core.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28 29 30
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
31 32 33

#include "nvme.h"

34 35
#define NVME_MINORS		(1U << MINORBITS)

36 37 38
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39
EXPORT_SYMBOL_GPL(admin_timeout);
40 41 42 43

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44
EXPORT_SYMBOL_GPL(nvme_io_timeout);
45 46 47 48 49

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

50 51 52
static int nvme_major;
module_param(nvme_major, int, 0);

53 54 55 56
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
57
static DEFINE_SPINLOCK(dev_list_lock);
58

59 60
static struct class *nvme_class;

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
	blk_mq_complete_request(req, status);
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

78 79 80 81 82 83 84 85 86 87
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
	enum nvme_ctrl_state old_state = ctrl->state;
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
88
		case NVME_CTRL_NEW:
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
		case NVME_CTRL_RESETTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
116 117 118 119 120 121 122 123 124
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
125 126 127 128 129 130 131 132 133 134 135 136
	default:
		break;
	}
	spin_unlock_irq(&ctrl->lock);

	if (changed)
		ctrl->state = new_state;

	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

137 138 139 140 141 142 143 144 145 146 147 148
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

	if (ns->type == NVME_NS_LIGHTNVM)
		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);

	spin_lock(&dev_list_lock);
	ns->disk->private_data = NULL;
	spin_unlock(&dev_list_lock);

	put_disk(ns->disk);
149 150
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
151 152 153
	kfree(ns);
}

154
static void nvme_put_ns(struct nvme_ns *ns)
155 156 157 158 159 160 161 162 163 164
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
165 166 167 168 169 170
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
171 172 173
	spin_unlock(&dev_list_lock);

	return ns;
174 175 176 177 178 179

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
180 181
}

182 183 184 185 186 187 188 189 190 191
void nvme_requeue_req(struct request *req)
{
	unsigned long flags;

	blk_mq_requeue_request(req);
	spin_lock_irqsave(req->q->queue_lock, flags);
	if (!blk_queue_stopped(req->q))
		blk_mq_kick_requeue_list(req->q);
	spin_unlock_irqrestore(req->q->queue_lock, flags);
}
192
EXPORT_SYMBOL_GPL(nvme_requeue_req);
193

194 195
struct request *nvme_alloc_request(struct request_queue *q,
		struct nvme_command *cmd, unsigned int flags)
196 197 198
{
	struct request *req;

199
	req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
200
	if (IS_ERR(req))
201
		return req;
202 203 204 205 206 207 208 209 210 211

	req->cmd_type = REQ_TYPE_DRV_PRIV;
	req->cmd_flags |= REQ_FAILFAST_DRIVER;
	req->__data_len = 0;
	req->__sector = (sector_t) -1;
	req->bio = req->biotail = NULL;

	req->cmd = (unsigned char *)cmd;
	req->cmd_len = sizeof(struct nvme_command);

212 213
	return req;
}
214
EXPORT_SYMBOL_GPL(nvme_alloc_request);
215

M
Ming Lin 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	struct nvme_dsm_range *range;
	struct page *page;
	int offset;
	unsigned int nr_bytes = blk_rq_bytes(req);

	range = kmalloc(sizeof(*range), GFP_ATOMIC);
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

	range->cattr = cpu_to_le32(0);
	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
	cmnd->dsm.nr = 0;
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

	req->completion_data = range;
	page = virt_to_page(range);
	offset = offset_in_page(range);
	blk_add_request_payload(req, page, offset, sizeof(*range));

	/*
	 * we set __data_len back to the size of the area to be discarded
	 * on disk. This allows us to report completion on the full amount
	 * of blocks described by the request.
	 */
	req->__data_len = nr_bytes;

	return 0;
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.command_id = req->tag;
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
	int ret = 0;

	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
		memcpy(cmd, req->cmd, sizeof(*cmd));
310
	else if (req_op(req) == REQ_OP_FLUSH)
M
Ming Lin 已提交
311
		nvme_setup_flush(ns, cmd);
M
Mike Christie 已提交
312
	else if (req_op(req) == REQ_OP_DISCARD)
M
Ming Lin 已提交
313 314 315 316 317 318 319 320
		ret = nvme_setup_discard(ns, req, cmd);
	else
		nvme_setup_rw(ns, req, cmd);

	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

321 322 323 324 325
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
326 327
		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
		unsigned timeout)
328 329 330 331 332 333 334 335 336
{
	struct request *req;
	int ret;

	req = nvme_alloc_request(q, cmd, 0);
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
337
	req->special = cqe;
338

339 340 341 342
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
343 344 345 346 347 348 349 350 351 352 353 354
	}

	blk_execute_rq(req->q, NULL, req, 0);
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
355
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
356
}
357
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
358

359 360 361 362
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
363
{
364
	bool write = nvme_is_write(cmd);
365
	struct nvme_completion cqe;
366 367
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
368
	struct request *req;
369 370
	struct bio *bio = NULL;
	void *meta = NULL;
371 372 373 374 375 376 377
	int ret;

	req = nvme_alloc_request(q, cmd, 0);
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
378
	req->special = &cqe;
379 380

	if (ubuffer && bufflen) {
381 382 383 384 385 386
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

387 388 389 390 391 392 393 394
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

395
		if (meta_buffer && meta_len) {
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
413 414
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
432
	if (result)
433
		*result = le32_to_cpu(cqe.result);
434 435 436 437 438 439 440 441 442 443 444 445
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
446 447 448 449 450
 out:
	blk_mq_free_request(req);
	return ret;
}

451 452 453 454 455 456 457 458
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

459
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(1);

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

479 480 481 482 483 484 485 486 487 488
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(2);
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

489
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify,
	c.identify.nsid = cpu_to_le32(nsid),

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

510
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
511 512 513
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
514 515
	struct nvme_completion cqe;
	int ret;
516 517 518 519 520 521 522

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(fid);

523 524 525 526
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
527 528
}

529
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
530 531 532
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
533 534
	struct nvme_completion cqe;
	int ret;
535 536 537 538 539 540 541

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

542 543 544 545
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
546 547
}

548
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
569

C
Christoph Hellwig 已提交
570 571 572 573 574 575 576 577
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
			&result);
578
	if (status < 0)
C
Christoph Hellwig 已提交
579 580
		return status;

581 582 583 584 585 586 587 588 589 590 591 592 593
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
594 595
	return 0;
}
596
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
597

598 599 600 601 602 603 604 605 606
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
607 608
	if (io.flags)
		return -EINVAL;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

648
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
649 650 651 652 653 654 655 656 657 658 659
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
660 661
	if (cmd.flags)
		return -EINVAL;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
680
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
705
#ifdef CONFIG_BLK_DEV_NVME_SCSI
706 707 708 709
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
710
#endif
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	default:
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
737 738 739 740
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
760 761
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
762 763 764 765
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
766 767
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
785
	struct nvme_ctrl *ctrl = ns->ctrl;
786
	u32 logical_block_size = queue_logical_block_size(ns->queue);
787 788 789 790 791 792

	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

793 794
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
795
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
796 797 798
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

799
static int nvme_revalidate_disk(struct gendisk *disk)
800 801 802 803 804 805 806
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;

807 808 809 810
	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}
811
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
812 813
		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
				__func__);
814 815 816 817 818 819 820 821 822
		return -ENODEV;
	}
	if (id->ncap == 0) {
		kfree(id);
		return -ENODEV;
	}

	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
823
			dev_warn(disk_to_dev(ns->disk),
824 825 826 827 828 829 830
				"%s: LightNVM init failure\n", __func__);
			kfree(id);
			return -ENODEV;
		}
		ns->type = NVME_NS_LIGHTNVM;
	}

831 832 833 834 835
	if (ns->ctrl->vs >= NVME_VS(1, 1))
		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
	if (ns->ctrl->vs >= NVME_VS(1, 2))
		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
863
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);

	kfree(id);
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
952
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

970
static const struct block_device_operations nvme_fops = {
971 972 973 974 975 976 977 978 979 980
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
996
			dev_err(ctrl->device,
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, false);
}
1024
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1037
		dev_err(ctrl->device,
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1056
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1079
			dev_err(ctrl->device,
1080 1081 1082 1083 1084 1085 1086
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1087
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1088

1089 1090 1091
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1092 1093
	bool vwc = false;

1094
	if (ctrl->max_hw_sectors) {
1095 1096 1097
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1098
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1099
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1100 1101 1102 1103
	}
	if (ctrl->stripe_size)
		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1104 1105 1106
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1107 1108
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1119
	u32 max_hw_sectors;
1120

1121 1122
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1123
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1124 1125 1126
		return ret;
	}

1127 1128
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1129
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1130 1131 1132 1133
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1134 1135 1136
	if (ctrl->vs >= NVME_VS(1, 1))
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1137 1138
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1139
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1140 1141 1142
		return -EIO;
	}

1143
	ctrl->vid = le16_to_cpu(id->vid);
1144
	ctrl->oncs = le16_to_cpup(&id->oncs);
1145
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1146
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1147
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1148 1149 1150 1151
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1152
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1153
	else
1154 1155 1156
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
		unsigned int max_hw_sectors;

		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
		if (ctrl->max_hw_sectors) {
			ctrl->max_hw_sectors = min(max_hw_sectors,
							ctrl->max_hw_sectors);
		} else {
			ctrl->max_hw_sectors = max_hw_sectors;
		}
	}

1171 1172
	nvme_set_queue_limits(ctrl, ctrl->admin_q);

1173 1174 1175
	kfree(id);
	return 0;
}
1176
EXPORT_SYMBOL_GPL(nvme_init_identify);
1177

1178
static int nvme_dev_open(struct inode *inode, struct file *file)
1179
{
1180 1181 1182
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1202 1203
}

1204
static int nvme_dev_release(struct inode *inode, struct file *file)
1205
{
1206 1207 1208 1209
	nvme_put_ctrl(file->private_data);
	return 0;
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1223
		dev_warn(ctrl->device,
1224 1225 1226 1227 1228
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1229
	dev_warn(ctrl->device,
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1253
		return nvme_dev_user_cmd(ctrl, argp);
1254
	case NVME_IOCTL_RESET:
1255
		dev_warn(ctrl->device, "resetting controller\n");
1256 1257 1258
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1259 1260 1261
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1286
}
1287
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1288

K
Keith Busch 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1349
	&dev_attr_wwid.attr,
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

static umode_t nvme_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
	.is_visible	= nvme_attrs_are_visible,
};

M
Ming Lin 已提交
1378
#define nvme_show_str_function(field)						\
1379 1380 1381 1382 1383 1384 1385 1386
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1400 1401 1402

static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1403
	&dev_attr_rescan_controller.attr,
1404 1405 1406
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1407
	&dev_attr_cntlid.attr,
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	NULL
};

static struct attribute_group nvme_dev_attrs_group = {
	.attrs = nvme_dev_attrs,
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

1432 1433
	lockdep_assert_held(&ctrl->namespaces_mutex);

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		if (ns->ns_id == nsid)
			return ns;
		if (ns->ns_id > nsid)
			break;
	}
	return NULL;
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int node = dev_to_node(ctrl->dev);

1449 1450
	lockdep_assert_held(&ctrl->namespaces_mutex);

1451 1452 1453 1454
	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1455 1456 1457 1458
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1459 1460
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1461
		goto out_release_instance;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_queue;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->disk = disk;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

1475

1476
	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1477
	nvme_set_queue_limits(ctrl, ns->queue);
1478 1479 1480 1481 1482 1483 1484 1485

	disk->major = nvme_major;
	disk->first_minor = 0;
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->driverfs_dev = ctrl->device;
	disk->flags = GENHD_FL_EXT_DEVT;
1486
	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1487 1488 1489 1490

	if (nvme_revalidate_disk(ns->disk))
		goto out_free_disk;

1491
	list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1492
	kref_get(&ctrl->kref);
1493 1494
	if (ns->type == NVME_NS_LIGHTNVM)
		return;
1495

1496 1497 1498 1499 1500
	add_disk(ns->disk);
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1501 1502 1503 1504 1505
	return;
 out_free_disk:
	kfree(disk);
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1506 1507
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1508 1509 1510 1511 1512 1513
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
M
Ming Lin 已提交
1514 1515
	lockdep_assert_held(&ns->ctrl->namespaces_mutex);

1516 1517
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
1518

1519 1520 1521
	if (ns->disk->flags & GENHD_FL_UP) {
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1522 1523
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1524 1525 1526 1527 1528
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
	list_del_init(&ns->list);
1529
	synchronize_rcu();
1530 1531 1532
	nvme_put_ns(ns);
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

	ns = nvme_find_ns(ctrl, nsid);
	if (ns) {
		if (revalidate_disk(ns->disk))
			nvme_ns_remove(ns);
	} else
		nvme_alloc_ns(ctrl, nsid);
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
1570
			goto free;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
				ns = nvme_find_ns(ctrl, prev);
				if (ns)
					nvme_ns_remove(ns);
			}
		}
		nn -= j;
	}
 out:
1588 1589
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
1590 1591 1592 1593
	kfree(ns_list);
	return ret;
}

1594
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1595 1596 1597
{
	unsigned i;

1598 1599
	lockdep_assert_held(&ctrl->namespaces_mutex);

1600 1601 1602
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

1603
	nvme_remove_invalid_namespaces(ctrl, nn);
1604 1605
}

1606
static void nvme_scan_work(struct work_struct *work)
1607
{
1608 1609
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
1610
	struct nvme_id_ctrl *id;
1611
	unsigned nn;
1612

1613 1614 1615
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

1616 1617
	if (nvme_identify_ctrl(ctrl, &id))
		return;
1618

1619
	mutex_lock(&ctrl->namespaces_mutex);
1620 1621 1622 1623 1624 1625
	nn = le32_to_cpu(id->nn);
	if (ctrl->vs >= NVME_VS(1, 1) &&
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
1626
	nvme_scan_ns_sequential(ctrl, nn);
1627 1628
 done:
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1629
	mutex_unlock(&ctrl->namespaces_mutex);
1630
	kfree(id);
1631 1632 1633

	if (ctrl->ops->post_scan)
		ctrl->ops->post_scan(ctrl);
1634
}
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
1646 1647 1648 1649 1650

void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

M
Ming Lin 已提交
1660
	mutex_lock(&ctrl->namespaces_mutex);
1661 1662
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
M
Ming Lin 已提交
1663
	mutex_unlock(&ctrl->namespaces_mutex);
1664
}
1665
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

void nvme_complete_async_event(struct nvme_ctrl *ctrl,
		struct nvme_completion *cqe)
{
	u16 status = le16_to_cpu(cqe->status) >> 1;
	u32 result = le32_to_cpu(cqe->result);

	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
	}

	if (status != NVME_SC_SUCCESS)
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

1744
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1745
{
1746
	flush_work(&ctrl->async_event_work);
1747 1748 1749
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

1750
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1751 1752 1753 1754

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
1755
}
1756
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1757 1758 1759 1760

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1761 1762 1763

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
1764
	ida_destroy(&ctrl->ns_ida);
1765 1766 1767 1768 1769 1770 1771 1772

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
1773
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

1785 1786
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
1787
	INIT_LIST_HEAD(&ctrl->namespaces);
1788
	mutex_init(&ctrl->namespaces_mutex);
1789 1790 1791 1792
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
1793
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1794
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1795 1796 1797 1798 1799

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

1800
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1801
				MKDEV(nvme_char_major, ctrl->instance),
1802
				ctrl, nvme_dev_attr_groups,
1803
				"nvme%d", ctrl->instance);
1804 1805 1806 1807 1808
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
1809
	ida_init(&ctrl->ns_ida);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
1821
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

1834 1835
	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
		if (!kref_get_unless_zero(&ns->kref))
			continue;

		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			revalidate_disk(ns->disk);

		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);

		nvme_put_ns(ns);
	}
1852
	rcu_read_unlock();
1853
}
1854
EXPORT_SYMBOL_GPL(nvme_kill_queues);
1855

1856
void nvme_stop_queues(struct nvme_ctrl *ctrl)
1857 1858 1859
{
	struct nvme_ns *ns;

1860 1861
	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1862 1863 1864 1865 1866 1867 1868
		spin_lock_irq(ns->queue->queue_lock);
		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
		spin_unlock_irq(ns->queue->queue_lock);

		blk_mq_cancel_requeue_work(ns->queue);
		blk_mq_stop_hw_queues(ns->queue);
	}
1869
	rcu_read_unlock();
1870
}
1871
EXPORT_SYMBOL_GPL(nvme_stop_queues);
1872

1873
void nvme_start_queues(struct nvme_ctrl *ctrl)
1874 1875 1876
{
	struct nvme_ns *ns;

1877 1878
	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1879 1880 1881 1882
		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
1883
	rcu_read_unlock();
1884
}
1885
EXPORT_SYMBOL_GPL(nvme_start_queues);
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
int __init nvme_core_init(void)
{
	int result;

	result = register_blkdev(nvme_major, "nvme");
	if (result < 0)
		return result;
	else if (result > 0)
		nvme_major = result;

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
		goto unregister_blkdev;
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

1910
	return 0;
1911 1912 1913 1914 1915 1916

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
 unregister_blkdev:
	unregister_blkdev(nvme_major, "nvme");
	return result;
1917 1918 1919 1920
}

void nvme_core_exit(void)
{
1921 1922
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1923
	unregister_blkdev(nvme_major, "nvme");
1924
}
1925 1926 1927 1928 1929

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);