core.c 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28 29 30
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
31 32 33

#include "nvme.h"

34 35
#define NVME_MINORS		(1U << MINORBITS)

36 37 38
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39
EXPORT_SYMBOL_GPL(admin_timeout);
40 41 42 43

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44
EXPORT_SYMBOL_GPL(nvme_io_timeout);
45 46 47 48 49

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

50 51 52
static int nvme_major;
module_param(nvme_major, int, 0);

53 54 55 56
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
57
static DEFINE_SPINLOCK(dev_list_lock);
58

59 60
static struct class *nvme_class;

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
	blk_mq_complete_request(req, status);
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

78 79 80 81 82 83 84 85 86 87
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
	enum nvme_ctrl_state old_state = ctrl->state;
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
88
		case NVME_CTRL_NEW:
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
		case NVME_CTRL_RESETTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
116 117 118 119 120 121 122 123 124
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
125 126 127 128 129 130 131 132 133 134 135 136
	default:
		break;
	}
	spin_unlock_irq(&ctrl->lock);

	if (changed)
		ctrl->state = new_state;

	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

137 138 139 140 141 142 143 144 145 146 147 148
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

	if (ns->type == NVME_NS_LIGHTNVM)
		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);

	spin_lock(&dev_list_lock);
	ns->disk->private_data = NULL;
	spin_unlock(&dev_list_lock);

	put_disk(ns->disk);
149 150
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
151 152 153
	kfree(ns);
}

154
static void nvme_put_ns(struct nvme_ns *ns)
155 156 157 158 159 160 161 162 163 164
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
165 166 167 168 169 170
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
171 172 173
	spin_unlock(&dev_list_lock);

	return ns;
174 175 176 177 178 179

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
180 181
}

182 183 184 185 186 187 188 189 190 191
void nvme_requeue_req(struct request *req)
{
	unsigned long flags;

	blk_mq_requeue_request(req);
	spin_lock_irqsave(req->q->queue_lock, flags);
	if (!blk_queue_stopped(req->q))
		blk_mq_kick_requeue_list(req->q);
	spin_unlock_irqrestore(req->q->queue_lock, flags);
}
192
EXPORT_SYMBOL_GPL(nvme_requeue_req);
193

194
struct request *nvme_alloc_request(struct request_queue *q,
195
		struct nvme_command *cmd, unsigned int flags, int qid)
196 197 198
{
	struct request *req;

199 200 201 202 203 204
	if (qid == NVME_QID_ANY) {
		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
	} else {
		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
				qid ? qid - 1 : 0);
	}
205
	if (IS_ERR(req))
206
		return req;
207 208 209 210 211 212 213 214 215 216

	req->cmd_type = REQ_TYPE_DRV_PRIV;
	req->cmd_flags |= REQ_FAILFAST_DRIVER;
	req->__data_len = 0;
	req->__sector = (sector_t) -1;
	req->bio = req->biotail = NULL;

	req->cmd = (unsigned char *)cmd;
	req->cmd_len = sizeof(struct nvme_command);

217 218
	return req;
}
219
EXPORT_SYMBOL_GPL(nvme_alloc_request);
220

M
Ming Lin 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	struct nvme_dsm_range *range;
	struct page *page;
	int offset;
	unsigned int nr_bytes = blk_rq_bytes(req);

	range = kmalloc(sizeof(*range), GFP_ATOMIC);
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

	range->cattr = cpu_to_le32(0);
	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
	cmnd->dsm.nr = 0;
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

	req->completion_data = range;
	page = virt_to_page(range);
	offset = offset_in_page(range);
	blk_add_request_payload(req, page, offset, sizeof(*range));

	/*
	 * we set __data_len back to the size of the area to be discarded
	 * on disk. This allows us to report completion on the full amount
	 * of blocks described by the request.
	 */
	req->__data_len = nr_bytes;

	return 0;
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.command_id = req->tag;
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
	int ret = 0;

	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
		memcpy(cmd, req->cmd, sizeof(*cmd));
315
	else if (req_op(req) == REQ_OP_FLUSH)
M
Ming Lin 已提交
316
		nvme_setup_flush(ns, cmd);
M
Mike Christie 已提交
317
	else if (req_op(req) == REQ_OP_DISCARD)
M
Ming Lin 已提交
318 319 320 321 322 323 324 325
		ret = nvme_setup_discard(ns, req, cmd);
	else
		nvme_setup_rw(ns, req, cmd);

	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

326 327 328 329 330
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
331
		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
332
		unsigned timeout, int qid, int at_head, int flags)
333 334 335 336
{
	struct request *req;
	int ret;

337
	req = nvme_alloc_request(q, cmd, flags, qid);
338 339 340 341
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
342
	req->special = cqe;
343

344 345 346 347
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
348 349
	}

350
	blk_execute_rq(req->q, NULL, req, at_head);
351 352 353 354 355
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}
356
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
357 358 359 360

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
361 362
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
363
}
364
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
365

366 367 368 369
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
370
{
371
	bool write = nvme_is_write(cmd);
372
	struct nvme_completion cqe;
373 374
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
375
	struct request *req;
376 377
	struct bio *bio = NULL;
	void *meta = NULL;
378 379
	int ret;

380
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
381 382 383 384
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
385
	req->special = &cqe;
386 387

	if (ubuffer && bufflen) {
388 389 390 391 392 393
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

394 395 396 397 398 399 400 401
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

402
		if (meta_buffer && meta_len) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
420 421
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
439
	if (result)
440
		*result = le32_to_cpu(cqe.result);
441 442 443 444 445 446 447 448 449 450 451 452
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
453 454 455 456 457
 out:
	blk_mq_free_request(req);
	return ret;
}

458 459 460 461 462 463 464 465
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

466
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(1);

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

486 487 488 489 490 491 492 493 494 495
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(2);
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

496
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify,
	c.identify.nsid = cpu_to_le32(nsid),

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

517
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
518 519 520
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
521 522
	struct nvme_completion cqe;
	int ret;
523 524 525 526

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
527
	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
528 529
	c.features.fid = cpu_to_le32(fid);

530 531
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
			NVME_QID_ANY, 0, 0);
532 533 534
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
535 536
}

537
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
538 539 540
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
541 542
	struct nvme_completion cqe;
	int ret;
543 544 545

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
546
	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
547 548 549
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

550 551
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
			NVME_QID_ANY, 0, 0);
552 553 554
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
555 556
}

557
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
578

C
Christoph Hellwig 已提交
579 580 581 582 583 584 585 586
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
			&result);
587
	if (status < 0)
C
Christoph Hellwig 已提交
588 589
		return status;

590 591 592 593 594 595 596 597 598 599 600 601 602
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
603 604
	return 0;
}
605
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
606

607 608 609 610 611 612 613 614 615
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
616 617
	if (io.flags)
		return -EINVAL;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

657
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
658 659 660 661 662 663 664 665 666 667 668
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
669 670
	if (cmd.flags)
		return -EINVAL;
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
689
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
714
#ifdef CONFIG_BLK_DEV_NVME_SCSI
715 716 717 718
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
719
#endif
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	default:
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
746 747 748 749
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
769 770
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
771 772 773 774
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
775 776
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
794
	struct nvme_ctrl *ctrl = ns->ctrl;
795
	u32 logical_block_size = queue_logical_block_size(ns->queue);
796 797 798 799 800 801

	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

802 803
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
804
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
805 806 807
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

808
static int nvme_revalidate_disk(struct gendisk *disk)
809 810 811 812 813 814 815
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;

816 817 818 819
	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}
820
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
821 822
		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
				__func__);
823 824 825 826 827 828 829 830 831
		return -ENODEV;
	}
	if (id->ncap == 0) {
		kfree(id);
		return -ENODEV;
	}

	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
832
			dev_warn(disk_to_dev(ns->disk),
833 834 835 836 837 838 839
				"%s: LightNVM init failure\n", __func__);
			kfree(id);
			return -ENODEV;
		}
		ns->type = NVME_NS_LIGHTNVM;
	}

840 841 842 843 844
	if (ns->ctrl->vs >= NVME_VS(1, 1))
		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
	if (ns->ctrl->vs >= NVME_VS(1, 2))
		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
872
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);

	kfree(id);
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
961
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

979
static const struct block_device_operations nvme_fops = {
980 981 982 983 984 985 986 987 988 989
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1005
			dev_err(ctrl->device,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, false);
}
1033
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1046
		dev_err(ctrl->device,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1065
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1088
			dev_err(ctrl->device,
1089 1090 1091 1092 1093 1094 1095
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1096
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1097

1098 1099 1100
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1101 1102
	bool vwc = false;

1103
	if (ctrl->max_hw_sectors) {
1104 1105 1106
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1107
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1108
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1109 1110 1111 1112
	}
	if (ctrl->stripe_size)
		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1113 1114 1115
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1128
	u32 max_hw_sectors;
1129

1130 1131
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1132
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1133 1134 1135
		return ret;
	}

1136 1137
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1138
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1139 1140 1141 1142
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1143 1144 1145
	if (ctrl->vs >= NVME_VS(1, 1))
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1146 1147
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1148
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1149 1150 1151
		return -EIO;
	}

1152
	ctrl->vid = le16_to_cpu(id->vid);
1153
	ctrl->oncs = le16_to_cpup(&id->oncs);
1154
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1155
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1156
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1157 1158 1159 1160
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1161
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1162
	else
1163 1164 1165
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
		unsigned int max_hw_sectors;

		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
		if (ctrl->max_hw_sectors) {
			ctrl->max_hw_sectors = min(max_hw_sectors,
							ctrl->max_hw_sectors);
		} else {
			ctrl->max_hw_sectors = max_hw_sectors;
		}
	}

1180
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	ctrl->sgls = le32_to_cpu(id->sgls);

	if (ctrl->ops->is_fabrics) {
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1198

1199
	kfree(id);
1200
	return ret;
1201
}
1202
EXPORT_SYMBOL_GPL(nvme_init_identify);
1203

1204
static int nvme_dev_open(struct inode *inode, struct file *file)
1205
{
1206 1207 1208
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1228 1229
}

1230
static int nvme_dev_release(struct inode *inode, struct file *file)
1231
{
1232 1233 1234 1235
	nvme_put_ctrl(file->private_data);
	return 0;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1249
		dev_warn(ctrl->device,
1250 1251 1252 1253 1254
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1255
	dev_warn(ctrl->device,
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1279
		return nvme_dev_user_cmd(ctrl, argp);
1280
	case NVME_IOCTL_RESET:
1281
		dev_warn(ctrl->device, "resetting controller\n");
1282 1283 1284
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1285 1286 1287
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1312
}
1313
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1314

K
Keith Busch 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1375
	&dev_attr_wwid.attr,
1376 1377 1378 1379 1380 1381
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1382
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1401
	.is_visible	= nvme_ns_attrs_are_visible,
1402 1403
};

M
Ming Lin 已提交
1404
#define nvme_show_str_function(field)						\
1405 1406 1407 1408 1409 1410 1411 1412
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1426

M
Ming Lin 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1470 1471
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1472
	&dev_attr_rescan_controller.attr,
1473 1474 1475
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1476
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1477 1478 1479 1480
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1481 1482 1483
	NULL
};

M
Ming Lin 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1506
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1507 1508
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1509 1510 1511 1512 1513 1514 1515
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

1528 1529
	lockdep_assert_held(&ctrl->namespaces_mutex);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		if (ns->ns_id == nsid)
			return ns;
		if (ns->ns_id > nsid)
			break;
	}
	return NULL;
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int node = dev_to_node(ctrl->dev);

1545 1546
	lockdep_assert_held(&ctrl->namespaces_mutex);

1547 1548 1549 1550
	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1551 1552 1553 1554
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1555 1556
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1557
		goto out_release_instance;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_queue;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->disk = disk;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

1571

1572
	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1573
	nvme_set_queue_limits(ctrl, ns->queue);
1574 1575 1576 1577 1578 1579 1580 1581

	disk->major = nvme_major;
	disk->first_minor = 0;
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->driverfs_dev = ctrl->device;
	disk->flags = GENHD_FL_EXT_DEVT;
1582
	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1583 1584 1585 1586

	if (nvme_revalidate_disk(ns->disk))
		goto out_free_disk;

1587
	list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1588
	kref_get(&ctrl->kref);
1589 1590
	if (ns->type == NVME_NS_LIGHTNVM)
		return;
1591

1592 1593 1594 1595 1596
	add_disk(ns->disk);
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1597 1598 1599 1600 1601
	return;
 out_free_disk:
	kfree(disk);
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1602 1603
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1604 1605 1606 1607 1608 1609
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
M
Ming Lin 已提交
1610 1611
	lockdep_assert_held(&ns->ctrl->namespaces_mutex);

1612 1613
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
1614

1615 1616 1617
	if (ns->disk->flags & GENHD_FL_UP) {
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1618 1619
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1620 1621 1622 1623 1624
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
	list_del_init(&ns->list);
1625
	synchronize_rcu();
1626 1627 1628
	nvme_put_ns(ns);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

	ns = nvme_find_ns(ctrl, nsid);
	if (ns) {
		if (revalidate_disk(ns->disk))
			nvme_ns_remove(ns);
	} else
		nvme_alloc_ns(ctrl, nsid);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
1666
			goto free;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
				ns = nvme_find_ns(ctrl, prev);
				if (ns)
					nvme_ns_remove(ns);
			}
		}
		nn -= j;
	}
 out:
1684 1685
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
1686 1687 1688 1689
	kfree(ns_list);
	return ret;
}

1690
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1691 1692 1693
{
	unsigned i;

1694 1695
	lockdep_assert_held(&ctrl->namespaces_mutex);

1696 1697 1698
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

1699
	nvme_remove_invalid_namespaces(ctrl, nn);
1700 1701
}

1702
static void nvme_scan_work(struct work_struct *work)
1703
{
1704 1705
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
1706
	struct nvme_id_ctrl *id;
1707
	unsigned nn;
1708

1709 1710 1711
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

1712 1713
	if (nvme_identify_ctrl(ctrl, &id))
		return;
1714

1715
	mutex_lock(&ctrl->namespaces_mutex);
1716 1717 1718 1719 1720 1721
	nn = le32_to_cpu(id->nn);
	if (ctrl->vs >= NVME_VS(1, 1) &&
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
1722
	nvme_scan_ns_sequential(ctrl, nn);
1723 1724
 done:
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1725
	mutex_unlock(&ctrl->namespaces_mutex);
1726
	kfree(id);
1727 1728 1729

	if (ctrl->ops->post_scan)
		ctrl->ops->post_scan(ctrl);
1730
}
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
1742 1743 1744 1745 1746

void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

1747 1748 1749 1750 1751 1752 1753 1754 1755
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

M
Ming Lin 已提交
1756
	mutex_lock(&ctrl->namespaces_mutex);
1757 1758
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
M
Ming Lin 已提交
1759
	mutex_unlock(&ctrl->namespaces_mutex);
1760
}
1761
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

void nvme_complete_async_event(struct nvme_ctrl *ctrl,
		struct nvme_completion *cqe)
{
	u16 status = le16_to_cpu(cqe->status) >> 1;
	u32 result = le32_to_cpu(cqe->result);

	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
	}

	if (status != NVME_SC_SUCCESS)
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

1840
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1841
{
1842
	flush_work(&ctrl->async_event_work);
1843 1844 1845
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

1846
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1847 1848 1849 1850

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
1851
}
1852
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1853 1854 1855 1856

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1857 1858 1859

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
1860
	ida_destroy(&ctrl->ns_ida);
1861 1862 1863 1864 1865 1866 1867 1868

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
1869
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

1881 1882
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
1883
	INIT_LIST_HEAD(&ctrl->namespaces);
1884
	mutex_init(&ctrl->namespaces_mutex);
1885 1886 1887 1888
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
1889
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1890
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1891 1892 1893 1894 1895

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

1896
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1897
				MKDEV(nvme_char_major, ctrl->instance),
1898
				ctrl, nvme_dev_attr_groups,
1899
				"nvme%d", ctrl->instance);
1900 1901 1902 1903 1904
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
1905
	ida_init(&ctrl->ns_ida);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
1917
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

1930 1931
	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		if (!kref_get_unless_zero(&ns->kref))
			continue;

		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			revalidate_disk(ns->disk);

		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);

		nvme_put_ns(ns);
	}
1948
	rcu_read_unlock();
1949
}
1950
EXPORT_SYMBOL_GPL(nvme_kill_queues);
1951

1952
void nvme_stop_queues(struct nvme_ctrl *ctrl)
1953 1954 1955
{
	struct nvme_ns *ns;

1956 1957
	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1958 1959 1960 1961 1962 1963 1964
		spin_lock_irq(ns->queue->queue_lock);
		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
		spin_unlock_irq(ns->queue->queue_lock);

		blk_mq_cancel_requeue_work(ns->queue);
		blk_mq_stop_hw_queues(ns->queue);
	}
1965
	rcu_read_unlock();
1966
}
1967
EXPORT_SYMBOL_GPL(nvme_stop_queues);
1968

1969
void nvme_start_queues(struct nvme_ctrl *ctrl)
1970 1971 1972
{
	struct nvme_ns *ns;

1973 1974
	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1975 1976 1977 1978
		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
1979
	rcu_read_unlock();
1980
}
1981
EXPORT_SYMBOL_GPL(nvme_start_queues);
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
int __init nvme_core_init(void)
{
	int result;

	result = register_blkdev(nvme_major, "nvme");
	if (result < 0)
		return result;
	else if (result > 0)
		nvme_major = result;

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
		goto unregister_blkdev;
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2006
	return 0;
2007 2008 2009 2010 2011 2012

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
 unregister_blkdev:
	unregister_blkdev(nvme_major, "nvme");
	return result;
2013 2014 2015 2016
}

void nvme_core_exit(void)
{
2017 2018
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2019
	unregister_blkdev(nvme_major, "nvme");
2020
}
2021 2022 2023 2024 2025

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);