core.c 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28 29 30
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
31 32 33

#include "nvme.h"

34 35
#define NVME_MINORS		(1U << MINORBITS)

36 37 38
static int nvme_major;
module_param(nvme_major, int, 0);

39 40 41 42
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static LIST_HEAD(nvme_ctrl_list);
43 44
DEFINE_SPINLOCK(dev_list_lock);

45 46
static struct class *nvme_class;

47 48 49 50 51 52 53 54 55 56 57 58
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

	if (ns->type == NVME_NS_LIGHTNVM)
		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);

	spin_lock(&dev_list_lock);
	ns->disk->private_data = NULL;
	spin_unlock(&dev_list_lock);

	put_disk(ns->disk);
59 60
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
61 62 63
	kfree(ns);
}

64
static void nvme_put_ns(struct nvme_ns *ns)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
	if (ns && !kref_get_unless_zero(&ns->kref))
		ns = NULL;
	spin_unlock(&dev_list_lock);

	return ns;
}

82 83 84 85 86 87 88 89 90 91 92
void nvme_requeue_req(struct request *req)
{
	unsigned long flags;

	blk_mq_requeue_request(req);
	spin_lock_irqsave(req->q->queue_lock, flags);
	if (!blk_queue_stopped(req->q))
		blk_mq_kick_requeue_list(req->q);
	spin_unlock_irqrestore(req->q->queue_lock, flags);
}

93 94
struct request *nvme_alloc_request(struct request_queue *q,
		struct nvme_command *cmd, unsigned int flags)
95 96 97 98
{
	bool write = cmd->common.opcode & 1;
	struct request *req;

99
	req = blk_mq_alloc_request(q, write, flags);
100
	if (IS_ERR(req))
101
		return req;
102 103 104 105 106 107 108 109 110 111 112

	req->cmd_type = REQ_TYPE_DRV_PRIV;
	req->cmd_flags |= REQ_FAILFAST_DRIVER;
	req->__data_len = 0;
	req->__sector = (sector_t) -1;
	req->bio = req->biotail = NULL;

	req->cmd = (unsigned char *)cmd;
	req->cmd_len = sizeof(struct nvme_command);
	req->special = (void *)0;

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	return req;
}

/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
{
	struct request *req;
	int ret;

	req = nvme_alloc_request(q, cmd, 0);
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

132 133 134 135
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	}

	blk_execute_rq(req->q, NULL, req, 0);
	if (result)
		*result = (u32)(uintptr_t)req->special;
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
	return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
}

153 154 155 156
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
157
{
158 159 160
	bool write = cmd->common.opcode & 1;
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
161
	struct request *req;
162 163
	struct bio *bio = NULL;
	void *meta = NULL;
164 165 166 167 168 169 170 171 172
	int ret;

	req = nvme_alloc_request(q, cmd, 0);
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
173 174 175 176 177 178
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

		if (meta_buffer) {
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
205 206
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
224 225
	if (result)
		*result = (u32)(uintptr_t)req->special;
226 227 228 229 230 231 232 233 234 235 236 237
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
238 239 240 241 242
 out:
	blk_mq_free_request(req);
	return ret;
}

243 244 245 246 247 248 249 250
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

251
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(1);

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

271 272 273 274 275 276 277 278 279 280
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(2);
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

281
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify,
	c.identify.nsid = cpu_to_le32(nsid),

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

302
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
303 304 305 306 307 308 309 310 311 312
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(fid);

313
	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
314 315
}

316
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
317 318 319 320 321 322 323 324 325 326
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

327
	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
328 329
}

330
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
351

C
Christoph Hellwig 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
			&result);
	if (status)
		return status;

	nr_io_queues = min(result & 0xffff, result >> 16) + 1;
	*count = min(*count, nr_io_queues);
	return 0;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

416
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
446
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
471
#ifdef CONFIG_BLK_DEV_NVME_SCSI
472 473 474 475
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
476
#endif
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	default:
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
	nvme_put_ns(disk->private_data);
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
	u32 logical_block_size = queue_logical_block_size(ns->queue);
	ns->queue->limits.discard_zeroes_data = 0;
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
	blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

552
static int nvme_revalidate_disk(struct gendisk *disk)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;

	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
		dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
				__func__, ns->ctrl->instance, ns->ns_id);
		return -ENODEV;
	}
	if (id->ncap == 0) {
		kfree(id);
		return -ENODEV;
	}

	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
			dev_warn(ns->ctrl->dev,
				"%s: LightNVM init failure\n", __func__);
			kfree(id);
			return -ENODEV;
		}
		ns->type = NVME_NS_LIGHTNVM;
	}

580 581 582 583 584
	if (ns->ctrl->vs >= NVME_VS(1, 1))
		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
	if (ns->ctrl->vs >= NVME_VS(1, 2))
		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
612
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);

	kfree(id);
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
701
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

719
static const struct block_device_operations nvme_fops = {
720 721 722 723 724 725 726 727 728 729
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
			dev_err(ctrl->dev,
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, false);
}

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
		dev_err(ctrl->dev,
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
			dev_err(ctrl->dev,
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}

835 836 837 838 839 840 841 842 843 844 845
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;

846 847 848 849 850 851
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
		dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
		return ret;
	}

852 853 854 855 856 857 858
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
		dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

859 860 861
	if (ctrl->vs >= NVME_VS(1, 1))
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

862 863 864 865 866 867 868
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
		dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
		return -EIO;
	}

	ctrl->oncs = le16_to_cpup(&id->oncs);
869
	atomic_set(&ctrl->abort_limit, id->acl + 1);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	ctrl->vwc = id->vwc;
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
		ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
	else
		ctrl->max_hw_sectors = UINT_MAX;

	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
		unsigned int max_hw_sectors;

		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
		if (ctrl->max_hw_sectors) {
			ctrl->max_hw_sectors = min(max_hw_sectors,
							ctrl->max_hw_sectors);
		} else {
			ctrl->max_hw_sectors = max_hw_sectors;
		}
	}

	kfree(id);
	return 0;
}

896
static int nvme_dev_open(struct inode *inode, struct file *file)
897
{
898 899 900
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
920 921
}

922
static int nvme_dev_release(struct inode *inode, struct file *file)
923
{
924 925 926 927
	nvme_put_ctrl(file->private_data);
	return 0;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
		dev_warn(ctrl->dev,
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

	dev_warn(ctrl->dev,
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

961 962 963 964 965 966 967 968 969 970
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
971
		return nvme_dev_user_cmd(ctrl, argp);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	case NVME_IOCTL_RESET:
		dev_warn(ctrl->dev, "resetting controller\n");
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1001
}
1002
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

static umode_t nvme_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
	.is_visible	= nvme_attrs_are_visible,
};

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
#define nvme_show_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_function(model);
nvme_show_function(serial);
nvme_show_function(firmware_rev);

static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
	NULL
};

static struct attribute_group nvme_dev_attrs_group = {
	.attrs = nvme_dev_attrs,
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

1099 1100
	lockdep_assert_held(&ctrl->namespaces_mutex);

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		if (ns->ns_id == nsid)
			return ns;
		if (ns->ns_id > nsid)
			break;
	}
	return NULL;
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int node = dev_to_node(ctrl->dev);

1116 1117
	lockdep_assert_held(&ctrl->namespaces_mutex);

1118 1119 1120 1121
	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1122 1123 1124 1125
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1126 1127
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1128
		goto out_release_instance;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_queue;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->disk = disk;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
	if (ctrl->max_hw_sectors) {
		blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
		blk_queue_max_segments(ns->queue,
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
	}
	if (ctrl->stripe_size)
		blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
	blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);

	disk->major = nvme_major;
	disk->first_minor = 0;
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->driverfs_dev = ctrl->device;
	disk->flags = GENHD_FL_EXT_DEVT;
1161
	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1162 1163 1164 1165

	if (nvme_revalidate_disk(ns->disk))
		goto out_free_disk;

K
Keith Busch 已提交
1166
	list_add_tail(&ns->list, &ctrl->namespaces);
1167
	kref_get(&ctrl->kref);
1168 1169
	if (ns->type == NVME_NS_LIGHTNVM)
		return;
1170

1171 1172 1173 1174 1175
	add_disk(ns->disk);
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1176 1177 1178 1179 1180
	return;
 out_free_disk:
	kfree(disk);
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1181 1182
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1183 1184 1185 1186 1187 1188 1189 1190 1191
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
	bool kill = nvme_io_incapable(ns->ctrl) &&
			!blk_queue_dying(ns->queue);

1192 1193
	lockdep_assert_held(&ns->ctrl->namespaces_mutex);

1194
	if (kill) {
1195
		blk_set_queue_dying(ns->queue);
1196 1197 1198 1199 1200 1201 1202 1203 1204

		/*
		 * The controller was shutdown first if we got here through
		 * device removal. The shutdown may requeue outstanding
		 * requests. These need to be aborted immediately so
		 * del_gendisk doesn't block indefinitely for their completion.
		 */
		blk_mq_abort_requeue_list(ns->queue);
	}
1205 1206 1207
	if (ns->disk->flags & GENHD_FL_UP) {
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1208 1209
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		del_gendisk(ns->disk);
	}
	if (kill || !blk_queue_dying(ns->queue)) {
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
	list_del_init(&ns->list);
	nvme_put_ns(ns);
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

	ns = nvme_find_ns(ctrl, nsid);
	if (ns) {
		if (revalidate_disk(ns->disk))
			nvme_ns_remove(ns);
	} else
		nvme_alloc_ns(ctrl, nsid);
}

static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
			goto out;

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
				ns = nvme_find_ns(ctrl, prev);
				if (ns)
					nvme_ns_remove(ns);
			}
		}
		nn -= j;
	}
 out:
	kfree(ns_list);
	return ret;
}

1268 1269 1270 1271 1272
static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns, *next;
	unsigned i;

1273 1274
	lockdep_assert_held(&ctrl->namespaces_mutex);

1275 1276 1277
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

1278 1279 1280 1281 1282 1283 1284 1285 1286
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nn)
			nvme_ns_remove(ns);
	}
}

void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
1287
	unsigned nn;
1288 1289 1290

	if (nvme_identify_ctrl(ctrl, &id))
		return;
1291

1292
	mutex_lock(&ctrl->namespaces_mutex);
1293 1294 1295 1296 1297 1298
	nn = le32_to_cpu(id->nn);
	if (ctrl->vs >= NVME_VS(1, 1) &&
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
1299
	__nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1300 1301
 done:
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1302
	mutex_unlock(&ctrl->namespaces_mutex);
1303 1304 1305 1306 1307 1308 1309
	kfree(id);
}

void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

1310
	mutex_lock(&ctrl->namespaces_mutex);
1311 1312
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
1313
	mutex_unlock(&ctrl->namespaces_mutex);
1314 1315
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

1345 1346 1347
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
 {
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1348 1349 1350 1351

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
1352 1353 1354 1355 1356
}

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1357 1358 1359

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
1360
	ida_destroy(&ctrl->ns_ida);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

	INIT_LIST_HEAD(&ctrl->namespaces);
1381
	mutex_init(&ctrl->namespaces_mutex);
1382 1383 1384 1385 1386 1387 1388 1389 1390
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

1391
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1392
				MKDEV(nvme_char_major, ctrl->instance),
1393 1394
				dev, nvme_dev_attr_groups,
				"nvme%d", ctrl->instance);
1395 1396 1397 1398 1399 1400
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
	dev_set_drvdata(ctrl->device, ctrl);
1401
	ida_init(&ctrl->ns_ida);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}

1414
void nvme_stop_queues(struct nvme_ctrl *ctrl)
1415 1416 1417
{
	struct nvme_ns *ns;

1418
	mutex_lock(&ctrl->namespaces_mutex);
1419 1420 1421 1422 1423 1424 1425 1426
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		spin_lock_irq(ns->queue->queue_lock);
		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
		spin_unlock_irq(ns->queue->queue_lock);

		blk_mq_cancel_requeue_work(ns->queue);
		blk_mq_stop_hw_queues(ns->queue);
	}
1427
	mutex_unlock(&ctrl->namespaces_mutex);
1428 1429
}

1430
void nvme_start_queues(struct nvme_ctrl *ctrl)
1431 1432 1433
{
	struct nvme_ns *ns;

1434
	mutex_lock(&ctrl->namespaces_mutex);
1435 1436 1437 1438 1439
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
1440
	mutex_unlock(&ctrl->namespaces_mutex);
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
int __init nvme_core_init(void)
{
	int result;

	result = register_blkdev(nvme_major, "nvme");
	if (result < 0)
		return result;
	else if (result > 0)
		nvme_major = result;

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
		goto unregister_blkdev;
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

1466
	return 0;
1467 1468 1469 1470 1471 1472

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
 unregister_blkdev:
	unregister_blkdev(nvme_major, "nvme");
	return result;
1473 1474 1475 1476 1477
}

void nvme_core_exit(void)
{
	unregister_blkdev(nvme_major, "nvme");
1478 1479
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1480
}