amd_iommu.c 59.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
A
Akinobu Mita 已提交
21
#include <linux/bitmap.h>
22
#include <linux/slab.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <linux/delay.h>
29
#include <asm/proto.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32
#include <asm/amd_iommu_proto.h>
33
#include <asm/amd_iommu_types.h>
34
#include <asm/amd_iommu.h>
35 36 37

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

38
#define LOOP_TIMEOUT	100000
39

40 41
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

42 43 44 45
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

46 47 48 49 50 51
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

52 53
static struct iommu_ops amd_iommu_ops;

54 55 56
/*
 * general struct to manage commands send to an IOMMU
 */
57
struct iommu_cmd {
58 59 60
	u32 data[4];
};

61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

109 110 111 112 113 114 115 116 117 118 119 120
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
121
	if (dev->bus != &pci_bus_type)
122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

149 150
	dev_data->dev = dev;

151 152 153 154 155 156
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

157 158
	atomic_set(&dev_data->bind, 0);

159 160 161 162 163 164 165 166 167 168
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
206 207 208 209 210 211
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

212
DECLARE_STATS_COUNTER(compl_wait);
213
DECLARE_STATS_COUNTER(cnt_map_single);
214
DECLARE_STATS_COUNTER(cnt_unmap_single);
215
DECLARE_STATS_COUNTER(cnt_map_sg);
216
DECLARE_STATS_COUNTER(cnt_unmap_sg);
217
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218
DECLARE_STATS_COUNTER(cnt_free_coherent);
219
DECLARE_STATS_COUNTER(cross_page);
220
DECLARE_STATS_COUNTER(domain_flush_single);
221
DECLARE_STATS_COUNTER(domain_flush_all);
222
DECLARE_STATS_COUNTER(alloced_io_mem);
223
DECLARE_STATS_COUNTER(total_map_requests);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
245 246

	amd_iommu_stats_add(&compl_wait);
247
	amd_iommu_stats_add(&cnt_map_single);
248
	amd_iommu_stats_add(&cnt_unmap_single);
249
	amd_iommu_stats_add(&cnt_map_sg);
250
	amd_iommu_stats_add(&cnt_unmap_sg);
251
	amd_iommu_stats_add(&cnt_alloc_coherent);
252
	amd_iommu_stats_add(&cnt_free_coherent);
253
	amd_iommu_stats_add(&cross_page);
254
	amd_iommu_stats_add(&domain_flush_single);
255
	amd_iommu_stats_add(&domain_flush_all);
256
	amd_iommu_stats_add(&alloced_io_mem);
257
	amd_iommu_stats_add(&total_map_requests);
258 259 260 261
}

#endif

262 263 264 265 266 267
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

268 269 270 271 272 273 274 275 276
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

277 278 279 280 281 282 283 284 285
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

286
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 288 289 290 291 292 293 294
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

295
	printk(KERN_ERR "AMD-Vi: Event logged [");
296 297 298 299 300 301 302

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
303
		dump_dte_entry(devid);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325
		dump_command(address);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
359
		iommu_print_event(iommu, iommu->evt_buf + head);
360 361 362 363 364 365 366 367
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

368 369
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
370 371
	struct amd_iommu *iommu;

372
	for_each_iommu(iommu)
373 374 375
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
376 377
}

378 379 380 381 382 383
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
{
	u8 *target;

	target = iommu->cmd_buf + tail;
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
}

417
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
418
{
419 420
	WARN_ON(address & 0x7ULL);

421
	memset(cmd, 0, sizeof(*cmd));
422 423 424
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
425 426 427
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

428 429 430 431 432 433 434
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

466 467
/*
 * Writes the command to the IOMMUs command buffer and informs the
468
 * hardware about the new command.
469
 */
470
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
471
{
472
	u32 left, tail, head, next_tail;
473
	unsigned long flags;
474

475
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
476 477

again:
478
	spin_lock_irqsave(&iommu->lock, flags);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;

	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;

		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);

		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
	}

	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
504
	iommu->need_sync = true;
505

506 507
	spin_unlock_irqrestore(&iommu->lock, flags);

508
	return 0;
509 510 511 512 513 514
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
515 516
static int iommu_completion_wait(struct amd_iommu *iommu)
{
517 518
	struct iommu_cmd cmd;
	volatile u64 sem = 0;
519
	int ret;
520

521
	if (!iommu->need_sync)
522
		return 0;
523

524
	build_completion_wait(&cmd, (u64)&sem);
525

526
	ret = iommu_queue_command(iommu, &cmd);
527
	if (ret)
528
		return ret;
529

530
	return wait_on_sem(&sem);
531 532
}

533 534 535 536 537 538 539 540 541
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_dte(&cmd, devid);

	return iommu_queue_command(iommu, &cmd);
}

542 543 544
/*
 * Command send function for invalidating a device table entry
 */
545
static int device_flush_dte(struct device *dev)
546 547 548 549 550 551 552
{
	struct amd_iommu *iommu;
	u16 devid;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

553
	return iommu_flush_dte(iommu, devid);
554 555
}

556 557 558 559 560
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
561 562
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
563
{
564 565
	struct iommu_cmd cmd;
	int ret = 0, i;
566

567
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
568

569 570 571 572 573 574 575 576
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
577
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
578 579
	}

580
	WARN_ON(ret);
581 582
}

583 584
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
585
{
586
	__domain_flush_pages(domain, address, size, 0);
587
}
588

589
/* Flush the whole IO/TLB for a given protection domain */
590
static void domain_flush_tlb(struct protection_domain *domain)
591
{
592
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
593 594
}

595
/* Flush the whole IO/TLB for a given protection domain - including PDE */
596
static void domain_flush_tlb_pde(struct protection_domain *domain)
597
{
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
}

static void domain_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
615 616
}

617

618
/*
619
 * This function flushes the DTEs for all devices in domain
620
 */
621
static void domain_flush_devices(struct protection_domain *domain)
622 623 624 625 626 627 628
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(dev_data, &domain->dev_list, list)
629
		device_flush_dte(dev_data->dev);
630 631 632 633 634

	spin_unlock_irqrestore(&domain->lock, flags);
}

static void iommu_flush_all_domain_devices(void)
635
{
636
	struct protection_domain *domain;
637
	unsigned long flags;
638

639
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
640

641
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
642 643
		domain_flush_devices(domain);
		domain_flush_complete(domain);
644
	}
645

646
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
647 648
}

649 650 651 652 653
void amd_iommu_flush_all_devices(void)
{
	iommu_flush_all_domain_devices();
}

654 655 656 657
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
658
void amd_iommu_flush_all_domains(void)
659
{
660
	struct protection_domain *domain;
661 662 663
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
664

665
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
666
		spin_lock(&domain->lock);
667 668
		domain_flush_tlb_pde(domain);
		domain_flush_complete(domain);
669
		spin_unlock(&domain->lock);
670
	}
671 672

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
673 674
}

675 676 677 678 679 680 681
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
711
		      unsigned long page_size,
712 713 714
		      u64 **pte_page,
		      gfp_t gfp)
{
715
	int level, end_lvl;
716
	u64 *pte, *page;
717 718

	BUG_ON(!is_power_of_2(page_size));
719 720 721 722

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

723 724 725 726
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
727 728 729 730 731 732 733 734 735

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

736 737 738 739
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
757
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
758 759 760 761
{
	int level;
	u64 *pte;

762 763 764 765 766
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
767

768 769 770
	while (level > 0) {

		/* Not Present */
771 772 773
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

793 794
		level -= 1;

795
		/* Walk to the next level */
796 797 798 799 800 801 802
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

803 804 805 806 807 808 809
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
810 811 812
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
813
			  int prot,
814
			  unsigned long page_size)
815
{
816
	u64 __pte, *pte;
817
	int i, count;
818

819
	if (!(prot & IOMMU_PROT_MASK))
820 821
		return -EINVAL;

822 823 824 825 826 827 828 829
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
830

831 832 833 834 835
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
836 837 838 839 840 841

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

842 843
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
844

845 846
	update_domain(dom);

847 848 849
	return 0;
}

850 851 852
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
853
{
854 855 856 857 858 859
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
890

891
	return unmapped;
892 893
}

894 895 896 897
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
898 899 900 901 902 903 904 905 906 907 908 909 910 911
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

912 913 914 915
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
916 917 918 919 920 921 922 923
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
924
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
925
				     PAGE_SIZE);
926 927 928 929 930 931 932
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
933
			__set_bit(addr >> PAGE_SHIFT,
934
				  dma_dom->aperture[0]->bitmap);
935 936 937 938 939
	}

	return 0;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

962 963 964
/*
 * Inits the unity mappings required for a specific device
 */
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

982 983 984 985 986 987 988 989 990
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
991

992
/*
993
 * The address allocator core functions.
994 995 996
 *
 * called with domain->lock held
 */
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1018 1019 1020 1021 1022
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1023
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1024 1025 1026
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1027
	struct amd_iommu *iommu;
1028
	unsigned long i;
1029

1030 1031 1032 1033
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1053
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1066
	/* Initialize the exclusion range if necessary */
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1089
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1090 1091 1092 1093 1094 1095
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1096 1097
	update_domain(&dma_dom->domain);

1098 1099 1100
	return 0;

out_free:
1101 1102
	update_domain(&dma_dom->domain);

1103 1104 1105 1106 1107 1108 1109 1110
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1111 1112 1113 1114 1115 1116 1117
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1118
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1119 1120 1121 1122 1123 1124
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1125 1126
	next_bit >>= PAGE_SHIFT;

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1145
			dom->next_address = address + (pages << PAGE_SHIFT);
1146 1147 1148 1149 1150 1151 1152 1153 1154
			break;
		}

		next_bit = 0;
	}

	return address;
}

1155 1156
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1157
					     unsigned int pages,
1158 1159
					     unsigned long align_mask,
					     u64 dma_mask)
1160 1161 1162
{
	unsigned long address;

1163 1164 1165 1166
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1167

1168
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1169
				     dma_mask, dom->next_address);
1170

1171
	if (address == -1) {
1172
		dom->next_address = 0;
1173 1174
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1175 1176
		dom->need_flush = true;
	}
1177

1178
	if (unlikely(address == -1))
1179
		address = DMA_ERROR_CODE;
1180 1181 1182 1183 1184 1185

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1186 1187 1188 1189 1190
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1191 1192 1193 1194
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1195 1196
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1197

1198 1199
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1200 1201 1202 1203
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1204

1205
	if (address >= dom->next_address)
1206
		dom->need_flush = true;
1207 1208

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1209

A
Akinobu Mita 已提交
1210
	bitmap_clear(range->bitmap, address, pages);
1211

1212 1213
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1276
static void free_pagetable(struct protection_domain *domain)
1277 1278 1279 1280
{
	int i, j;
	u64 *p1, *p2, *p3;

1281
	p1 = domain->pt_root;
1282 1283 1284 1285 1286 1287 1288 1289 1290

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1291
		for (j = 0; j < 512; ++j) {
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1302 1303

	domain->pt_root = NULL;
1304 1305
}

1306 1307 1308 1309
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1310 1311
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1312 1313
	int i;

1314 1315 1316
	if (!dom)
		return;

1317 1318
	del_domain_from_list(&dom->domain);

1319
	free_pagetable(&dom->domain);
1320

1321 1322 1323 1324 1325 1326
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1327 1328 1329 1330

	kfree(dom);
}

1331 1332
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1333
 * It also initializes the page table and the address allocator data
1334 1335
 * structures required for the dma_ops interface
 */
1336
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1349
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1350
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1351
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1352
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1353 1354 1355 1356
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1357
	dma_dom->need_flush = false;
1358
	dma_dom->target_dev = 0xffff;
1359

1360 1361
	add_domain_to_list(&dma_dom->domain);

1362
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1363 1364
		goto free_dma_dom;

1365
	/*
1366 1367
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1368
	 */
1369
	dma_dom->aperture[0]->bitmap[0] = 1;
1370
	dma_dom->next_address = 0;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1390
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1391 1392
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1393

1394 1395 1396
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1397 1398

	amd_iommu_dev_table[devid].data[2] = domain->id;
1399 1400
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
	set_dte_entry(devid, domain);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1433
	device_flush_dte(dev);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1445 1446

	/* decrease reference counters */
1447 1448 1449 1450 1451 1452 1453
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1454

1455
	/* Flush the DTE entry */
1456
	device_flush_dte(dev);
1457 1458 1459 1460 1461 1462
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1463 1464
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1465
{
1466
	struct iommu_dev_data *dev_data, *alias_data;
1467
	int ret;
1468 1469 1470

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1471

1472 1473
	if (!alias_data)
		return -EINVAL;
1474

1475 1476 1477
	/* lock domain */
	spin_lock(&domain->lock);

1478
	/* Some sanity checks */
1479
	ret = -EBUSY;
1480 1481
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1482
		goto out_unlock;
1483

1484 1485
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1486
		goto out_unlock;
1487 1488

	/* Do real assignment */
1489 1490 1491 1492
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1493 1494

		atomic_inc(&alias_data->bind);
1495
	}
1496

1497 1498
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1499

1500 1501
	atomic_inc(&dev_data->bind);

1502 1503 1504 1505
	ret = 0;

out_unlock:

1506 1507
	/* ready */
	spin_unlock(&domain->lock);
1508

1509
	return ret;
1510
}
1511

1512 1513 1514 1515
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1516 1517
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1518
{
1519
	unsigned long flags;
1520
	int ret;
1521 1522

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1523
	ret = __attach_device(dev, domain);
1524 1525
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1526 1527 1528 1529 1530
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1531
	domain_flush_tlb_pde(domain);
1532 1533

	return ret;
1534 1535
}

1536 1537 1538
/*
 * Removes a device from a protection domain (unlocked)
 */
1539
static void __detach_device(struct device *dev)
1540
{
1541
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1542
	struct iommu_dev_data *alias_data;
1543
	struct protection_domain *domain;
1544
	unsigned long flags;
1545

1546
	BUG_ON(!dev_data->domain);
1547

1548 1549 1550
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1551

1552
	if (dev_data->alias != dev) {
1553
		alias_data = get_dev_data(dev_data->alias);
1554 1555
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1556 1557
	}

1558 1559 1560
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1561
	spin_unlock_irqrestore(&domain->lock, flags);
1562 1563 1564

	/*
	 * If we run in passthrough mode the device must be assigned to the
1565 1566
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1567
	 */
1568 1569
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1570
		__attach_device(dev, pt_domain);
1571 1572 1573 1574 1575
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1576
static void detach_device(struct device *dev)
1577 1578 1579 1580 1581
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1582
	__detach_device(dev);
1583 1584
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1585

1586 1587 1588 1589 1590 1591 1592
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1593
	struct iommu_dev_data *dev_data, *alias_data;
1594 1595 1596
	unsigned long flags;
	u16 devid, alias;

1597 1598 1599 1600 1601 1602
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1603 1604

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1605
	dom = dev_data->domain;
1606
	if (dom == NULL &&
1607 1608 1609
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1610 1611 1612 1613 1614 1615 1616
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1617 1618 1619 1620
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1621
	u16 devid;
1622 1623 1624
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1625
	unsigned long flags;
1626

1627 1628
	if (!check_device(dev))
		return 0;
1629

1630 1631
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1632 1633

	switch (action) {
1634
	case BUS_NOTIFY_UNBOUND_DRIVER:
1635 1636 1637

		domain = domain_for_device(dev);

1638 1639
		if (!domain)
			goto out;
1640 1641
		if (iommu_pass_through)
			break;
1642
		detach_device(dev);
1643 1644
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1645 1646 1647 1648 1649

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1650 1651 1652 1653
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1654
		dma_domain = dma_ops_domain_alloc();
1655 1656 1657 1658 1659 1660 1661 1662
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1663
		break;
1664 1665 1666 1667
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1668 1669 1670 1671
	default:
		goto out;
	}

1672
	device_flush_dte(dev);
1673 1674 1675 1676 1677 1678
	iommu_completion_wait(iommu);

out:
	return 0;
}

1679
static struct notifier_block device_nb = {
1680 1681
	.notifier_call = device_change_notifier,
};
1682

1683 1684 1685 1686 1687
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1701
static struct protection_domain *get_domain(struct device *dev)
1702
{
1703
	struct protection_domain *domain;
1704
	struct dma_ops_domain *dma_dom;
1705
	u16 devid = get_device_id(dev);
1706

1707
	if (!check_device(dev))
1708
		return ERR_PTR(-EINVAL);
1709

1710 1711 1712
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1713

1714 1715
	if (domain != NULL)
		return domain;
1716

1717
	/* Device not bount yet - bind it */
1718
	dma_dom = find_protection_domain(devid);
1719
	if (!dma_dom)
1720 1721
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1722
	DUMP_printk("Using protection domain %d for device %s\n",
1723
		    dma_dom->domain.id, dev_name(dev));
1724

1725
	return &dma_dom->domain;
1726 1727
}

1728 1729
static void update_device_table(struct protection_domain *domain)
{
1730
	struct iommu_dev_data *dev_data;
1731

1732 1733 1734
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		u16 devid = get_device_id(dev_data->dev);
		set_dte_entry(devid, domain);
1735 1736 1737 1738 1739 1740 1741 1742 1743
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1744 1745 1746

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1747 1748 1749 1750

	domain->updated = false;
}

1751 1752 1753 1754 1755 1756
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1757
	struct aperture_range *aperture;
1758 1759
	u64 *pte, *pte_page;

1760 1761 1762 1763 1764
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1765
	if (!pte) {
1766
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1767
				GFP_ATOMIC);
1768 1769
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1770
		pte += PM_LEVEL_INDEX(0, address);
1771

1772
	update_domain(&dom->domain);
1773 1774 1775 1776

	return pte;
}

1777 1778 1779 1780
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1781
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1792
	pte  = dma_ops_get_pte(dom, address);
1793
	if (!pte)
1794
		return DMA_ERROR_CODE;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1812 1813 1814
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1815
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1816 1817
				 unsigned long address)
{
1818
	struct aperture_range *aperture;
1819 1820 1821 1822 1823
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1824 1825 1826 1827 1828 1829 1830
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1831

1832
	pte += PM_LEVEL_INDEX(0, address);
1833 1834 1835 1836 1837 1838

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1839 1840
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1841 1842
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1843 1844
 * Must be called with the domain lock held.
 */
1845 1846 1847 1848
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1849
			       int dir,
1850 1851
			       bool align,
			       u64 dma_mask)
1852 1853
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1854
	dma_addr_t address, start, ret;
1855
	unsigned int pages;
1856
	unsigned long align_mask = 0;
1857 1858
	int i;

1859
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1860 1861
	paddr &= PAGE_MASK;

1862 1863
	INC_STATS_COUNTER(total_map_requests);

1864 1865 1866
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1867 1868 1869
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1870
retry:
1871 1872
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1873
	if (unlikely(address == DMA_ERROR_CODE)) {
1874 1875 1876 1877 1878 1879 1880
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1881
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1882 1883 1884
			goto out;

		/*
1885
		 * aperture was successfully enlarged by 128 MB, try
1886 1887 1888 1889
		 * allocation again
		 */
		goto retry;
	}
1890 1891 1892

	start = address;
	for (i = 0; i < pages; ++i) {
1893
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1894
		if (ret == DMA_ERROR_CODE)
1895 1896
			goto out_unmap;

1897 1898 1899 1900 1901
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1902 1903
	ADD_STATS_COUNTER(alloced_io_mem, size);

1904
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1905
		domain_flush_tlb(&dma_dom->domain);
1906
		dma_dom->need_flush = false;
1907
	} else if (unlikely(amd_iommu_np_cache))
1908
		domain_flush_pages(&dma_dom->domain, address, size);
1909

1910 1911
out:
	return address;
1912 1913 1914 1915 1916

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1917
		dma_ops_domain_unmap(dma_dom, start);
1918 1919 1920 1921
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1922
	return DMA_ERROR_CODE;
1923 1924
}

1925 1926 1927 1928
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1929
static void __unmap_single(struct dma_ops_domain *dma_dom,
1930 1931 1932 1933
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
1934
	dma_addr_t flush_addr;
1935 1936 1937
	dma_addr_t i, start;
	unsigned int pages;

1938
	if ((dma_addr == DMA_ERROR_CODE) ||
1939
	    (dma_addr + size > dma_dom->aperture_size))
1940 1941
		return;

1942
	flush_addr = dma_addr;
1943
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1944 1945 1946 1947
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1948
		dma_ops_domain_unmap(dma_dom, start);
1949 1950 1951
		start += PAGE_SIZE;
	}

1952 1953
	SUB_STATS_COUNTER(alloced_io_mem, size);

1954
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1955

1956
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1957
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
1958 1959
		dma_dom->need_flush = false;
	}
1960 1961
}

1962 1963 1964
/*
 * The exported map_single function for dma_ops.
 */
1965 1966 1967 1968
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1969 1970 1971 1972
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
1973
	u64 dma_mask;
1974
	phys_addr_t paddr = page_to_phys(page) + offset;
1975

1976 1977
	INC_STATS_COUNTER(cnt_map_single);

1978 1979
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
1980
		return (dma_addr_t)paddr;
1981 1982
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
1983

1984 1985
	dma_mask = *dev->dma_mask;

1986
	spin_lock_irqsave(&domain->lock, flags);
1987

1988
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
1989
			    dma_mask);
1990
	if (addr == DMA_ERROR_CODE)
1991 1992
		goto out;

1993
	domain_flush_complete(domain);
1994 1995 1996 1997 1998 1999 2000

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2001 2002 2003
/*
 * The exported unmap_single function for dma_ops.
 */
2004 2005
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2006 2007 2008 2009
{
	unsigned long flags;
	struct protection_domain *domain;

2010 2011
	INC_STATS_COUNTER(cnt_unmap_single);

2012 2013
	domain = get_domain(dev);
	if (IS_ERR(domain))
2014 2015
		return;

2016 2017
	spin_lock_irqsave(&domain->lock, flags);

2018
	__unmap_single(domain->priv, dma_addr, size, dir);
2019

2020
	domain_flush_complete(domain);
2021 2022 2023 2024

	spin_unlock_irqrestore(&domain->lock, flags);
}

2025 2026 2027 2028
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2043 2044 2045 2046
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2047
static int map_sg(struct device *dev, struct scatterlist *sglist,
2048 2049
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2050 2051 2052 2053 2054 2055 2056
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2057
	u64 dma_mask;
2058

2059 2060
	INC_STATS_COUNTER(cnt_map_sg);

2061 2062
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2063
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2064 2065
	else if (IS_ERR(domain))
		return 0;
2066

2067
	dma_mask = *dev->dma_mask;
2068 2069 2070 2071 2072 2073

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2074
		s->dma_address = __map_single(dev, domain->priv,
2075 2076
					      paddr, s->length, dir, false,
					      dma_mask);
2077 2078 2079 2080 2081 2082 2083 2084

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2085
	domain_flush_complete(domain);
2086 2087 2088 2089 2090 2091 2092 2093

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2094
			__unmap_single(domain->priv, s->dma_address,
2095 2096 2097 2098 2099 2100 2101 2102 2103
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2104 2105 2106 2107
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2108
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2109 2110
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2111 2112 2113 2114 2115 2116
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2117 2118
	INC_STATS_COUNTER(cnt_unmap_sg);

2119 2120
	domain = get_domain(dev);
	if (IS_ERR(domain))
2121 2122
		return;

2123 2124 2125
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2126
		__unmap_single(domain->priv, s->dma_address,
2127 2128 2129 2130
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2131
	domain_flush_complete(domain);
2132 2133 2134 2135

	spin_unlock_irqrestore(&domain->lock, flags);
}

2136 2137 2138
/*
 * The exported alloc_coherent function for dma_ops.
 */
2139 2140 2141 2142 2143 2144 2145
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2146
	u64 dma_mask = dev->coherent_dma_mask;
2147

2148 2149
	INC_STATS_COUNTER(cnt_alloc_coherent);

2150 2151
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2152 2153 2154
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2155 2156
	} else if (IS_ERR(domain))
		return NULL;
2157

2158 2159 2160
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2161 2162 2163

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2164
		return NULL;
2165 2166 2167

	paddr = virt_to_phys(virt_addr);

2168 2169 2170
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2171 2172
	spin_lock_irqsave(&domain->lock, flags);

2173
	*dma_addr = __map_single(dev, domain->priv, paddr,
2174
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2175

2176
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2177
		spin_unlock_irqrestore(&domain->lock, flags);
2178
		goto out_free;
J
Jiri Slaby 已提交
2179
	}
2180

2181
	domain_flush_complete(domain);
2182 2183 2184 2185

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2186 2187 2188 2189 2190 2191

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2192 2193
}

2194 2195 2196
/*
 * The exported free_coherent function for dma_ops.
 */
2197 2198 2199 2200 2201 2202
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2203 2204
	INC_STATS_COUNTER(cnt_free_coherent);

2205 2206
	domain = get_domain(dev);
	if (IS_ERR(domain))
2207 2208
		goto free_mem;

2209 2210
	spin_lock_irqsave(&domain->lock, flags);

2211
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2212

2213
	domain_flush_complete(domain);
2214 2215 2216 2217 2218 2219 2220

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2221 2222 2223 2224 2225 2226
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2227
	return check_device(dev);
2228 2229
}

2230
/*
2231 2232
 * The function for pre-allocating protection domains.
 *
2233 2234 2235 2236
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2237
static void prealloc_protection_domains(void)
2238 2239 2240
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2241
	u16 devid;
2242

2243
	for_each_pci_dev(dev) {
2244 2245 2246

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2247
			continue;
2248 2249

		/* Is there already any domain for it? */
2250
		if (domain_for_device(&dev->dev))
2251
			continue;
2252 2253 2254

		devid = get_device_id(&dev->dev);

2255
		dma_dom = dma_ops_domain_alloc();
2256 2257 2258
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2259 2260
		dma_dom->target_dev = devid;

2261
		attach_device(&dev->dev, &dma_dom->domain);
2262

2263
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2264 2265 2266
	}
}

2267
static struct dma_map_ops amd_iommu_dma_ops = {
2268 2269
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2270 2271
	.map_page = map_page,
	.unmap_page = unmap_page,
2272 2273
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2274
	.dma_supported = amd_iommu_dma_supported,
2275 2276
};

2277 2278 2279
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2280 2281 2282 2283 2284 2285

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2286 2287 2288 2289 2290
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2291 2292 2293 2294 2295
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2296
	for_each_iommu(iommu) {
2297
		iommu->default_dom = dma_ops_domain_alloc();
2298 2299
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2300
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2301 2302 2303 2304 2305
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2306
	/*
2307
	 * Pre-allocate the protection domains for each device.
2308
	 */
2309
	prealloc_protection_domains();
2310 2311

	iommu_detected = 1;
2312
	swiotlb = 0;
2313

2314
	/* Make the driver finally visible to the drivers */
2315 2316
	dma_ops = &amd_iommu_dma_ops;

2317 2318
	amd_iommu_stats_init();

2319 2320 2321 2322
	return 0;

free_domains:

2323
	for_each_iommu(iommu) {
2324 2325 2326 2327 2328 2329
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2343
	struct iommu_dev_data *dev_data, *next;
2344 2345 2346 2347
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2348 2349 2350
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

2351
		__detach_device(dev);
2352 2353
		atomic_set(&dev_data->bind, 0);
	}
2354 2355 2356 2357

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2358 2359 2360 2361 2362
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2363 2364
	del_domain_from_list(domain);

2365 2366 2367 2368 2369 2370 2371
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2372 2373 2374 2375 2376
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2377
		return NULL;
2378 2379

	spin_lock_init(&domain->lock);
2380
	mutex_init(&domain->api_lock);
2381 2382
	domain->id = domain_id_alloc();
	if (!domain->id)
2383
		goto out_err;
2384
	INIT_LIST_HEAD(&domain->dev_list);
2385

2386 2387
	add_domain_to_list(domain);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2402
		goto out_free;
2403 2404

	domain->mode    = PAGE_MODE_3_LEVEL;
2405 2406 2407 2408 2409 2410 2411 2412 2413
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2414
	protection_domain_free(domain);
2415 2416 2417 2418

	return -ENOMEM;
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2433
	protection_domain_free(domain);
2434 2435 2436 2437

	dom->priv = NULL;
}

2438 2439 2440
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2441
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2442 2443 2444
	struct amd_iommu *iommu;
	u16 devid;

2445
	if (!check_device(dev))
2446 2447
		return;

2448
	devid = get_device_id(dev);
2449

2450
	if (dev_data->domain != NULL)
2451
		detach_device(dev);
2452 2453 2454 2455 2456

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2457
	device_flush_dte(dev);
2458 2459 2460
	iommu_completion_wait(iommu);
}

2461 2462 2463 2464
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2465
	struct iommu_dev_data *dev_data;
2466
	struct amd_iommu *iommu;
2467
	int ret;
2468 2469
	u16 devid;

2470
	if (!check_device(dev))
2471 2472
		return -EINVAL;

2473 2474
	dev_data = dev->archdata.iommu;

2475
	devid = get_device_id(dev);
2476 2477 2478 2479 2480

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2481
	if (dev_data->domain)
2482
		detach_device(dev);
2483

2484
	ret = attach_device(dev, domain);
2485 2486 2487

	iommu_completion_wait(iommu);

2488
	return ret;
2489 2490
}

2491 2492
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2493
{
2494
	unsigned long page_size = 0x1000UL << gfp_order;
2495 2496 2497 2498 2499 2500 2501 2502 2503
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2504
	mutex_lock(&domain->api_lock);
2505
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2506 2507
	mutex_unlock(&domain->api_lock);

2508
	return ret;
2509 2510
}

2511 2512
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2513 2514
{
	struct protection_domain *domain = dom->priv;
2515
	unsigned long page_size, unmap_size;
2516

2517
	page_size  = 0x1000UL << gfp_order;
2518

2519
	mutex_lock(&domain->api_lock);
2520
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2521
	mutex_unlock(&domain->api_lock);
2522

2523
	domain_flush_tlb_pde(domain);
2524

2525
	return get_order(unmap_size);
2526 2527
}

2528 2529 2530 2531
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2532
	unsigned long offset_mask;
2533
	phys_addr_t paddr;
2534
	u64 *pte, __pte;
2535

2536
	pte = fetch_pte(domain, iova);
2537

2538
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2539 2540
		return 0;

2541 2542 2543 2544 2545 2546 2547
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2548 2549 2550 2551

	return paddr;
}

S
Sheng Yang 已提交
2552 2553 2554
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2555 2556 2557 2558 2559
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2560 2561 2562
	return 0;
}

2563 2564 2565 2566 2567
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2568 2569
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2570
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2571
	.domain_has_cap = amd_iommu_domain_has_cap,
2572 2573
};

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2586
	struct amd_iommu *iommu;
2587
	struct pci_dev *dev = NULL;
2588
	u16 devid;
2589

2590
	/* allocate passthrough domain */
2591 2592 2593 2594 2595 2596
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2597
	for_each_pci_dev(dev) {
2598
		if (!check_device(&dev->dev))
2599 2600
			continue;

2601 2602
		devid = get_device_id(&dev->dev);

2603
		iommu = amd_iommu_rlookup_table[devid];
2604 2605 2606
		if (!iommu)
			continue;

2607
		attach_device(&dev->dev, pt_domain);
2608 2609 2610 2611 2612 2613
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}