amd_iommu.c 52.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58 59 60
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
65

66 67 68 69
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

70 71 72 73 74 75
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

76
DECLARE_STATS_COUNTER(compl_wait);
77
DECLARE_STATS_COUNTER(cnt_map_single);
78
DECLARE_STATS_COUNTER(cnt_unmap_single);
79
DECLARE_STATS_COUNTER(cnt_map_sg);
80
DECLARE_STATS_COUNTER(cnt_unmap_sg);
81
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
82
DECLARE_STATS_COUNTER(cnt_free_coherent);
83
DECLARE_STATS_COUNTER(cross_page);
84
DECLARE_STATS_COUNTER(domain_flush_single);
85
DECLARE_STATS_COUNTER(domain_flush_all);
86
DECLARE_STATS_COUNTER(alloced_io_mem);
87
DECLARE_STATS_COUNTER(total_map_requests);
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
113 114

	amd_iommu_stats_add(&compl_wait);
115
	amd_iommu_stats_add(&cnt_map_single);
116
	amd_iommu_stats_add(&cnt_unmap_single);
117
	amd_iommu_stats_add(&cnt_map_sg);
118
	amd_iommu_stats_add(&cnt_unmap_sg);
119
	amd_iommu_stats_add(&cnt_alloc_coherent);
120
	amd_iommu_stats_add(&cnt_free_coherent);
121
	amd_iommu_stats_add(&cross_page);
122
	amd_iommu_stats_add(&domain_flush_single);
123
	amd_iommu_stats_add(&domain_flush_all);
124
	amd_iommu_stats_add(&alloced_io_mem);
125
	amd_iommu_stats_add(&total_map_requests);
126 127 128 129
}

#endif

130
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
131 132
static int iommu_has_npcache(struct amd_iommu *iommu)
{
133
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
134 135
}

136 137 138 139 140 141
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

142 143 144 145 146 147 148 149 150
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

151 152 153 154 155 156 157 158 159
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

160
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
177
		dump_dte_entry(devid);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
199
		reset_iommu_command_buffer(iommu);
200
		dump_command(address);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
234
		iommu_print_event(iommu, iommu->evt_buf + head);
235 236 237 238 239 240 241 242
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

243 244
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
245 246
	struct amd_iommu *iommu;

247
	for_each_iommu(iommu)
248 249 250
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
251 252
}

253 254 255 256 257 258 259 260 261 262
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
263
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
264 265 266 267 268
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
269
	target = iommu->cmd_buf + tail;
270 271 272 273 274 275 276 277 278 279
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

280 281 282 283
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
284
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
285 286 287 288 289 290
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
291
	if (!ret)
292
		iommu->need_sync = true;
293 294 295 296 297
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

298 299 300 301 302 303 304 305 306 307
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

308 309
	INC_STATS_COUNTER(compl_wait);

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

340 341 342 343 344 345 346
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
347 348
static int iommu_completion_wait(struct amd_iommu *iommu)
{
349 350
	int ret = 0;
	unsigned long flags;
351

352 353
	spin_lock_irqsave(&iommu->lock, flags);

354 355 356
	if (!iommu->need_sync)
		goto out;

357
	ret = __iommu_completion_wait(iommu);
358

359
	iommu->need_sync = false;
360 361

	if (ret)
362
		goto out;
363

364
	__iommu_wait_for_completion(iommu);
365

366 367
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
368 369 370 371

	return 0;
}

372 373 374
/*
 * Command send function for invalidating a device table entry
 */
375 376
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
377
	struct iommu_cmd cmd;
378
	int ret;
379 380 381 382 383 384 385

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

386 387 388
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
389 390
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

406 407 408
/*
 * Generic command send function for invalidaing TLB entries
 */
409 410 411
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
412
	struct iommu_cmd cmd;
413
	int ret;
414

415
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
416

417 418 419
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
420 421
}

422 423 424 425 426
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
427 428 429
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
430
	int s = 0;
431
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
432 433 434

	address &= PAGE_MASK;

435 436 437 438 439 440 441
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
442 443
	}

444 445
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

446 447
	return 0;
}
448

449 450 451 452 453
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

454 455
	INC_STATS_COUNTER(domain_flush_single);

456 457 458
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

459 460 461 462 463 464 465 466 467 468
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

469
/*
470
 * This function flushes one domain on one IOMMU
471
 */
472
static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
473 474
{
	struct iommu_cmd cmd;
475
	unsigned long flags;
476

477 478 479
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

480 481 482 483 484
	spin_lock_irqsave(&iommu->lock, flags);
	__iommu_queue_command(iommu, &cmd);
	__iommu_completion_wait(iommu);
	__iommu_wait_for_completion(iommu);
	spin_unlock_irqrestore(&iommu->lock, flags);
485 486
}

487
static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
488 489 490 491 492 493
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
494
		flush_domain_on_iommu(iommu, i);
495
	}
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

}

/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	struct amd_iommu *iommu;

	INC_STATS_COUNTER(domain_flush_all);

	for_each_iommu(iommu)
		flush_domain_on_iommu(iommu, domid);
}

void amd_iommu_flush_all_domains(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		flush_all_domains_on_iommu(iommu);
519 520
}

521 522 523 524 525 526 527 528 529 530 531 532 533
static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
{
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (iommu != amd_iommu_rlookup_table[i])
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
void amd_iommu_flush_all_devices(void)
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] == NULL)
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

552 553 554 555 556 557 558 559 560
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

	amd_iommu_reset_cmd_buffer(iommu);
	flush_all_devices_for_iommu(iommu);
	flush_all_domains_on_iommu(iommu);
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
575 576 577 578
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
579
{
580
	u64 __pte, *pte;
581 582

	bus_addr  = PAGE_ALIGN(bus_addr);
583
	phys_addr = PAGE_ALIGN(phys_addr);
584 585 586 587 588

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

589
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

627 628 629 630
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
631 632 633 634 635 636 637 638 639 640 641 642 643 644
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

645 646 647 648 649 650
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

667 668 669 670
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
671 672 673 674 675 676 677 678
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
679
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
680 681 682 683 684 685 686
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
687
			__set_bit(addr >> PAGE_SHIFT,
688
				  dma_dom->aperture[0]->bitmap);
689 690 691 692 693
	}

	return 0;
}

694 695 696
/*
 * Inits the unity mappings required for a specific device
 */
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

714 715 716 717 718 719 720 721 722
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
723

724
/*
725
 * The address allocator core functions.
726 727 728
 *
 * called with domain->lock held
 */
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

756 757 758 759 760
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
761 762
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
763 764 765
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
766
	int i;
767

768 769 770 771
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

831 832 833 834 835 836 837 838 839 840 841
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

842 843 844 845 846 847 848
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
849
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
850 851 852 853 854 855
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

856 857
	next_bit >>= PAGE_SHIFT;

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
876
			dom->next_address = address + (pages << PAGE_SHIFT);
877 878 879 880 881 882 883 884 885
			break;
		}

		next_bit = 0;
	}

	return address;
}

886 887
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
888
					     unsigned int pages,
889 890
					     unsigned long align_mask,
					     u64 dma_mask)
891 892 893
{
	unsigned long address;

894 895 896 897
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
898

899
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
900
				     dma_mask, dom->next_address);
901

902
	if (address == -1) {
903
		dom->next_address = 0;
904 905
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
906 907
		dom->need_flush = true;
	}
908

909
	if (unlikely(address == -1))
910 911 912 913 914 915 916
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

917 918 919 920 921
/*
 * The address free function.
 *
 * called with domain->lock held
 */
922 923 924 925
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
926 927
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
928

929 930
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

931 932 933 934
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
935

936
	if (address >= dom->next_address)
937
		dom->need_flush = true;
938 939

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
940

941 942
	iommu_area_free(range->bitmap, address, pages);

943 944
}

945 946 947 948 949 950 951 952 953 954
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

972 973 974 975 976 977 978 979 980 981
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

982 983 984 985
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
986 987 988 989
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
990
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
991 992 993 994

	if (start_page + pages > last_page)
		pages = last_page - start_page;

995 996 997 998 999
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
1000 1001
}

1002
static void free_pagetable(struct protection_domain *domain)
1003 1004 1005 1006
{
	int i, j;
	u64 *p1, *p2, *p3;

1007
	p1 = domain->pt_root;
1008 1009 1010 1011 1012 1013 1014 1015 1016

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1017
		for (j = 0; j < 512; ++j) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1028 1029

	domain->pt_root = NULL;
1030 1031
}

1032 1033 1034 1035
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1036 1037
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1038 1039
	int i;

1040 1041 1042
	if (!dom)
		return;

1043
	free_pagetable(&dom->domain);
1044

1045 1046 1047 1048 1049 1050
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1051 1052 1053 1054

	kfree(dom);
}

1055 1056 1057 1058 1059
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1060
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1075
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1076 1077 1078 1079
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1080
	dma_dom->need_flush = false;
1081
	dma_dom->target_dev = 0xffff;
1082

1083
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1084 1085
		goto free_dma_dom;

1086
	/*
1087 1088
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1089
	 */
1090
	dma_dom->aperture[0]->bitmap[0] = 1;
1091
	dma_dom->next_address = 0;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1111 1112 1113 1114
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1127 1128 1129 1130
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1131 1132 1133
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
1134 1135 1136 1137
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1138 1139
	domain->dev_cnt += 1;

1140 1141 1142
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1143 1144

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1145 1146
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1147 1148 1149 1150 1151
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1152 1153 1154 1155 1156
       /*
        * We might boot into a crash-kernel here. The crashed kernel
        * left the caches in the IOMMU dirty. So we have to flush
        * here to evict all dirty stuff.
        */
1157
	iommu_queue_inv_dev_entry(iommu, devid);
1158
	iommu_flush_tlb_pde(iommu, domain->id);
1159 1160
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1207
	unsigned long flags;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1225
	case BUS_NOTIFY_UNBOUND_DRIVER:
1226 1227 1228
		if (!domain)
			goto out;
		detach_device(domain, devid);
1229 1230 1231 1232 1233 1234
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1235
		dma_domain = dma_ops_domain_alloc(iommu);
1236 1237 1238 1239 1240 1241 1242 1243
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1256
static struct notifier_block device_nb = {
1257 1258
	.notifier_call = device_change_notifier,
};
1259

1260 1261 1262 1263 1264 1265
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1304 1305 1306 1307 1308 1309 1310
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1311 1312 1313 1314 1315 1316 1317 1318 1319
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1320 1321 1322 1323 1324 1325
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1326 1327

	pcidev = to_pci_dev(dev);
1328
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1329

1330
	/* device not translated by any IOMMU in the system? */
1331
	if (_bdf > amd_iommu_last_bdf)
1332 1333 1334 1335 1336 1337 1338 1339 1340
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1341 1342 1343
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1344
		*domain = &dma_dom->domain;
1345
		attach_device(*iommu, *domain, *bdf);
1346 1347
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1348 1349
	}

1350
	if (domain_for_device(_bdf) == NULL)
1351
		attach_device(*iommu, *domain, _bdf);
1352

1353 1354 1355
	return 1;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1399
	struct aperture_range *aperture;
1400 1401
	u64 *pte, *pte_page;

1402 1403 1404 1405 1406
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1407 1408
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1409 1410 1411
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1412 1413 1414 1415

	return pte;
}

1416 1417 1418 1419
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1432
	pte  = dma_ops_get_pte(dom, address);
1433 1434
	if (!pte)
		return bad_dma_address;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1452 1453 1454
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1455 1456 1457 1458
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1459
	struct aperture_range *aperture;
1460 1461 1462 1463 1464
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1465 1466 1467 1468 1469 1470 1471
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1472 1473 1474 1475 1476 1477 1478 1479

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1480 1481
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1482 1483
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1484 1485
 * Must be called with the domain lock held.
 */
1486 1487 1488 1489 1490
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1491
			       int dir,
1492 1493
			       bool align,
			       u64 dma_mask)
1494 1495
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1496
	dma_addr_t address, start, ret;
1497
	unsigned int pages;
1498
	unsigned long align_mask = 0;
1499 1500
	int i;

1501
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1502 1503
	paddr &= PAGE_MASK;

1504 1505
	INC_STATS_COUNTER(total_map_requests);

1506 1507 1508
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1509 1510 1511
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1512
retry:
1513 1514
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1532 1533 1534

	start = address;
	for (i = 0; i < pages; ++i) {
1535 1536 1537 1538
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1539 1540 1541 1542 1543
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1544 1545
	ADD_STATS_COUNTER(alloced_io_mem, size);

1546
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1547 1548 1549
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1550 1551
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1552 1553
out:
	return address;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1565 1566
}

1567 1568 1569 1570
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1571 1572 1573 1574 1575 1576 1577 1578 1579
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1580 1581
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1582 1583
		return;

1584
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1585 1586 1587 1588 1589 1590 1591 1592
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1593 1594
	SUB_STATS_COUNTER(alloced_io_mem, size);

1595
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1596

1597
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1598
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1599 1600
		dma_dom->need_flush = false;
	}
1601 1602
}

1603 1604 1605
/*
 * The exported map_single function for dma_ops.
 */
1606 1607 1608 1609
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1610 1611 1612 1613 1614 1615
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1616
	u64 dma_mask;
1617
	phys_addr_t paddr = page_to_phys(page) + offset;
1618

1619 1620
	INC_STATS_COUNTER(cnt_map_single);

1621 1622 1623
	if (!check_device(dev))
		return bad_dma_address;

1624
	dma_mask = *dev->dma_mask;
1625 1626 1627 1628

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1629
		/* device not handled by any AMD IOMMU */
1630 1631
		return (dma_addr_t)paddr;

1632 1633 1634
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1635
	spin_lock_irqsave(&domain->lock, flags);
1636 1637
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1638 1639 1640
	if (addr == bad_dma_address)
		goto out;

1641
	iommu_completion_wait(iommu);
1642 1643 1644 1645 1646 1647 1648

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1649 1650 1651
/*
 * The exported unmap_single function for dma_ops.
 */
1652 1653
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1654 1655 1656 1657 1658 1659
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1660 1661
	INC_STATS_COUNTER(cnt_unmap_single);

1662 1663
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1664
		/* device not handled by any AMD IOMMU */
1665 1666
		return;

1667 1668 1669
	if (!dma_ops_domain(domain))
		return;

1670 1671 1672 1673
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1674
	iommu_completion_wait(iommu);
1675 1676 1677 1678

	spin_unlock_irqrestore(&domain->lock, flags);
}

1679 1680 1681 1682
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1697 1698 1699 1700
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1701
static int map_sg(struct device *dev, struct scatterlist *sglist,
1702 1703
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1704 1705 1706 1707 1708 1709 1710 1711 1712
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1713
	u64 dma_mask;
1714

1715 1716
	INC_STATS_COUNTER(cnt_map_sg);

1717 1718 1719
	if (!check_device(dev))
		return 0;

1720
	dma_mask = *dev->dma_mask;
1721 1722 1723 1724 1725 1726

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1727 1728 1729
	if (!dma_ops_domain(domain))
		return 0;

1730 1731 1732 1733 1734 1735
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1736 1737
					      paddr, s->length, dir, false,
					      dma_mask);
1738 1739 1740 1741 1742 1743 1744 1745

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1746
	iommu_completion_wait(iommu);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1765 1766 1767 1768
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1769
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1770 1771
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1772 1773 1774 1775 1776 1777 1778 1779
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1780 1781
	INC_STATS_COUNTER(cnt_unmap_sg);

1782 1783
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1784 1785
		return;

1786 1787 1788
	if (!dma_ops_domain(domain))
		return;

1789 1790 1791 1792 1793 1794 1795 1796
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1797
	iommu_completion_wait(iommu);
1798 1799 1800 1801

	spin_unlock_irqrestore(&domain->lock, flags);
}

1802 1803 1804
/*
 * The exported alloc_coherent function for dma_ops.
 */
1805 1806 1807 1808 1809 1810 1811 1812 1813
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1814
	u64 dma_mask = dev->coherent_dma_mask;
1815

1816 1817
	INC_STATS_COUNTER(cnt_alloc_coherent);

1818 1819
	if (!check_device(dev))
		return NULL;
1820

1821 1822
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1823

1824
	flag |= __GFP_ZERO;
1825 1826
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1827
		return NULL;
1828 1829 1830 1831 1832 1833 1834 1835

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1836 1837 1838
	if (!dma_ops_domain(domain))
		goto out_free;

1839 1840 1841
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1842 1843 1844
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1845
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1846

J
Jiri Slaby 已提交
1847 1848
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1849
		goto out_free;
J
Jiri Slaby 已提交
1850
	}
1851

1852
	iommu_completion_wait(iommu);
1853 1854 1855 1856

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1857 1858 1859 1860 1861 1862

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1863 1864
}

1865 1866 1867
/*
 * The exported free_coherent function for dma_ops.
 */
1868 1869 1870 1871 1872 1873 1874 1875
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1876 1877
	INC_STATS_COUNTER(cnt_free_coherent);

1878 1879 1880
	if (!check_device(dev))
		return;

1881 1882 1883 1884 1885
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1886 1887 1888
	if (!dma_ops_domain(domain))
		goto free_mem;

1889 1890 1891 1892
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1893
	iommu_completion_wait(iommu);
1894 1895 1896 1897 1898 1899 1900

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1925
/*
1926 1927
 * The function for pre-allocating protection domains.
 *
1928 1929 1930 1931
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1932
static void prealloc_protection_domains(void)
1933 1934 1935 1936 1937 1938 1939
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1940
		devid = calc_devid(dev->bus->number, dev->devfn);
1941
		if (devid > amd_iommu_last_bdf)
1942 1943 1944 1945 1946 1947 1948
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1949
		dma_dom = dma_ops_domain_alloc(iommu);
1950 1951 1952
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1953 1954 1955
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1956 1957 1958
	}
}

1959
static struct dma_map_ops amd_iommu_dma_ops = {
1960 1961
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1962 1963
	.map_page = map_page,
	.unmap_page = unmap_page,
1964 1965
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1966
	.dma_supported = amd_iommu_dma_supported,
1967 1968
};

1969 1970 1971
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1972 1973 1974 1975 1976
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1977 1978 1979 1980 1981
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1982
	for_each_iommu(iommu) {
1983
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1984 1985
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1986
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1987 1988 1989 1990 1991
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1992 1993 1994 1995
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1996 1997 1998 1999 2000 2001
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
2002
#ifdef CONFIG_GART_IOMMU
2003 2004
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2005
#endif
2006

2007
	/* Make the driver finally visible to the drivers */
2008 2009
	dma_ops = &amd_iommu_dma_ops;

2010 2011
	register_iommu(&amd_iommu_ops);

2012 2013
	bus_register_notifier(&pci_bus_type, &device_nb);

2014 2015
	amd_iommu_stats_init();

2016 2017 2018 2019
	return 0;

free_domains:

2020
	for_each_iommu(iommu) {
2021 2022 2023 2024 2025 2026
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2152
		detach_device(old_domain, devid);
2153 2154 2155 2156 2157 2158 2159 2160

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2238 2239 2240 2241 2242 2243
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2244 2245 2246 2247 2248 2249 2250 2251
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2252
	.domain_has_cap = amd_iommu_domain_has_cap,
2253 2254
};