

1487
done:
1488
	return 0;
1489

1490
error_dai:
1491 1492 1493 1494
	if (ssi_private->ssi_on_imx && !ssi_private->use_dma)
		imx_pcm_fiq_exit(pdev);

error_pcm:
1495 1496 1497
	fsl_ssi_debugfs_remove(ssi_private);

error_dbgfs:
1498
	snd_soc_unregister_component(&pdev->dev);
1499 1500 1501 1502

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1503
error_clk:
1504 1505 1506
	if (ssi_private->ssi_on_imx) {
		if (!IS_ERR(ssi_private->baudclk))
			clk_disable_unprepare(ssi_private->baudclk);
1507
		clk_disable_unprepare(ssi_private->clk);
1508
	}
1509 1510

error_irqmap:
1511 1512
	if (ssi_private->irq_stats)
		irq_dispose_mapping(ssi_private->irq);
1513

1514
	return ret;
1515 1516
}

1517
static int fsl_ssi_remove(struct platform_device *pdev)
1518
{
1519
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1520

1521 1522
	fsl_ssi_debugfs_remove(ssi_private);

1523 1524
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1525
	snd_soc_unregister_component(&pdev->dev);
1526 1527 1528
	if (ssi_private->ssi_on_imx) {
		if (!IS_ERR(ssi_private->baudclk))
			clk_disable_unprepare(ssi_private->baudclk);
1529
		clk_disable_unprepare(ssi_private->clk);
1530
	}
1531 1532
	if (ssi_private->irq_stats)
		irq_dispose_mapping(ssi_private->irq);
1533 1534

	return 0;
1535
}
1536

1537
static struct platform_driver fsl_ssi_driver = {
1538 1539 1540 1541 1542 1543 1544 1545
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1546

1547
module_platform_driver(fsl_ssi_driver);
1548

1549
MODULE_ALIAS("platform:fsl-ssi-dai");
1550 1551
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1552
MODULE_LICENSE("GPL v2");