core.c 39.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28 29 30
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
31 32 33

#include "nvme.h"

34 35
#define NVME_MINORS		(1U << MINORBITS)

36 37 38
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39
EXPORT_SYMBOL_GPL(admin_timeout);
40 41 42 43

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44
EXPORT_SYMBOL_GPL(nvme_io_timeout);
45 46 47 48 49

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

50 51 52
static int nvme_major;
module_param(nvme_major, int, 0);

53 54 55 56
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
57
static DEFINE_SPINLOCK(dev_list_lock);
58

59 60
static struct class *nvme_class;

61 62 63 64 65 66 67 68 69 70 71 72
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

	if (ns->type == NVME_NS_LIGHTNVM)
		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);

	spin_lock(&dev_list_lock);
	ns->disk->private_data = NULL;
	spin_unlock(&dev_list_lock);

	put_disk(ns->disk);
73 74
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
75 76 77
	kfree(ns);
}

78
static void nvme_put_ns(struct nvme_ns *ns)
79 80 81 82 83 84 85 86 87 88
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
89 90 91 92 93 94
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
95 96 97
	spin_unlock(&dev_list_lock);

	return ns;
98 99 100 101 102 103

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
104 105
}

106 107 108 109 110 111 112 113 114 115
void nvme_requeue_req(struct request *req)
{
	unsigned long flags;

	blk_mq_requeue_request(req);
	spin_lock_irqsave(req->q->queue_lock, flags);
	if (!blk_queue_stopped(req->q))
		blk_mq_kick_requeue_list(req->q);
	spin_unlock_irqrestore(req->q->queue_lock, flags);
}
116
EXPORT_SYMBOL_GPL(nvme_requeue_req);
117

118 119
struct request *nvme_alloc_request(struct request_queue *q,
		struct nvme_command *cmd, unsigned int flags)
120 121 122 123
{
	bool write = cmd->common.opcode & 1;
	struct request *req;

124
	req = blk_mq_alloc_request(q, write, flags);
125
	if (IS_ERR(req))
126
		return req;
127 128 129 130 131 132 133 134 135 136

	req->cmd_type = REQ_TYPE_DRV_PRIV;
	req->cmd_flags |= REQ_FAILFAST_DRIVER;
	req->__data_len = 0;
	req->__sector = (sector_t) -1;
	req->bio = req->biotail = NULL;

	req->cmd = (unsigned char *)cmd;
	req->cmd_len = sizeof(struct nvme_command);

137 138
	return req;
}
139
EXPORT_SYMBOL_GPL(nvme_alloc_request);
140 141 142 143 144 145

/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
146 147
		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
		unsigned timeout)
148 149 150 151 152 153 154 155 156
{
	struct request *req;
	int ret;

	req = nvme_alloc_request(q, cmd, 0);
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
157
	req->special = cqe;
158

159 160 161 162
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
163 164 165 166 167 168 169 170 171 172 173 174
	}

	blk_execute_rq(req->q, NULL, req, 0);
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
175
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
176
}
177
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
178

179 180 181 182
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
183
{
184
	bool write = cmd->common.opcode & 1;
185
	struct nvme_completion cqe;
186 187
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
188
	struct request *req;
189 190
	struct bio *bio = NULL;
	void *meta = NULL;
191 192 193 194 195 196 197
	int ret;

	req = nvme_alloc_request(q, cmd, 0);
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
198
	req->special = &cqe;
199 200

	if (ubuffer && bufflen) {
201 202 203 204 205 206
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

207 208 209 210 211 212 213 214
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

215
		if (meta_buffer && meta_len) {
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
233 234
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
252
	if (result)
253
		*result = le32_to_cpu(cqe.result);
254 255 256 257 258 259 260 261 262 263 264 265
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
266 267 268 269 270
 out:
	blk_mq_free_request(req);
	return ret;
}

271 272 273 274 275 276 277 278
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

279
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(1);

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

299 300 301 302 303 304 305 306 307 308
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(2);
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

309
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify,
	c.identify.nsid = cpu_to_le32(nsid),

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

330
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
331 332 333
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
334 335
	struct nvme_completion cqe;
	int ret;
336 337 338 339 340 341 342

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(fid);

343 344 345 346
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
347 348
}

349
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
350 351 352
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
353 354
	struct nvme_completion cqe;
	int ret;
355 356 357 358 359 360 361

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

362 363 364 365
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
366 367
}

368
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
389

C
Christoph Hellwig 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
			&result);
	if (status)
		return status;

	nr_io_queues = min(result & 0xffff, result >> 16) + 1;
	*count = min(*count, nr_io_queues);
	return 0;
}
405
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
406

407 408 409 410 411 412 413 414 415
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
416 417
	if (io.flags)
		return -EINVAL;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

457
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
458 459 460 461 462 463 464 465 466 467 468
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
469 470
	if (cmd.flags)
		return -EINVAL;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
489
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
514
#ifdef CONFIG_BLK_DEV_NVME_SCSI
515 516 517 518
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
519
#endif
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	default:
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
546 547 548 549
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
590
	struct nvme_ctrl *ctrl = ns->ctrl;
591
	u32 logical_block_size = queue_logical_block_size(ns->queue);
592 593 594 595 596 597

	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

598 599 600 601 602 603
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
	blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

604
static int nvme_revalidate_disk(struct gendisk *disk)
605 606 607 608 609 610 611
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;

612 613 614 615
	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}
616
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
617 618
		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
				__func__);
619 620 621 622 623 624 625 626 627
		return -ENODEV;
	}
	if (id->ncap == 0) {
		kfree(id);
		return -ENODEV;
	}

	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
628
			dev_warn(disk_to_dev(ns->disk),
629 630 631 632 633 634 635
				"%s: LightNVM init failure\n", __func__);
			kfree(id);
			return -ENODEV;
		}
		ns->type = NVME_NS_LIGHTNVM;
	}

636 637 638 639 640
	if (ns->ctrl->vs >= NVME_VS(1, 1))
		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
	if (ns->ctrl->vs >= NVME_VS(1, 2))
		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
668
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);

	kfree(id);
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
757
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

775
static const struct block_device_operations nvme_fops = {
776 777 778 779 780 781 782 783 784 785
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
801
			dev_err(ctrl->device,
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, false);
}
829
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
830 831 832 833 834 835 836 837 838 839 840 841

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
842
		dev_err(ctrl->device,
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
861
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
884
			dev_err(ctrl->device,
885 886 887 888 889 890 891
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
892
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
893

894 895 896 897
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
	if (ctrl->max_hw_sectors) {
898 899 900
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

901
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
902
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
903 904 905 906 907 908 909 910
	}
	if (ctrl->stripe_size)
		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
}

911 912 913 914 915 916 917 918 919 920 921
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;

922 923
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
924
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
925 926 927
		return ret;
	}

928 929
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
930
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
931 932 933 934
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

935 936 937
	if (ctrl->vs >= NVME_VS(1, 1))
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

938 939
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
940
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
941 942 943
		return -EIO;
	}

944
	ctrl->vid = le16_to_cpu(id->vid);
945
	ctrl->oncs = le16_to_cpup(&id->oncs);
946
	atomic_set(&ctrl->abort_limit, id->acl + 1);
947
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
948
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
		ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
	else
		ctrl->max_hw_sectors = UINT_MAX;

	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
		unsigned int max_hw_sectors;

		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
		if (ctrl->max_hw_sectors) {
			ctrl->max_hw_sectors = min(max_hw_sectors,
							ctrl->max_hw_sectors);
		} else {
			ctrl->max_hw_sectors = max_hw_sectors;
		}
	}

970 971
	nvme_set_queue_limits(ctrl, ctrl->admin_q);

972 973 974
	kfree(id);
	return 0;
}
975
EXPORT_SYMBOL_GPL(nvme_init_identify);
976

977
static int nvme_dev_open(struct inode *inode, struct file *file)
978
{
979 980 981
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1001 1002
}

1003
static int nvme_dev_release(struct inode *inode, struct file *file)
1004
{
1005 1006 1007 1008
	nvme_put_ctrl(file->private_data);
	return 0;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1022
		dev_warn(ctrl->device,
1023 1024 1025 1026 1027
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1028
	dev_warn(ctrl->device,
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1052
		return nvme_dev_user_cmd(ctrl, argp);
1053
	case NVME_IOCTL_RESET:
1054
		dev_warn(ctrl->device, "resetting controller\n");
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1082
}
1083
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1134
	&dev_attr_wwid.attr,
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

static umode_t nvme_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
	.is_visible	= nvme_attrs_are_visible,
};

M
Ming Lin 已提交
1163
#define nvme_show_str_function(field)						\
1164 1165 1166 1167 1168 1169 1170 1171
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1185 1186 1187 1188 1189 1190

static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1191
	&dev_attr_cntlid.attr,
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	NULL
};

static struct attribute_group nvme_dev_attrs_group = {
	.attrs = nvme_dev_attrs,
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

1216 1217
	lockdep_assert_held(&ctrl->namespaces_mutex);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		if (ns->ns_id == nsid)
			return ns;
		if (ns->ns_id > nsid)
			break;
	}
	return NULL;
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int node = dev_to_node(ctrl->dev);

1233 1234
	lockdep_assert_held(&ctrl->namespaces_mutex);

1235 1236 1237 1238
	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1239 1240 1241 1242
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1243 1244
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1245
		goto out_release_instance;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_queue;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->disk = disk;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

1259

1260
	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1261
	nvme_set_queue_limits(ctrl, ns->queue);
1262 1263 1264 1265 1266 1267 1268 1269

	disk->major = nvme_major;
	disk->first_minor = 0;
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->driverfs_dev = ctrl->device;
	disk->flags = GENHD_FL_EXT_DEVT;
1270
	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1271 1272 1273 1274

	if (nvme_revalidate_disk(ns->disk))
		goto out_free_disk;

K
Keith Busch 已提交
1275
	list_add_tail(&ns->list, &ctrl->namespaces);
1276
	kref_get(&ctrl->kref);
1277 1278
	if (ns->type == NVME_NS_LIGHTNVM)
		return;
1279

1280 1281 1282 1283 1284
	add_disk(ns->disk);
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1285 1286 1287 1288 1289
	return;
 out_free_disk:
	kfree(disk);
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1290 1291
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1292 1293 1294 1295 1296 1297
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
1298 1299
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
1300

1301 1302 1303
	if (ns->disk->flags & GENHD_FL_UP) {
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1304 1305
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1306 1307 1308 1309
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
1310
	mutex_lock(&ns->ctrl->namespaces_mutex);
1311
	list_del_init(&ns->list);
1312
	mutex_unlock(&ns->ctrl->namespaces_mutex);
1313 1314 1315
	nvme_put_ns(ns);
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

	ns = nvme_find_ns(ctrl, nsid);
	if (ns) {
		if (revalidate_disk(ns->disk))
			nvme_ns_remove(ns);
	} else
		nvme_alloc_ns(ctrl, nsid);
}

static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
			goto out;

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
				ns = nvme_find_ns(ctrl, prev);
				if (ns)
					nvme_ns_remove(ns);
			}
		}
		nn -= j;
	}
 out:
	kfree(ns_list);
	return ret;
}

1364 1365 1366 1367 1368
static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns, *next;
	unsigned i;

1369 1370
	lockdep_assert_held(&ctrl->namespaces_mutex);

1371 1372 1373
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

1374 1375 1376 1377 1378 1379 1380 1381 1382
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nn)
			nvme_ns_remove(ns);
	}
}

void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
1383
	unsigned nn;
1384 1385 1386

	if (nvme_identify_ctrl(ctrl, &id))
		return;
1387

1388
	mutex_lock(&ctrl->namespaces_mutex);
1389 1390 1391 1392 1393 1394
	nn = le32_to_cpu(id->nn);
	if (ctrl->vs >= NVME_VS(1, 1) &&
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
1395
	__nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1396 1397
 done:
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1398
	mutex_unlock(&ctrl->namespaces_mutex);
1399 1400
	kfree(id);
}
1401
EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
1402 1403 1404 1405 1406 1407 1408 1409

void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
1410
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

1441
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1442
{
1443
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1444 1445 1446 1447

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
1448
}
1449
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1450 1451 1452 1453

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1454 1455 1456

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
1457
	ida_destroy(&ctrl->ns_ida);
1458 1459 1460 1461 1462 1463 1464 1465

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
1466
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

	INIT_LIST_HEAD(&ctrl->namespaces);
1479
	mutex_init(&ctrl->namespaces_mutex);
1480 1481 1482 1483 1484 1485 1486 1487 1488
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

1489
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1490
				MKDEV(nvme_char_major, ctrl->instance),
1491
				ctrl, nvme_dev_attr_groups,
1492
				"nvme%d", ctrl->instance);
1493 1494 1495 1496 1497
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
1498
	ida_init(&ctrl->ns_ida);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
1510
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		if (!kref_get_unless_zero(&ns->kref))
			continue;

		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			revalidate_disk(ns->disk);

		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);

		nvme_put_ns(ns);
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
1543
EXPORT_SYMBOL_GPL(nvme_kill_queues);
1544

1545
void nvme_stop_queues(struct nvme_ctrl *ctrl)
1546 1547 1548
{
	struct nvme_ns *ns;

1549
	mutex_lock(&ctrl->namespaces_mutex);
1550 1551 1552 1553 1554 1555 1556 1557
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		spin_lock_irq(ns->queue->queue_lock);
		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
		spin_unlock_irq(ns->queue->queue_lock);

		blk_mq_cancel_requeue_work(ns->queue);
		blk_mq_stop_hw_queues(ns->queue);
	}
1558
	mutex_unlock(&ctrl->namespaces_mutex);
1559
}
1560
EXPORT_SYMBOL_GPL(nvme_stop_queues);
1561

1562
void nvme_start_queues(struct nvme_ctrl *ctrl)
1563 1564 1565
{
	struct nvme_ns *ns;

1566
	mutex_lock(&ctrl->namespaces_mutex);
1567 1568 1569 1570 1571
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
1572
	mutex_unlock(&ctrl->namespaces_mutex);
1573
}
1574
EXPORT_SYMBOL_GPL(nvme_start_queues);
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
int __init nvme_core_init(void)
{
	int result;

	result = register_blkdev(nvme_major, "nvme");
	if (result < 0)
		return result;
	else if (result > 0)
		nvme_major = result;

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
		goto unregister_blkdev;
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

1599
	return 0;
1600 1601 1602 1603 1604 1605

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
 unregister_blkdev:
	unregister_blkdev(nvme_major, "nvme");
	return result;
1606 1607 1608 1609 1610
}

void nvme_core_exit(void)
{
	unregister_blkdev(nvme_major, "nvme");
1611 1612
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1613
}
1614 1615 1616 1617 1618

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);