xfs_icache.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36
#include "xfs_reflink.h"
37

38 39
#include <linux/kthread.h>
#include <linux/freezer.h>
J
Jeff Layton 已提交
40
#include <linux/iversion.h>
41

D
Dave Chinner 已提交
42 43 44
/*
 * Allocate and initialise an xfs_inode.
 */
45
struct xfs_inode *
D
Dave Chinner 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
65 66 67
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

68
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
69 70 71 72 73 74 75 76 77
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
78 79 80
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
81 82 83
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
84
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
85 86 87 88 89 90 91 92 93 94 95

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
96
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
97 98 99 100 101 102 103 104 105
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
106 107
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
108 109 110 111 112 113 114

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

115 116 117
	kmem_zone_free(xfs_inode_zone, ip);
}

118 119 120 121 122 123 124 125 126 127 128
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

129 130 131 132
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
133 134
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
135 136 137 138 139 140 141 142 143 144 145
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

146
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

193
	lockdep_assert_held(&pag->pag_ici_lock);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

215
	lockdep_assert_held(&pag->pag_ici_lock);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

265 266 267 268 269 270 271 272
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
273
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
274 275 276 277
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
278
	finish_wait(wq, &wait.wq_entry);
279 280
}

281 282 283 284
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
285
 * overwrite the values unconditionally. Hence we save the parameters we
286
 * need to retain across reinitialisation, and rewrite them into the VFS inode
287
 * after reinitialisation even if it fails.
288 289 290 291 292 293 294
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
295
	uint32_t	nlink = inode->i_nlink;
296
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
297
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
298
	umode_t		mode = inode->i_mode;
299 300 301

	error = inode_init_always(mp->m_super, inode);

302
	set_nlink(inode, nlink);
303
	inode->i_generation = generation;
J
Jeff Layton 已提交
304
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
305
	inode->i_mode = mode;
306 307 308
	return error;
}

D
Dave Chinner 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
334
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
335
		error = -EAGAIN;
D
Dave Chinner 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
352
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
353
		error = -EAGAIN;
D
Dave Chinner 已提交
354 355 356 357 358 359
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
360
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
361
		error = -ENOENT;
D
Dave Chinner 已提交
362 363 364 365 366 367 368 369 370 371
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

372 373 374 375 376
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
377 378 379 380 381 382 383 384 385 386 387
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

388
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
389
		if (error) {
390
			bool wake;
D
Dave Chinner 已提交
391 392 393 394 395 396
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
397
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
398
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
399 400
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
416
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
417 418
		inode->i_state = I_NEW;

419 420
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
421 422 423 424 425 426 427

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
428
			error = -EAGAIN;
D
Dave Chinner 已提交
429 430 431 432 433 434 435 436 437 438 439 440
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

441 442
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
443
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
471
		return -ENOMEM;
D
Dave Chinner 已提交
472 473 474 475 476 477 478

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

D
Dave Chinner 已提交
479
	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
480
		error = -ENOENT;
D
Dave Chinner 已提交
481 482 483 484 485 486 487 488 489 490
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
491
		error = -EAGAIN;
D
Dave Chinner 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
516 517
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
518
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
519 520 521 522 523 524 525
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
526
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
527
		error = -EAGAIN;
D
Dave Chinner 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
594
		return -EINVAL;
D
Dave Chinner 已提交
595

596
	XFS_STATS_INC(mp, xs_ig_attempts);
597

D
Dave Chinner 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
613
		if (flags & XFS_IGET_INCORE) {
614
			error = -ENODATA;
615 616
			goto out_error_or_again;
		}
617
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
618 619 620 621 622 623 624 625 626 627 628

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
629
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
630 631
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
632
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
633
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
634 635 636
	return 0;

out_error_or_again:
637
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
638 639 640 641 642 643 644
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
	IRELE(ip);
	return 0;
}

683 684 685 686 687 688 689 690
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

691 692
STATIC int
xfs_inode_ag_walk_grab(
693 694
	struct xfs_inode	*ip,
	int			flags)
695 696
{
	struct inode		*inode = VFS_I(ip);
697
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
698

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
715 716
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
717 718 719
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

720 721
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
722
		return -EFSCORRUPTED;
723 724 725

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
726
		return -ENOENT;
727 728 729

	/* inode is valid */
	return 0;
730 731 732

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
733
	return -ENOENT;
734 735
}

736 737 738
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
739
	struct xfs_perag	*pag,
740
	int			(*execute)(struct xfs_inode *ip, int flags,
741 742 743
					   void *args),
	int			flags,
	void			*args,
744 745
	int			tag,
	int			iter_flags)
746 747 748 749
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
750
	int			done;
751
	int			nr_found;
752 753

restart:
754
	done = 0;
755 756
	skipped = 0;
	first_index = 0;
757
	nr_found = 0;
758
	do {
759
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
760
		int		error = 0;
761
		int		i;
762

763
		rcu_read_lock();
764 765 766

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
767 768
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
769 770 771 772 773 774
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

775
		if (!nr_found) {
776
			rcu_read_unlock();
777
			break;
778
		}
779

780
		/*
781 782
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
783
		 */
784 785 786
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

787
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
788 789 790
				batch[i] = NULL;

			/*
791 792 793 794 795 796 797 798 799 800
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
801
			 */
802 803
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
804 805 806
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
807
		}
808 809

		/* unlock now we've grabbed the inodes. */
810
		rcu_read_unlock();
811

812 813 814
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
815 816 817
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
818
			error = execute(batch[i], flags, args);
819
			IRELE(batch[i]);
D
Dave Chinner 已提交
820
			if (error == -EAGAIN) {
821 822 823
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
824
			if (error && last_error != -EFSCORRUPTED)
825
				last_error = error;
826
		}
827 828

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
829
		if (error == -EFSCORRUPTED)
830 831
			break;

832 833
		cond_resched();

834
	} while (nr_found && !done);
835 836 837 838 839 840 841 842

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

843 844
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
845
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
846
 */
847
void
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
STATIC void
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

896
int
897
xfs_inode_ag_iterator_flags(
898
	struct xfs_mount	*mp,
899
	int			(*execute)(struct xfs_inode *ip, int flags,
900 901
					   void *args),
	int			flags,
902 903
	void			*args,
	int			iter_flags)
904
{
905
	struct xfs_perag	*pag;
906 907 908 909
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

910
	ag = 0;
911 912
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
913 914
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
915 916 917
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
918
			if (error == -EFSCORRUPTED)
919 920 921
				break;
		}
	}
E
Eric Sandeen 已提交
922
	return last_error;
923 924
}

925 926 927 928 929 930 931 932 933 934 935
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

936 937 938
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
939
	int			(*execute)(struct xfs_inode *ip, int flags,
940 941 942 943 944 945 946 947 948 949 950 951 952
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
953 954
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
955
		xfs_perag_put(pag);
956 957
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
958
			if (error == -EFSCORRUPTED)
959 960 961
				break;
		}
	}
E
Eric Sandeen 已提交
962
	return last_error;
963 964
}

D
Dave Chinner 已提交
965 966 967 968 969 970 971 972 973
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
974 975 976 977 978
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
979 980

	/*
981 982 983
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
984 985
	 */
	if ((flags & SYNC_TRYLOCK) &&
986
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
987 988 989 990 991 992
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
993 994 995 996 997
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
998 999
	 */
	spin_lock(&ip->i_flags_lock);
1000 1001 1002
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1003 1004 1005 1006 1007 1008 1009 1010
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1011
/*
1012 1013
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1014 1015 1016 1017 1018 1019 1020
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1021 1022
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1023 1024
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1025 1026 1027 1028
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1029 1030
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1031
 * the inode is clean.
1032
 *
1033 1034 1035 1036 1037 1038
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1039
 *
1040 1041 1042
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1043
 *	pinned, async	=> requeue
1044
 *	pinned, sync	=> unpin
1045 1046
 *	stale		=> reclaim
 *	clean		=> reclaim
1047
 *	dirty, async	=> requeue
1048
 *	dirty, sync	=> flush, wait and reclaim
1049
 */
1050
STATIC int
1051
xfs_reclaim_inode(
1052 1053
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1054
	int			sync_mode)
1055
{
1056
	struct xfs_buf		*bp = NULL;
1057
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1058
	int			error;
1059

1060 1061
restart:
	error = 0;
1062
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1063 1064 1065 1066 1067
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1068

1069 1070
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1071
		/* xfs_iflush_abort() drops the flush lock */
1072
		xfs_iflush_abort(ip, false);
1073 1074
		goto reclaim;
	}
1075
	if (xfs_ipincount(ip)) {
1076 1077
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1078
		xfs_iunpin_wait(ip);
1079
	}
1080 1081
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1082
		goto reclaim;
1083
	}
1084

1085 1086 1087 1088 1089 1090 1091
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1092 1093 1094
	/*
	 * Now we have an inode that needs flushing.
	 *
1095
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1096
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1097
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1098 1099
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1100 1101 1102 1103
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1104 1105 1106
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1107
	 */
1108
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1109
	if (error == -EAGAIN) {
1110 1111 1112 1113
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1114 1115
	}

1116 1117 1118 1119 1120
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1121
reclaim:
1122 1123
	ASSERT(!xfs_isiflocked(ip));

1124 1125 1126
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1127
	 * We do this as early as possible under the ILOCK so that
1128 1129 1130 1131 1132
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1133 1134 1135 1136 1137 1138
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1139
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1140

1141
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1142 1143 1144 1145 1146 1147 1148
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1149
	spin_lock(&pag->pag_ici_lock);
1150
	if (!radix_tree_delete(&pag->pag_ici_root,
1151
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1152
		ASSERT(0);
1153
	xfs_perag_clear_reclaim_tag(pag);
1154
	spin_unlock(&pag->pag_ici_lock);
1155 1156 1157 1158 1159 1160 1161

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1162
	 * unlocked after the lookup before we go ahead and free it.
1163
	 */
1164
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1165
	xfs_qm_dqdetach(ip);
1166
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1167

1168
	__xfs_inode_free(ip);
1169
	return error;
1170 1171 1172 1173 1174 1175 1176

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1177
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1178
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1179 1180 1181
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1182 1183
	 */
	return 0;
1184 1185
}

1186 1187 1188 1189 1190 1191
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1192
STATIC int
1193 1194 1195 1196 1197 1198 1199 1200 1201
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1202 1203
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1204

1205
restart:
1206
	ag = 0;
1207
	skipped = 0;
1208 1209 1210
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1211
		int		nr_found = 0;
1212 1213 1214

		ag = pag->pag_agno + 1;

1215 1216 1217
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1218
				xfs_perag_put(pag);
1219 1220 1221 1222 1223 1224
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1225
		do {
D
Dave Chinner 已提交
1226 1227
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1228

1229
			rcu_read_lock();
D
Dave Chinner 已提交
1230 1231 1232 1233
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1234 1235
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1236
				done = 1;
1237
				rcu_read_unlock();
1238 1239 1240 1241
				break;
			}

			/*
D
Dave Chinner 已提交
1242 1243
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1244
			 */
D
Dave Chinner 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1257 1258 1259 1260 1261 1262 1263
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1264
				 */
1265 1266 1267
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1268 1269 1270 1271
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1272

D
Dave Chinner 已提交
1273
			/* unlock now we've grabbed the inodes. */
1274
			rcu_read_unlock();
D
Dave Chinner 已提交
1275 1276 1277 1278 1279

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1280
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1281 1282 1283 1284
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1285

1286 1287
			cond_resched();

D
Dave Chinner 已提交
1288
		} while (nr_found && !done && *nr_to_scan > 0);
1289

1290 1291 1292 1293 1294
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1295 1296
		xfs_perag_put(pag);
	}
1297 1298 1299 1300 1301 1302 1303 1304

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1305
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1306 1307 1308
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1309
	return last_error;
1310 1311
}

1312 1313 1314 1315 1316
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1317 1318 1319
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1320 1321 1322
}

/*
1323
 * Scan a certain number of inodes for reclaim.
1324 1325
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1326
 * progress, while we will throttle the speed of reclaim via doing synchronous
1327 1328 1329
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1330
 */
1331
long
1332 1333 1334
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1335
{
1336
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1337
	xfs_reclaim_work_queue(mp);
1338
	xfs_ail_push_all(mp->m_ail);
1339

1340
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1341
}
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1354

1355 1356
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1357 1358
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1359 1360 1361 1362
	}
	return reclaimable;
}

1363 1364 1365 1366 1367
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1368 1369
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1370
		return 0;
1371

1372 1373
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1374 1375
		return 0;

1376
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1377 1378 1379 1380
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1407 1408 1409 1410 1411 1412
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1413
	int ret = 0;
1414
	struct xfs_eofblocks *eofb = args;
1415
	int match;
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1432
	if (eofb) {
1433 1434 1435 1436 1437
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1438 1439 1440 1441 1442 1443 1444
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1445

1446 1447 1448 1449
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1450
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1451 1452 1453 1454 1455
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1456
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1457 1458 1459 1460

	return ret;
}

1461 1462
static int
__xfs_icache_free_eofblocks(
1463
	struct xfs_mount	*mp,
1464 1465 1466 1467
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1468
{
1469 1470 1471 1472 1473
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1485 1486
}

1487 1488 1489 1490 1491 1492
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1493 1494 1495 1496 1497
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1498 1499 1500 1501 1502 1503
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1504
	 * Run a sync scan to increase effectiveness and use the union filter to
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1528
		execute(ip->i_mount, &eofb);
1529 1530 1531 1532

	return scan;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

static void
__xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1547 1548 1549 1550 1551
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
	if (ip->i_flags & XFS_IEOFBLOCKS)
		return;
	spin_lock(&ip->i_flags_lock);
	ip->i_flags |= XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1562 1563 1564
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1565
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1566
	radix_tree_tag_set(&pag->pag_ici_root,
1567
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1568 1569 1570 1571 1572
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1573
				   tag);
1574
		spin_unlock(&ip->i_mount->m_perag_lock);
1575 1576

		/* kick off background trimming */
1577
		execute(ip->i_mount);
1578

1579
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1580 1581 1582 1583 1584 1585 1586
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1587
xfs_inode_set_eofblocks_tag(
1588
	xfs_inode_t	*ip)
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
{
	trace_xfs_inode_set_eofblocks_tag(ip);
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
__xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1602 1603 1604 1605
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1606 1607 1608 1609
	spin_lock(&ip->i_flags_lock);
	ip->i_flags &= ~XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1610 1611 1612 1613
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1614 1615
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1616 1617 1618 1619
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1620
				     tag);
1621
		spin_unlock(&ip->i_mount->m_perag_lock);
1622
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1623 1624 1625 1626 1627 1628
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
	return __xfs_inode_clear_eofblocks_tag(ip,
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
	struct xfs_eofblocks *eofb = args;
	int match;
1659
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1660

1661 1662 1663 1664 1665
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1666 1667 1668 1669 1670 1671 1672 1673 1674
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1675 1676
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1696 1697
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1698

1699
	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1700

1701 1702
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1727
	trace_xfs_inode_set_cowblocks_tag(ip);
1728
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1729
			trace_xfs_perag_set_cowblocks,
1730 1731 1732 1733 1734 1735 1736
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1737
	trace_xfs_inode_clear_cowblocks_tag(ip);
1738
	return __xfs_inode_clear_eofblocks_tag(ip,
1739
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1740
}