core.c 60.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 48 49 50 51

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

K
Keith Busch 已提交
52 53 54 55
unsigned int nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, uint, 0644);
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
EXPORT_SYMBOL_GPL(nvme_max_retries);
56

57 58 59
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

60 61 62 63 64
static unsigned long default_ps_max_latency_us = 25000;
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

65
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
66
static DEFINE_SPINLOCK(dev_list_lock);
67

68 69
static struct class *nvme_class;

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
	blk_mq_complete_request(req, status);
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

87 88 89
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
90
	enum nvme_ctrl_state old_state;
91 92 93
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
94 95

	old_state = ctrl->state;
96 97 98
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
99
		case NVME_CTRL_NEW:
100
		case NVME_CTRL_RESETTING:
101
		case NVME_CTRL_RECONNECTING:
102 103 104 105 106 107 108 109 110
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
111 112 113 114 115 116 117 118 119 120
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
121 122 123 124 125 126 127 128 129 130 131
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
132
		case NVME_CTRL_RECONNECTING:
133 134 135 136 137 138
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
139 140 141 142 143 144 145 146 147
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
148 149 150 151 152 153 154
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

155 156
	spin_unlock_irq(&ctrl->lock);

157 158 159 160
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

161 162 163 164
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

165 166
	if (ns->ndev)
		nvme_nvm_unregister(ns);
167

168 169 170 171 172
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
173 174

	put_disk(ns->disk);
175 176
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
177 178 179
	kfree(ns);
}

180
static void nvme_put_ns(struct nvme_ns *ns)
181 182 183 184 185 186 187 188 189 190
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
191 192 193 194 195 196
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
197 198 199
	spin_unlock(&dev_list_lock);

	return ns;
200 201 202 203 204 205

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
206 207
}

208 209
void nvme_requeue_req(struct request *req)
{
210
	blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
211
}
212
EXPORT_SYMBOL_GPL(nvme_requeue_req);
213

214
struct request *nvme_alloc_request(struct request_queue *q,
215
		struct nvme_command *cmd, unsigned int flags, int qid)
216
{
217
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
218 219
	struct request *req;

220
	if (qid == NVME_QID_ANY) {
221
		req = blk_mq_alloc_request(q, op, flags);
222
	} else {
223
		req = blk_mq_alloc_request_hctx(q, op, flags,
224 225
				qid ? qid - 1 : 0);
	}
226
	if (IS_ERR(req))
227
		return req;
228 229

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
230
	nvme_req(req)->cmd = cmd;
231

232 233
	return req;
}
234
EXPORT_SYMBOL_GPL(nvme_alloc_request);
235

M
Ming Lin 已提交
236 237 238 239 240 241 242 243 244 245 246
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
247
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
248
	struct nvme_dsm_range *range;
249
	struct bio *bio;
M
Ming Lin 已提交
250

251
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
252 253 254
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

255 256 257 258 259 260 261 262 263 264 265 266 267 268
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
269 270 271 272

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
273
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
274 275
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

276 277
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
278
	req->special_vec.bv_len = sizeof(*range) * segments;
279
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
280

281
	return BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
328
	int ret = BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
329

330 331 332
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
333
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
334 335
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
336
		nvme_setup_flush(ns, cmd);
337 338
		break;
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
339
		ret = nvme_setup_discard(ns, req, cmd);
340 341 342
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
M
Ming Lin 已提交
343
		nvme_setup_rw(ns, req, cmd);
344 345 346 347 348
		break;
	default:
		WARN_ON_ONCE(1);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
349

350
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
351 352 353 354
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

355 356 357 358 359
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
360
		union nvme_result *result, void *buffer, unsigned bufflen,
361
		unsigned timeout, int qid, int at_head, int flags)
362 363 364 365
{
	struct request *req;
	int ret;

366
	req = nvme_alloc_request(q, cmd, flags, qid);
367 368 369 370 371
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

372 373 374 375
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
376 377
	}

378
	blk_execute_rq(req->q, NULL, req, at_head);
379 380
	if (result)
		*result = nvme_req(req)->result;
381 382 383 384 385
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}
386
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
387 388 389 390

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
391 392
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
393
}
394
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
395

396 397 398 399
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
400
{
401
	bool write = nvme_is_write(cmd);
402 403
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
404
	struct request *req;
405 406
	struct bio *bio = NULL;
	void *meta = NULL;
407 408
	int ret;

409
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
410 411 412 413 414 415
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
416 417 418 419 420 421
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

422 423 424 425 426 427 428 429
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

430
		if (meta_buffer && meta_len) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
448 449
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
467
	if (result)
468
		*result = le32_to_cpu(nvme_req(req)->result.u32);
469 470 471 472 473 474 475 476 477 478 479 480
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
481 482 483 484 485
 out:
	blk_mq_free_request(req);
	return ret;
}

486 487 488 489 490 491 492 493
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

S
Sagi Grimberg 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static void nvme_keep_alive_end_io(struct request *rq, int error)
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

	if (error) {
		dev_err(ctrl->device,
			"failed nvme_keep_alive_end_io error=%d\n", error);
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

562
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
563 564 565 566 567 568
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
569
	c.identify.cns = NVME_ID_CNS_CTRL;
570 571 572 573 574 575 576 577 578 579 580 581

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

582 583 584 585 586
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
587
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
588 589 590 591
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

592
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
593 594 595 596 597 598
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
599 600
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
601
	c.identify.cns = NVME_ID_CNS_NS;
602 603 604 605 606 607 608 609 610 611 612 613

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

614
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
615
		      void *buffer, size_t buflen, u32 *result)
616 617
{
	struct nvme_command c;
618
	union nvme_result res;
619
	int ret;
620 621 622 623 624 625

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

626
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
627
			NVME_QID_ANY, 0, 0);
628
	if (ret >= 0 && result)
629
		*result = le32_to_cpu(res.u32);
630
	return ret;
631 632
}

633
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
634
		      void *buffer, size_t buflen, u32 *result)
635 636
{
	struct nvme_command c;
637
	union nvme_result res;
638
	int ret;
639 640 641 642 643 644

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

645
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
646
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
647
	if (ret >= 0 && result)
648
		*result = le32_to_cpu(res.u32);
649
	return ret;
650 651
}

652
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
673

C
Christoph Hellwig 已提交
674 675 676 677 678 679
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

680
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
681
			&result);
682
	if (status < 0)
C
Christoph Hellwig 已提交
683 684
		return status;

685 686 687 688 689 690 691 692 693 694 695 696 697
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
698 699
	return 0;
}
700
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
701

702 703 704 705 706 707 708 709 710
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
711 712
	if (io.flags)
		return -EINVAL;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

752
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
753 754 755 756 757 758 759 760 761 762 763
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
764 765
	if (cmd.flags)
		return -EINVAL;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
784
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
809
#ifdef CONFIG_BLK_DEV_NVME_SCSI
810 811 812 813
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
814
#endif
815
	default:
816 817 818 819
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
820
		if (is_sed_ioctl(cmd))
821
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
822
					 (void __user *) arg);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
848 849 850 851
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

868
	memset(&integrity, 0, sizeof(integrity));
869 870 871
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
872 873
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
874 875 876 877
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
878 879
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
897
	struct nvme_ctrl *ctrl = ns->ctrl;
898
	u32 logical_block_size = queue_logical_block_size(ns->queue);
899

900 901 902
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

903 904 905 906 907
	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

908 909
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
910
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
911
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
912 913 914
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

915
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
916
{
917
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
918
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
919 920 921
		return -ENODEV;
	}

922 923 924
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
925 926
	}

927
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
928
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
929
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
930 931 932 933 934 935 936 937 938 939 940
		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
969
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
970 971 972 973 974 975 976 977 978
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
979
}
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
997
	kfree(id);
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1076
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1094
#ifdef CONFIG_BLK_SED_OPAL
1095 1096
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1097
{
1098
	struct nvme_ctrl *ctrl = data;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1116
static const struct block_device_operations nvme_fops = {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1127 1128 1129 1130 1131 1132 1133 1134
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1135 1136
		if (csts == ~0)
			return -ENODEV;
1137 1138 1139 1140 1141 1142 1143
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1144
			dev_err(ctrl->device,
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1170

1171
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1172 1173
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1174 1175
	return nvme_wait_ready(ctrl, cap, false);
}
1176
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1189
		dev_err(ctrl->device,
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1208
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1231
			dev_err(ctrl->device,
1232 1233 1234 1235 1236 1237 1238
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1239
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1240

1241 1242 1243
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1244 1245
	bool vwc = false;

1246
	if (ctrl->max_hw_sectors) {
1247 1248 1249
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1250
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1251
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1252
	}
K
Keith Busch 已提交
1253 1254
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1255
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1256 1257 1258
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
	 * non-operational state after waiting 100 * (enlat + exlat)
	 * microseconds, as long as that state's total latency is under
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
			u64 total_latency_us, transition_ms;

			if (target)
				table->entries[state] = target;

			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

			total_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
				+ le32_to_cpu(ctrl->psd[state].exit_lat);
			if (total_latency_us > ctrl->ps_max_latency_us)
				continue;

			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
		}

		apste = 1;
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * Seen on a Samsung "SM951 NVMe SAMSUNG 256GB": using APST causes
	 * the controller to go out to lunch.  It dies when the watchdog
	 * timer reads CSTS and gets 0xffffffff.
	 */
	{
		.vid = 0x144d,
		.fr = "BXW75D0Q",
		.quirks = NVME_QUIRK_NO_APST,
	},
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1441
	u32 max_hw_sectors;
1442
	u8 prev_apsta;
1443

1444 1445
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1446
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1447 1448 1449
		return ret;
	}

1450 1451
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1452
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1453 1454 1455 1456
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1457
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1458 1459
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1460 1461
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1462
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1463 1464 1465
		return -EIO;
	}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1484
	ctrl->oacs = le16_to_cpu(id->oacs);
1485
	ctrl->vid = le16_to_cpu(id->vid);
1486
	ctrl->oncs = le16_to_cpup(&id->oncs);
1487
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1488
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1489
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1490 1491 1492 1493
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1494
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1495
	else
1496 1497 1498
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1499

1500
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1501
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1502
	ctrl->kas = le16_to_cpu(id->kas);
1503

1504 1505 1506 1507 1508
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
	ctrl->apsta = (ctrl->quirks & NVME_QUIRK_NO_APST) ? 0 : id->apsta;
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	if (ctrl->ops->is_fabrics) {
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1521 1522 1523 1524 1525 1526

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1527 1528 1529
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1530

1531
	kfree(id);
1532

1533 1534 1535 1536 1537 1538 1539
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1540
	ctrl->identified = true;
1541

1542
	return ret;
1543
}
1544
EXPORT_SYMBOL_GPL(nvme_init_identify);
1545

1546
static int nvme_dev_open(struct inode *inode, struct file *file)
1547
{
1548 1549 1550
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1570 1571
}

1572
static int nvme_dev_release(struct inode *inode, struct file *file)
1573
{
1574 1575 1576 1577
	nvme_put_ctrl(file->private_data);
	return 0;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1591
		dev_warn(ctrl->device,
1592 1593 1594 1595 1596
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1597
	dev_warn(ctrl->device,
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1621
		return nvme_dev_user_cmd(ctrl, argp);
1622
	case NVME_IOCTL_RESET:
1623
		dev_warn(ctrl->device, "resetting controller\n");
1624 1625 1626
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1627 1628 1629
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1654
}
1655
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1656

K
Keith Busch 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1668 1669 1670
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1671
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1692 1693 1694
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1695
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1696 1697 1698 1699 1700 1701 1702
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1703
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1704 1705 1706 1707 1708 1709 1710
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1711
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1712 1713 1714 1715 1716
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1717
	&dev_attr_wwid.attr,
1718 1719 1720 1721 1722 1723
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1724
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1725 1726 1727
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1728
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1743
	.is_visible	= nvme_ns_attrs_are_visible,
1744 1745
};

M
Ming Lin 已提交
1746
#define nvme_show_str_function(field)						\
1747 1748 1749 1750 1751 1752 1753 1754
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1768

M
Ming Lin 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1835 1836
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1837
	&dev_attr_rescan_controller.attr,
1838 1839 1840
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1841
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1842 1843 1844 1845
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1846
	&dev_attr_state.attr,
1847 1848 1849
	NULL
};

M
Ming Lin 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1872
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1873 1874
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1875 1876 1877 1878 1879 1880 1881
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1882 1883 1884 1885 1886 1887 1888 1889
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

1890
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1891
{
1892
	struct nvme_ns *ns, *ret = NULL;
1893

1894
	mutex_lock(&ctrl->namespaces_mutex);
1895
	list_for_each_entry(ns, &ctrl->namespaces, list) {
1896 1897 1898 1899 1900
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
1901 1902 1903
		if (ns->ns_id > nsid)
			break;
	}
1904 1905
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
1906 1907 1908 1909 1910 1911
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
1912 1913
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
1914 1915 1916 1917 1918 1919
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1920 1921 1922 1923
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1924 1925
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1926
		goto out_release_instance;
1927 1928 1929 1930 1931 1932 1933 1934 1935
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1936
	nvme_set_queue_limits(ctrl, ns->queue);
1937

1938
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1939

1940 1941 1942
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

1943 1944 1945 1946 1947
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
		goto out_free_id;
	}
1948

1949 1950 1951
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
1952

1953 1954 1955 1956 1957 1958 1959 1960
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
1961

1962 1963 1964 1965
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

1966
	kref_get(&ctrl->kref);
1967 1968 1969

	kfree(id);

1970
	device_add_disk(ctrl->device, ns->disk);
1971 1972 1973 1974
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1975 1976 1977
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
1978
	return;
1979 1980
 out_free_id:
	kfree(id);
1981 1982
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1983 1984
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1985 1986 1987 1988 1989 1990
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
1991 1992
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
1993

1994
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1995 1996
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1997 1998
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1999 2000
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2001 2002 2003 2004
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
2005 2006

	mutex_lock(&ns->ctrl->namespaces_mutex);
2007
	list_del_init(&ns->list);
2008 2009
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2010 2011 2012
	nvme_put_ns(ns);
}

2013 2014 2015 2016
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2017
	ns = nvme_find_get_ns(ctrl, nsid);
2018
	if (ns) {
2019
		if (ns->disk && revalidate_disk(ns->disk))
2020
			nvme_ns_remove(ns);
2021
		nvme_put_ns(ns);
2022 2023 2024 2025
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2051
			goto free;
2052 2053 2054 2055 2056 2057 2058 2059 2060

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2061 2062
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2063
					nvme_ns_remove(ns);
2064 2065
					nvme_put_ns(ns);
				}
2066 2067 2068 2069 2070
			}
		}
		nn -= j;
	}
 out:
2071 2072
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2073 2074 2075 2076
	kfree(ns_list);
	return ret;
}

2077
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2078 2079 2080
{
	unsigned i;

2081 2082 2083
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2084
	nvme_remove_invalid_namespaces(ctrl, nn);
2085 2086
}

2087
static void nvme_scan_work(struct work_struct *work)
2088
{
2089 2090
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2091
	struct nvme_id_ctrl *id;
2092
	unsigned nn;
2093

2094 2095 2096
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2097 2098
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2099 2100

	nn = le32_to_cpu(id->nn);
2101
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2102 2103 2104 2105
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2106
	nvme_scan_ns_sequential(ctrl, nn);
2107
 done:
2108
	mutex_lock(&ctrl->namespaces_mutex);
2109
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2110
	mutex_unlock(&ctrl->namespaces_mutex);
2111 2112
	kfree(id);
}
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2124

2125 2126 2127 2128 2129
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2130 2131 2132 2133
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2134 2135 2136 2137 2138 2139 2140 2141 2142
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2143 2144 2145
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2146
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2164 2165
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2166
{
2167 2168
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2169

2170 2171 2172 2173 2174
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2175 2176
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
2177 2178 2179
		break;
	default:
		break;
2180 2181
	}

2182
	if (done)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2232
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2233
{
2234
	flush_work(&ctrl->async_event_work);
2235 2236 2237
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2238
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2239 2240 2241 2242

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2243
}
2244
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2245 2246 2247 2248

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2249 2250 2251

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2252
	ida_destroy(&ctrl->ns_ida);
2253 2254 2255 2256 2257 2258 2259 2260

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2261
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2273 2274
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2275
	INIT_LIST_HEAD(&ctrl->namespaces);
2276
	mutex_init(&ctrl->namespaces_mutex);
2277 2278 2279 2280
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2281
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2282
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2283 2284 2285 2286 2287

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2288
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2289
				MKDEV(nvme_char_major, ctrl->instance),
2290
				ctrl, nvme_dev_attr_groups,
2291
				"nvme%d", ctrl->instance);
2292 2293 2294 2295 2296
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2297
	ida_init(&ctrl->ns_ida);
2298 2299 2300 2301 2302

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2311 2312 2313 2314 2315 2316
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2317
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2330 2331
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2332 2333 2334 2335
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2336 2337 2338
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2339 2340 2341 2342
		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
	}
2343
	mutex_unlock(&ctrl->namespaces_mutex);
2344
}
2345
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2346

K
Keith Busch 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_start(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2394
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2395 2396 2397
{
	struct nvme_ns *ns;

2398
	mutex_lock(&ctrl->namespaces_mutex);
2399
	list_for_each_entry(ns, &ctrl->namespaces, list)
2400
		blk_mq_quiesce_queue(ns->queue);
2401
	mutex_unlock(&ctrl->namespaces_mutex);
2402
}
2403
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2404

2405
void nvme_start_queues(struct nvme_ctrl *ctrl)
2406 2407 2408
{
	struct nvme_ns *ns;

2409 2410
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2411 2412 2413
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2414
	mutex_unlock(&ctrl->namespaces_mutex);
2415
}
2416
EXPORT_SYMBOL_GPL(nvme_start_queues);
2417

2418 2419 2420 2421
int __init nvme_core_init(void)
{
	int result;

2422 2423 2424
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2425
		return result;
2426 2427 2428 2429 2430 2431 2432 2433 2434
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2435
	return 0;
2436 2437 2438 2439

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2440 2441 2442 2443
}

void nvme_core_exit(void)
{
2444 2445
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2446
}
2447 2448 2449 2450 2451

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);