amd_iommu.c 63.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
21
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <asm/proto.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/dma.h>
34
#include <asm/amd_iommu_proto.h>
35
#include <asm/amd_iommu_types.h>
36
#include <asm/amd_iommu.h>
37 38 39

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

40
#define LOOP_TIMEOUT	100000
41

42 43
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

44 45 46 47
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

48 49 50 51
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

52 53 54 55 56 57
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

58 59
static struct iommu_ops amd_iommu_ops;

60 61 62
/*
 * general struct to manage commands send to an IOMMU
 */
63
struct iommu_cmd {
64 65 66
	u32 data[4];
};

67
static void update_domain(struct protection_domain *domain);
68

69 70 71 72 73 74
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

75
static struct iommu_dev_data *alloc_dev_data(u16 devid)
76 77 78 79 80 81 82 83
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

84
	dev_data->devid = devid;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

105 106 107 108 109 110 111
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

112 113 114 115 116
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

145 146 147 148 149 150 151 152 153 154 155 156
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
157
	if (dev->bus != &pci_bus_type)
158 159 160 161 162 163 164 165 166 167 168 169 170 171
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

172 173 174 175
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
176
	u16 alias;
177 178 179 180

	if (dev->archdata.iommu)
		return 0;

181
	dev_data = alloc_dev_data(get_device_id(dev));
182 183 184
	if (!dev_data)
		return -ENOMEM;

185
	alias = amd_iommu_alias_table[dev_data->devid];
186 187 188
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;
189
	else {
190
		free_dev_data(dev_data);
191 192
		return -ENOTSUPP;
	}
193 194 195 196 197 198

	dev->archdata.iommu = dev_data;

	return 0;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

213 214
static void iommu_uninit_device(struct device *dev)
{
215 216 217 218 219
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
220
}
J
Joerg Roedel 已提交
221 222 223

void __init amd_iommu_uninit_devices(void)
{
224
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
225 226 227 228 229 230 231 232 233
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
234 235 236 237

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
251 252 253
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
254 255 256 257 258 259 260 261 262 263 264
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
265 266 267 268 269 270
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

271
DECLARE_STATS_COUNTER(compl_wait);
272
DECLARE_STATS_COUNTER(cnt_map_single);
273
DECLARE_STATS_COUNTER(cnt_unmap_single);
274
DECLARE_STATS_COUNTER(cnt_map_sg);
275
DECLARE_STATS_COUNTER(cnt_unmap_sg);
276
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
277
DECLARE_STATS_COUNTER(cnt_free_coherent);
278
DECLARE_STATS_COUNTER(cross_page);
279
DECLARE_STATS_COUNTER(domain_flush_single);
280
DECLARE_STATS_COUNTER(domain_flush_all);
281
DECLARE_STATS_COUNTER(alloced_io_mem);
282
DECLARE_STATS_COUNTER(total_map_requests);
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
304 305

	amd_iommu_stats_add(&compl_wait);
306
	amd_iommu_stats_add(&cnt_map_single);
307
	amd_iommu_stats_add(&cnt_unmap_single);
308
	amd_iommu_stats_add(&cnt_map_sg);
309
	amd_iommu_stats_add(&cnt_unmap_sg);
310
	amd_iommu_stats_add(&cnt_alloc_coherent);
311
	amd_iommu_stats_add(&cnt_free_coherent);
312
	amd_iommu_stats_add(&cross_page);
313
	amd_iommu_stats_add(&domain_flush_single);
314
	amd_iommu_stats_add(&domain_flush_all);
315
	amd_iommu_stats_add(&alloced_io_mem);
316
	amd_iommu_stats_add(&total_map_requests);
317 318 319 320
}

#endif

321 322 323 324 325 326
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

327 328 329 330 331 332 333 334 335
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

336 337 338 339 340 341 342 343 344
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

345
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
346 347 348 349 350 351 352 353
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

354
	printk(KERN_ERR "AMD-Vi: Event logged [");
355 356 357 358 359 360 361

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
362
		dump_dte_entry(devid);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
384
		dump_command(address);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
418
		iommu_print_event(iommu, iommu->evt_buf + head);
419 420 421 422 423 424 425 426
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

427
irqreturn_t amd_iommu_int_thread(int irq, void *data)
428
{
429 430
	struct amd_iommu *iommu;

431
	for_each_iommu(iommu)
432 433 434
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
435 436
}

437 438 439 440 441
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

442 443 444 445 446 447
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
468 469 470
{
	u8 *target;

471
	target = iommu->cmd_buf + tail;
472 473 474 475 476 477
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
478
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
479
}
480

481
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
482
{
483 484
	WARN_ON(address & 0x7ULL);

485
	memset(cmd, 0, sizeof(*cmd));
486 487 488
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
489 490 491
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

492 493 494 495 496 497 498
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

561 562 563 564
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
565 566
}

567 568
/*
 * Writes the command to the IOMMUs command buffer and informs the
569
 * hardware about the new command.
570
 */
571
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
572
{
573
	u32 left, tail, head, next_tail;
574 575
	unsigned long flags;

576
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
577 578

again:
579 580
	spin_lock_irqsave(&iommu->lock, flags);

581 582 583 584
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
585

586 587 588 589
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
590

591 592
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
593

594 595 596 597 598 599
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
600 601
	}

602 603 604
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
605
	iommu->need_sync = true;
606

607
	spin_unlock_irqrestore(&iommu->lock, flags);
608

609
	return 0;
610 611 612 613 614 615
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
616
static int iommu_completion_wait(struct amd_iommu *iommu)
617 618
{
	struct iommu_cmd cmd;
619
	volatile u64 sem = 0;
620
	int ret;
621

622
	if (!iommu->need_sync)
623
		return 0;
624

625
	build_completion_wait(&cmd, (u64)&sem);
626

627
	ret = iommu_queue_command(iommu, &cmd);
628
	if (ret)
629
		return ret;
630

631
	return wait_on_sem(&sem);
632 633
}

634
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
635
{
636
	struct iommu_cmd cmd;
637

638
	build_inv_dte(&cmd, devid);
639

640 641
	return iommu_queue_command(iommu, &cmd);
}
642

643 644 645
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
646

647 648
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
649

650 651
	iommu_completion_wait(iommu);
}
652

653 654 655 656 657 658 659
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
660

661 662 663 664 665 666
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
667

668
	iommu_completion_wait(iommu);
669 670
}

671
static void iommu_flush_all(struct amd_iommu *iommu)
672
{
673
	struct iommu_cmd cmd;
674

675
	build_inv_all(&cmd);
676

677 678 679 680
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

681 682
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
683 684 685 686 687
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
688 689 690
	}
}

691
/*
692
 * Command send function for flushing on-device TLB
693
 */
694 695
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
696 697
{
	struct amd_iommu *iommu;
698
	struct iommu_cmd cmd;
699
	int qdep;
700

701 702
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
703

704
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
705 706

	return iommu_queue_command(iommu, &cmd);
707 708
}

709 710 711
/*
 * Command send function for invalidating a device table entry
 */
712
static int device_flush_dte(struct iommu_dev_data *dev_data)
713
{
714
	struct amd_iommu *iommu;
715
	int ret;
716

717
	iommu = amd_iommu_rlookup_table[dev_data->devid];
718

719
	ret = iommu_flush_dte(iommu, dev_data->devid);
720 721 722
	if (ret)
		return ret;

723
	if (dev_data->ats.enabled)
724
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
725 726

	return ret;
727 728
}

729 730 731 732 733
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
734 735
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
736
{
737
	struct iommu_dev_data *dev_data;
738 739
	struct iommu_cmd cmd;
	int ret = 0, i;
740

741
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
742

743 744 745 746 747 748 749 750
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
751
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
752 753
	}

754 755
	list_for_each_entry(dev_data, &domain->dev_list, list) {

756
		if (!dev_data->ats.enabled)
757 758
			continue;

759
		ret |= device_flush_iotlb(dev_data, address, size);
760 761
	}

762
	WARN_ON(ret);
763 764
}

765 766
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
767
{
768
	__domain_flush_pages(domain, address, size, 0);
769
}
770

771
/* Flush the whole IO/TLB for a given protection domain */
772
static void domain_flush_tlb(struct protection_domain *domain)
773
{
774
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
775 776
}

777
/* Flush the whole IO/TLB for a given protection domain - including PDE */
778
static void domain_flush_tlb_pde(struct protection_domain *domain)
779
{
780
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
781 782
}

783
static void domain_flush_complete(struct protection_domain *domain)
784
{
785
	int i;
786

787 788 789
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
790

791 792 793 794 795
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
796
	}
797 798
}

799

800
/*
801
 * This function flushes the DTEs for all devices in domain
802
 */
803
static void domain_flush_devices(struct protection_domain *domain)
804
{
805
	struct iommu_dev_data *dev_data;
806 807
	unsigned long flags;

808
	spin_lock_irqsave(&domain->lock, flags);
809

810
	list_for_each_entry(dev_data, &domain->dev_list, list)
811
		device_flush_dte(dev_data);
812

813
	spin_unlock_irqrestore(&domain->lock, flags);
814 815
}

816 817 818 819 820 821 822
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
852
		      unsigned long page_size,
853 854 855
		      u64 **pte_page,
		      gfp_t gfp)
{
856
	int level, end_lvl;
857
	u64 *pte, *page;
858 859

	BUG_ON(!is_power_of_2(page_size));
860 861 862 863

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

864 865 866 867
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
868 869 870 871 872 873 874 875 876

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

877 878 879 880
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
898
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
899 900 901 902
{
	int level;
	u64 *pte;

903 904 905 906 907
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
908

909 910 911
	while (level > 0) {

		/* Not Present */
912 913 914
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

934 935
		level -= 1;

936
		/* Walk to the next level */
937 938 939 940 941 942 943
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

944 945 946 947 948 949 950
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
951 952 953
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
954
			  int prot,
955
			  unsigned long page_size)
956
{
957
	u64 __pte, *pte;
958
	int i, count;
959

960
	if (!(prot & IOMMU_PROT_MASK))
961 962
		return -EINVAL;

963 964 965 966 967 968 969 970
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
971

972 973 974 975 976
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
977 978 979 980 981 982

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

983 984
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
985

986 987
	update_domain(dom);

988 989 990
	return 0;
}

991 992 993
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
994
{
995 996 997 998 999 1000
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1031

1032
	return unmapped;
1033 1034
}

1035 1036 1037 1038
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1053 1054 1055 1056
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1057 1058 1059 1060 1061 1062 1063 1064
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1065
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1066
				     PAGE_SIZE);
1067 1068 1069 1070 1071 1072 1073
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1074
			__set_bit(addr >> PAGE_SHIFT,
1075
				  dma_dom->aperture[0]->bitmap);
1076 1077 1078 1079 1080
	}

	return 0;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1103 1104 1105
/*
 * Inits the unity mappings required for a specific device
 */
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1132

1133
/*
1134
 * The address allocator core functions.
1135 1136 1137
 *
 * called with domain->lock held
 */
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1159 1160 1161 1162 1163
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1164
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1165 1166 1167
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1168
	struct amd_iommu *iommu;
1169
	unsigned long i;
1170

1171 1172 1173 1174
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1194
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1207
	/* Initialize the exclusion range if necessary */
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1230
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1231 1232 1233 1234 1235 1236
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1237 1238
	update_domain(&dma_dom->domain);

1239 1240 1241
	return 0;

out_free:
1242 1243
	update_domain(&dma_dom->domain);

1244 1245 1246 1247 1248 1249 1250 1251
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1252 1253 1254 1255 1256 1257 1258
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1259
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1260 1261 1262 1263 1264 1265
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1266 1267
	next_bit >>= PAGE_SHIFT;

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1286
			dom->next_address = address + (pages << PAGE_SHIFT);
1287 1288 1289 1290 1291 1292 1293 1294 1295
			break;
		}

		next_bit = 0;
	}

	return address;
}

1296 1297
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1298
					     unsigned int pages,
1299 1300
					     unsigned long align_mask,
					     u64 dma_mask)
1301 1302 1303
{
	unsigned long address;

1304 1305 1306 1307
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1308

1309
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1310
				     dma_mask, dom->next_address);
1311

1312
	if (address == -1) {
1313
		dom->next_address = 0;
1314 1315
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1316 1317
		dom->need_flush = true;
	}
1318

1319
	if (unlikely(address == -1))
1320
		address = DMA_ERROR_CODE;
1321 1322 1323 1324 1325 1326

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1327 1328 1329 1330 1331
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1332 1333 1334 1335
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1336 1337
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1338

1339 1340
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1341 1342 1343 1344
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1345

1346
	if (address >= dom->next_address)
1347
		dom->need_flush = true;
1348 1349

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1350

A
Akinobu Mita 已提交
1351
	bitmap_clear(range->bitmap, address, pages);
1352

1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1417
static void free_pagetable(struct protection_domain *domain)
1418 1419 1420 1421
{
	int i, j;
	u64 *p1, *p2, *p3;

1422
	p1 = domain->pt_root;
1423 1424 1425 1426 1427 1428 1429 1430 1431

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1432
		for (j = 0; j < 512; ++j) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1443 1444

	domain->pt_root = NULL;
1445 1446
}

1447 1448 1449 1450
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1451 1452
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1453 1454
	int i;

1455 1456 1457
	if (!dom)
		return;

1458 1459
	del_domain_from_list(&dom->domain);

1460
	free_pagetable(&dom->domain);
1461

1462 1463 1464 1465 1466 1467
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1468 1469 1470 1471

	kfree(dom);
}

1472 1473
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1474
 * It also initializes the page table and the address allocator data
1475 1476
 * structures required for the dma_ops interface
 */
1477
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1490
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1491
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1492
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1493
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1494 1495 1496 1497
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1498
	dma_dom->need_flush = false;
1499
	dma_dom->target_dev = 0xffff;
1500

1501 1502
	add_domain_to_list(&dma_dom->domain);

1503
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1504 1505
		goto free_dma_dom;

1506
	/*
1507 1508
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1509
	 */
1510
	dma_dom->aperture[0]->bitmap[0] = 1;
1511
	dma_dom->next_address = 0;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1531
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1532 1533
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1534
	u32 flags = 0;
1535

1536 1537 1538
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1539

1540 1541 1542 1543 1544 1545 1546
	if (ats)
		flags |= DTE_FLAG_IOTLB;

	amd_iommu_dev_table[devid].data[3] |= flags;
	amd_iommu_dev_table[devid].data[2]  = domain->id;
	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1557 1558
}

1559 1560
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1561 1562
{
	struct amd_iommu *iommu;
1563
	bool ats;
1564

1565 1566
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1567 1568 1569 1570

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1571
	set_dte_entry(dev_data->devid, domain, ats);
1572 1573 1574 1575 1576 1577

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1578
	device_flush_dte(dev_data);
1579 1580
}

1581
static void do_detach(struct iommu_dev_data *dev_data)
1582 1583 1584
{
	struct amd_iommu *iommu;

1585
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1586 1587

	/* decrease reference counters */
1588 1589 1590 1591 1592 1593
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1594
	clear_dte_entry(dev_data->devid);
1595

1596
	/* Flush the DTE entry */
1597
	device_flush_dte(dev_data);
1598 1599 1600 1601 1602 1603
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1604
static int __attach_device(struct iommu_dev_data *dev_data,
1605
			   struct protection_domain *domain)
1606
{
1607
	struct iommu_dev_data *alias_data;
1608
	int ret;
1609 1610

	alias_data = get_dev_data(dev_data->alias);
1611

1612 1613
	if (!alias_data)
		return -EINVAL;
1614

1615 1616 1617
	/* lock domain */
	spin_lock(&domain->lock);

1618
	/* Some sanity checks */
1619
	ret = -EBUSY;
1620 1621
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1622
		goto out_unlock;
1623

1624 1625
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1626
		goto out_unlock;
1627 1628

	/* Do real assignment */
1629
	if (dev_data->devid != alias_data->devid) {
1630
		if (alias_data->domain == NULL)
1631
			do_attach(alias_data, domain);
1632 1633

		atomic_inc(&alias_data->bind);
1634
	}
1635

1636
	if (dev_data->domain == NULL)
1637
		do_attach(dev_data, domain);
1638

1639 1640
	atomic_inc(&dev_data->bind);

1641 1642 1643 1644
	ret = 0;

out_unlock:

1645 1646
	/* ready */
	spin_unlock(&domain->lock);
1647

1648
	return ret;
1649
}
1650

1651 1652 1653 1654
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1655 1656
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1657
{
1658
	struct pci_dev *pdev = to_pci_dev(dev);
1659
	struct iommu_dev_data *dev_data;
1660
	unsigned long flags;
1661
	int ret;
1662

1663 1664 1665 1666 1667 1668
	dev_data = get_dev_data(dev);

	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1669

1670
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1671
	ret = __attach_device(dev_data, domain);
1672 1673
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1674 1675 1676 1677 1678
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1679
	domain_flush_tlb_pde(domain);
1680 1681

	return ret;
1682 1683
}

1684 1685 1686
/*
 * Removes a device from a protection domain (unlocked)
 */
1687
static void __detach_device(struct iommu_dev_data *dev_data)
1688
{
1689
	struct iommu_dev_data *alias_data;
1690
	struct protection_domain *domain;
1691
	unsigned long flags;
1692

1693
	BUG_ON(!dev_data->domain);
1694

1695 1696 1697
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1698

1699 1700
	alias_data = get_dev_data(dev_data->alias);
	if (dev_data->devid != alias_data->devid) {
1701
		if (atomic_dec_and_test(&alias_data->bind))
1702
			do_detach(alias_data);
1703 1704
	}

1705
	if (atomic_dec_and_test(&dev_data->bind))
1706
		do_detach(dev_data);
1707

1708
	spin_unlock_irqrestore(&domain->lock, flags);
1709 1710 1711

	/*
	 * If we run in passthrough mode the device must be assigned to the
1712 1713
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1714
	 */
1715 1716
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1717
		__attach_device(dev_data, pt_domain);
1718 1719 1720 1721 1722
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1723
static void detach_device(struct device *dev)
1724
{
1725
	struct iommu_dev_data *dev_data;
1726 1727
	unsigned long flags;

1728 1729
	dev_data = get_dev_data(dev);

1730 1731
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1732
	__detach_device(dev_data);
1733
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1734

1735 1736 1737 1738
	if (dev_data->ats.enabled) {
		pci_disable_ats(to_pci_dev(dev));
		dev_data->ats.enabled = false;
	}
1739
}
1740

1741 1742 1743 1744 1745 1746 1747
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1748
	struct iommu_dev_data *dev_data, *alias_data;
1749 1750
	unsigned long flags;

1751 1752 1753 1754
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1755 1756

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1757
	dom = dev_data->domain;
1758
	if (dom == NULL &&
1759
	    alias_data->domain != NULL) {
1760
		__attach_device(dev_data, alias_data->domain);
1761
		dom = alias_data->domain;
1762 1763 1764 1765 1766 1767 1768
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1769 1770 1771 1772
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1773
	u16 devid;
1774 1775 1776
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1777
	unsigned long flags;
1778

1779 1780
	if (!check_device(dev))
		return 0;
1781

1782 1783
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1784 1785

	switch (action) {
1786
	case BUS_NOTIFY_UNBOUND_DRIVER:
1787 1788 1789

		domain = domain_for_device(dev);

1790 1791
		if (!domain)
			goto out;
1792 1793
		if (iommu_pass_through)
			break;
1794
		detach_device(dev);
1795 1796
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1797 1798 1799 1800 1801

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1802 1803 1804 1805
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1806
		dma_domain = dma_ops_domain_alloc();
1807 1808 1809 1810 1811 1812 1813 1814
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1815
		break;
1816 1817 1818 1819
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

1830
static struct notifier_block device_nb = {
1831 1832
	.notifier_call = device_change_notifier,
};
1833

1834 1835 1836 1837 1838
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1852
static struct protection_domain *get_domain(struct device *dev)
1853
{
1854
	struct protection_domain *domain;
1855
	struct dma_ops_domain *dma_dom;
1856
	u16 devid = get_device_id(dev);
1857

1858
	if (!check_device(dev))
1859
		return ERR_PTR(-EINVAL);
1860

1861 1862 1863
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1864

1865 1866
	if (domain != NULL)
		return domain;
1867

1868
	/* Device not bount yet - bind it */
1869
	dma_dom = find_protection_domain(devid);
1870
	if (!dma_dom)
1871 1872
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1873
	DUMP_printk("Using protection domain %d for device %s\n",
1874
		    dma_dom->domain.id, dev_name(dev));
1875

1876
	return &dma_dom->domain;
1877 1878
}

1879 1880
static void update_device_table(struct protection_domain *domain)
{
1881
	struct iommu_dev_data *dev_data;
1882

1883 1884
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1885 1886 1887 1888 1889 1890 1891 1892
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1893 1894 1895

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1896 1897 1898 1899

	domain->updated = false;
}

1900 1901 1902 1903 1904 1905
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1906
	struct aperture_range *aperture;
1907 1908
	u64 *pte, *pte_page;

1909 1910 1911 1912 1913
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1914
	if (!pte) {
1915
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1916
				GFP_ATOMIC);
1917 1918
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1919
		pte += PM_LEVEL_INDEX(0, address);
1920

1921
	update_domain(&dom->domain);
1922 1923 1924 1925

	return pte;
}

1926 1927 1928 1929
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1930
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1941
	pte  = dma_ops_get_pte(dom, address);
1942
	if (!pte)
1943
		return DMA_ERROR_CODE;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1961 1962 1963
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1964
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1965 1966
				 unsigned long address)
{
1967
	struct aperture_range *aperture;
1968 1969 1970 1971 1972
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1973 1974 1975 1976 1977 1978 1979
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1980

1981
	pte += PM_LEVEL_INDEX(0, address);
1982 1983 1984 1985 1986 1987

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1988 1989
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1990 1991
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1992 1993
 * Must be called with the domain lock held.
 */
1994 1995 1996 1997
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1998
			       int dir,
1999 2000
			       bool align,
			       u64 dma_mask)
2001 2002
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2003
	dma_addr_t address, start, ret;
2004
	unsigned int pages;
2005
	unsigned long align_mask = 0;
2006 2007
	int i;

2008
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2009 2010
	paddr &= PAGE_MASK;

2011 2012
	INC_STATS_COUNTER(total_map_requests);

2013 2014 2015
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2016 2017 2018
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2019
retry:
2020 2021
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2022
	if (unlikely(address == DMA_ERROR_CODE)) {
2023 2024 2025 2026 2027 2028 2029
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2030
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2031 2032 2033
			goto out;

		/*
2034
		 * aperture was successfully enlarged by 128 MB, try
2035 2036 2037 2038
		 * allocation again
		 */
		goto retry;
	}
2039 2040 2041

	start = address;
	for (i = 0; i < pages; ++i) {
2042
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2043
		if (ret == DMA_ERROR_CODE)
2044 2045
			goto out_unmap;

2046 2047 2048 2049 2050
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2051 2052
	ADD_STATS_COUNTER(alloced_io_mem, size);

2053
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2054
		domain_flush_tlb(&dma_dom->domain);
2055
		dma_dom->need_flush = false;
2056
	} else if (unlikely(amd_iommu_np_cache))
2057
		domain_flush_pages(&dma_dom->domain, address, size);
2058

2059 2060
out:
	return address;
2061 2062 2063 2064 2065

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2066
		dma_ops_domain_unmap(dma_dom, start);
2067 2068 2069 2070
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2071
	return DMA_ERROR_CODE;
2072 2073
}

2074 2075 2076 2077
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2078
static void __unmap_single(struct dma_ops_domain *dma_dom,
2079 2080 2081 2082
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2083
	dma_addr_t flush_addr;
2084 2085 2086
	dma_addr_t i, start;
	unsigned int pages;

2087
	if ((dma_addr == DMA_ERROR_CODE) ||
2088
	    (dma_addr + size > dma_dom->aperture_size))
2089 2090
		return;

2091
	flush_addr = dma_addr;
2092
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2093 2094 2095 2096
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2097
		dma_ops_domain_unmap(dma_dom, start);
2098 2099 2100
		start += PAGE_SIZE;
	}

2101 2102
	SUB_STATS_COUNTER(alloced_io_mem, size);

2103
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2104

2105
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2106
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2107 2108
		dma_dom->need_flush = false;
	}
2109 2110
}

2111 2112 2113
/*
 * The exported map_single function for dma_ops.
 */
2114 2115 2116 2117
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2118 2119 2120 2121
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2122
	u64 dma_mask;
2123
	phys_addr_t paddr = page_to_phys(page) + offset;
2124

2125 2126
	INC_STATS_COUNTER(cnt_map_single);

2127 2128
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2129
		return (dma_addr_t)paddr;
2130 2131
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2132

2133 2134
	dma_mask = *dev->dma_mask;

2135
	spin_lock_irqsave(&domain->lock, flags);
2136

2137
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2138
			    dma_mask);
2139
	if (addr == DMA_ERROR_CODE)
2140 2141
		goto out;

2142
	domain_flush_complete(domain);
2143 2144 2145 2146 2147 2148 2149

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2150 2151 2152
/*
 * The exported unmap_single function for dma_ops.
 */
2153 2154
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2155 2156 2157 2158
{
	unsigned long flags;
	struct protection_domain *domain;

2159 2160
	INC_STATS_COUNTER(cnt_unmap_single);

2161 2162
	domain = get_domain(dev);
	if (IS_ERR(domain))
2163 2164
		return;

2165 2166
	spin_lock_irqsave(&domain->lock, flags);

2167
	__unmap_single(domain->priv, dma_addr, size, dir);
2168

2169
	domain_flush_complete(domain);
2170 2171 2172 2173

	spin_unlock_irqrestore(&domain->lock, flags);
}

2174 2175 2176 2177
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2192 2193 2194 2195
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2196
static int map_sg(struct device *dev, struct scatterlist *sglist,
2197 2198
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2199 2200 2201 2202 2203 2204 2205
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2206
	u64 dma_mask;
2207

2208 2209
	INC_STATS_COUNTER(cnt_map_sg);

2210 2211
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2212
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2213 2214
	else if (IS_ERR(domain))
		return 0;
2215

2216
	dma_mask = *dev->dma_mask;
2217 2218 2219 2220 2221 2222

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2223
		s->dma_address = __map_single(dev, domain->priv,
2224 2225
					      paddr, s->length, dir, false,
					      dma_mask);
2226 2227 2228 2229 2230 2231 2232 2233

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2234
	domain_flush_complete(domain);
2235 2236 2237 2238 2239 2240 2241 2242

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2243
			__unmap_single(domain->priv, s->dma_address,
2244 2245 2246 2247 2248 2249 2250 2251 2252
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2253 2254 2255 2256
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2257
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2258 2259
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2260 2261 2262 2263 2264 2265
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2266 2267
	INC_STATS_COUNTER(cnt_unmap_sg);

2268 2269
	domain = get_domain(dev);
	if (IS_ERR(domain))
2270 2271
		return;

2272 2273 2274
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2275
		__unmap_single(domain->priv, s->dma_address,
2276 2277 2278 2279
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2280
	domain_flush_complete(domain);
2281 2282 2283 2284

	spin_unlock_irqrestore(&domain->lock, flags);
}

2285 2286 2287
/*
 * The exported alloc_coherent function for dma_ops.
 */
2288 2289 2290 2291 2292 2293 2294
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2295
	u64 dma_mask = dev->coherent_dma_mask;
2296

2297 2298
	INC_STATS_COUNTER(cnt_alloc_coherent);

2299 2300
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2301 2302 2303
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2304 2305
	} else if (IS_ERR(domain))
		return NULL;
2306

2307 2308 2309
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2310 2311 2312

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2313
		return NULL;
2314 2315 2316

	paddr = virt_to_phys(virt_addr);

2317 2318 2319
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2320 2321
	spin_lock_irqsave(&domain->lock, flags);

2322
	*dma_addr = __map_single(dev, domain->priv, paddr,
2323
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2324

2325
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2326
		spin_unlock_irqrestore(&domain->lock, flags);
2327
		goto out_free;
J
Jiri Slaby 已提交
2328
	}
2329

2330
	domain_flush_complete(domain);
2331 2332 2333 2334

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2335 2336 2337 2338 2339 2340

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2341 2342
}

2343 2344 2345
/*
 * The exported free_coherent function for dma_ops.
 */
2346 2347 2348 2349 2350 2351
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2352 2353
	INC_STATS_COUNTER(cnt_free_coherent);

2354 2355
	domain = get_domain(dev);
	if (IS_ERR(domain))
2356 2357
		goto free_mem;

2358 2359
	spin_lock_irqsave(&domain->lock, flags);

2360
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2361

2362
	domain_flush_complete(domain);
2363 2364 2365 2366 2367 2368 2369

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2370 2371 2372 2373 2374 2375
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2376
	return check_device(dev);
2377 2378
}

2379
/*
2380 2381
 * The function for pre-allocating protection domains.
 *
2382 2383 2384 2385
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2386
static void prealloc_protection_domains(void)
2387 2388 2389
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2390
	u16 devid;
2391

2392
	for_each_pci_dev(dev) {
2393 2394 2395

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2396
			continue;
2397 2398

		/* Is there already any domain for it? */
2399
		if (domain_for_device(&dev->dev))
2400
			continue;
2401 2402 2403

		devid = get_device_id(&dev->dev);

2404
		dma_dom = dma_ops_domain_alloc();
2405 2406 2407
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2408 2409
		dma_dom->target_dev = devid;

2410
		attach_device(&dev->dev, &dma_dom->domain);
2411

2412
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2413 2414 2415
	}
}

2416
static struct dma_map_ops amd_iommu_dma_ops = {
2417 2418
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2419 2420
	.map_page = map_page,
	.unmap_page = unmap_page,
2421 2422
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2423
	.dma_supported = amd_iommu_dma_supported,
2424 2425
};

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static unsigned device_dma_ops_init(void)
{
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
	}

	return unhandled;
}

2443 2444 2445
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2446 2447 2448 2449 2450 2451

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2452 2453 2454
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2455
	int ret, unhandled;
2456

2457 2458 2459 2460 2461
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2462
	for_each_iommu(iommu) {
2463
		iommu->default_dom = dma_ops_domain_alloc();
2464 2465
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2466
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2467 2468 2469 2470 2471
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2472
	/*
2473
	 * Pre-allocate the protection domains for each device.
2474
	 */
2475
	prealloc_protection_domains();
2476 2477

	iommu_detected = 1;
2478
	swiotlb = 0;
2479

2480
	/* Make the driver finally visible to the drivers */
2481 2482 2483 2484 2485
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2486

2487 2488
	amd_iommu_stats_init();

2489 2490 2491 2492
	return 0;

free_domains:

2493
	for_each_iommu(iommu) {
2494 2495 2496 2497 2498 2499
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2513
	struct iommu_dev_data *dev_data, *next;
2514 2515 2516 2517
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2518
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2519
		__detach_device(dev_data);
2520 2521
		atomic_set(&dev_data->bind, 0);
	}
2522 2523 2524 2525

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2526 2527 2528 2529 2530
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2531 2532
	del_domain_from_list(domain);

2533 2534 2535 2536 2537 2538 2539
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2540 2541 2542 2543 2544
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2545
		return NULL;
2546 2547

	spin_lock_init(&domain->lock);
2548
	mutex_init(&domain->api_lock);
2549 2550
	domain->id = domain_id_alloc();
	if (!domain->id)
2551
		goto out_err;
2552
	INIT_LIST_HEAD(&domain->dev_list);
2553

2554 2555
	add_domain_to_list(domain);

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2570
		goto out_free;
2571 2572

	domain->mode    = PAGE_MODE_3_LEVEL;
2573 2574 2575 2576 2577 2578 2579 2580 2581
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2582
	protection_domain_free(domain);
2583 2584 2585 2586

	return -ENOMEM;
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2601
	protection_domain_free(domain);
2602 2603 2604 2605

	dom->priv = NULL;
}

2606 2607 2608
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2609
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2610 2611 2612
	struct amd_iommu *iommu;
	u16 devid;

2613
	if (!check_device(dev))
2614 2615
		return;

2616
	devid = get_device_id(dev);
2617

2618
	if (dev_data->domain != NULL)
2619
		detach_device(dev);
2620 2621 2622 2623 2624 2625 2626 2627

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2628 2629 2630 2631
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2632
	struct iommu_dev_data *dev_data;
2633
	struct amd_iommu *iommu;
2634
	int ret;
2635

2636
	if (!check_device(dev))
2637 2638
		return -EINVAL;

2639 2640
	dev_data = dev->archdata.iommu;

2641
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2642 2643 2644
	if (!iommu)
		return -EINVAL;

2645
	if (dev_data->domain)
2646
		detach_device(dev);
2647

2648
	ret = attach_device(dev, domain);
2649 2650 2651

	iommu_completion_wait(iommu);

2652
	return ret;
2653 2654
}

2655 2656
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2657
{
2658
	unsigned long page_size = 0x1000UL << gfp_order;
2659 2660 2661 2662 2663 2664 2665 2666 2667
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2668
	mutex_lock(&domain->api_lock);
2669
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2670 2671
	mutex_unlock(&domain->api_lock);

2672
	return ret;
2673 2674
}

2675 2676
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2677 2678
{
	struct protection_domain *domain = dom->priv;
2679
	unsigned long page_size, unmap_size;
2680

2681
	page_size  = 0x1000UL << gfp_order;
2682

2683
	mutex_lock(&domain->api_lock);
2684
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2685
	mutex_unlock(&domain->api_lock);
2686

2687
	domain_flush_tlb_pde(domain);
2688

2689
	return get_order(unmap_size);
2690 2691
}

2692 2693 2694 2695
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2696
	unsigned long offset_mask;
2697
	phys_addr_t paddr;
2698
	u64 *pte, __pte;
2699

2700
	pte = fetch_pte(domain, iova);
2701

2702
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2703 2704
		return 0;

2705 2706 2707 2708 2709 2710 2711
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2712 2713 2714 2715

	return paddr;
}

S
Sheng Yang 已提交
2716 2717 2718
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2719 2720 2721 2722 2723
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2724 2725 2726
	return 0;
}

2727 2728 2729 2730 2731
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2732 2733
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2734
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2735
	.domain_has_cap = amd_iommu_domain_has_cap,
2736 2737
};

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2750
	struct amd_iommu *iommu;
2751
	struct pci_dev *dev = NULL;
2752
	u16 devid;
2753

2754
	/* allocate passthrough domain */
2755 2756 2757 2758 2759 2760
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2761
	for_each_pci_dev(dev) {
2762
		if (!check_device(&dev->dev))
2763 2764
			continue;

2765 2766
		devid = get_device_id(&dev->dev);

2767
		iommu = amd_iommu_rlookup_table[devid];
2768 2769 2770
		if (!iommu)
			continue;

2771
		attach_device(&dev->dev, pt_domain);
2772 2773 2774 2775 2776 2777
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}