amd_iommu.c 60.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_proto.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48 49 50
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

51 52
static struct iommu_ops amd_iommu_ops;

53 54 55
/*
 * general struct to manage commands send to an IOMMU
 */
56
struct iommu_cmd {
57 58 59
	u32 data[4];
};

60
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

149 150
	dev_data->dev = dev;

151 152 153 154 155 156
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

157 158
	atomic_set(&dev_data->bind, 0);

159 160 161 162 163 164 165 166 167 168
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
206 207 208 209 210 211
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

212
DECLARE_STATS_COUNTER(compl_wait);
213
DECLARE_STATS_COUNTER(cnt_map_single);
214
DECLARE_STATS_COUNTER(cnt_unmap_single);
215
DECLARE_STATS_COUNTER(cnt_map_sg);
216
DECLARE_STATS_COUNTER(cnt_unmap_sg);
217
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218
DECLARE_STATS_COUNTER(cnt_free_coherent);
219
DECLARE_STATS_COUNTER(cross_page);
220
DECLARE_STATS_COUNTER(domain_flush_single);
221
DECLARE_STATS_COUNTER(domain_flush_all);
222
DECLARE_STATS_COUNTER(alloced_io_mem);
223
DECLARE_STATS_COUNTER(total_map_requests);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
245 246

	amd_iommu_stats_add(&compl_wait);
247
	amd_iommu_stats_add(&cnt_map_single);
248
	amd_iommu_stats_add(&cnt_unmap_single);
249
	amd_iommu_stats_add(&cnt_map_sg);
250
	amd_iommu_stats_add(&cnt_unmap_sg);
251
	amd_iommu_stats_add(&cnt_alloc_coherent);
252
	amd_iommu_stats_add(&cnt_free_coherent);
253
	amd_iommu_stats_add(&cross_page);
254
	amd_iommu_stats_add(&domain_flush_single);
255
	amd_iommu_stats_add(&domain_flush_all);
256
	amd_iommu_stats_add(&alloced_io_mem);
257
	amd_iommu_stats_add(&total_map_requests);
258 259 260 261
}

#endif

262 263 264 265 266 267
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

268 269 270 271 272 273 274 275 276
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

277 278 279 280 281 282 283 284 285
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

286
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 288 289 290 291 292 293 294
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

295
	printk(KERN_ERR "AMD-Vi: Event logged [");
296 297 298 299 300 301 302

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
303
		dump_dte_entry(devid);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325
		iommu->reset_in_progress = true;
326
		reset_iommu_command_buffer(iommu);
327
		dump_command(address);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
361
		iommu_print_event(iommu, iommu->evt_buf + head);
362 363 364 365 366 367 368 369
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

370 371
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
372 373
	struct amd_iommu *iommu;

374
	for_each_iommu(iommu)
375 376 377
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
378 379
}

380 381 382 383 384 385 386 387 388 389
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
390
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
391 392 393 394 395
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
396
	target = iommu->cmd_buf + tail;
397 398 399 400 401 402 403 404 405 406
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

407 408 409 410
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
411
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
412 413 414 415 416 417
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
418
	if (!ret)
419
		iommu->need_sync = true;
420 421 422 423 424
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

425 426 427 428 429 430 431 432 433 434
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

435 436
	INC_STATS_COUNTER(compl_wait);

437 438 439 440 441 442 443 444 445 446 447
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

448 449
	if (unlikely(i == EXIT_LOOP_COUNT))
		iommu->reset_in_progress = true;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

467 468 469 470 471 472 473
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
474 475
static int iommu_completion_wait(struct amd_iommu *iommu)
{
476 477
	int ret = 0;
	unsigned long flags;
478

479 480
	spin_lock_irqsave(&iommu->lock, flags);

481 482 483
	if (!iommu->need_sync)
		goto out;

484
	ret = __iommu_completion_wait(iommu);
485

486
	iommu->need_sync = false;
487 488

	if (ret)
489
		goto out;
490

491
	__iommu_wait_for_completion(iommu);
492

493 494
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
495

496 497 498
	if (iommu->reset_in_progress)
		reset_iommu_command_buffer(iommu);

499 500 501
	return 0;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static void iommu_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
}

518 519 520
/*
 * Command send function for invalidating a device table entry
 */
521 522 523
static int iommu_flush_device(struct device *dev)
{
	struct amd_iommu *iommu;
524
	struct iommu_cmd cmd;
525 526 527 528 529
	u16 devid;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

530 531 532 533 534 535
	/* Build command */
	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	return iommu_queue_command(iommu, &cmd);
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

553 554 555
/*
 * Generic command send function for invalidaing TLB entries
 */
556 557 558
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
559
	struct iommu_cmd cmd;
560
	int ret;
561

562
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
563

564 565 566
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
567 568
}

569 570 571 572 573
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
574 575
static void __iommu_flush_pages(struct protection_domain *domain,
				u64 address, size_t size, int pde)
576
{
577
	int s = 0, i;
578
	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
579 580 581

	address &= PAGE_MASK;

582 583 584 585 586 587 588
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
589 590
	}

591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
					    domain->id, pde, s);
	}

	return;
}

static void iommu_flush_pages(struct protection_domain *domain,
			     u64 address, size_t size)
{
	__iommu_flush_pages(domain, address, size, 0);
611
}
612

613
/* Flush the whole IO/TLB for a given protection domain */
614
static void iommu_flush_tlb(struct protection_domain *domain)
615
{
616
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
617 618
}

619
/* Flush the whole IO/TLB for a given protection domain - including PDE */
620
static void iommu_flush_tlb_pde(struct protection_domain *domain)
621
{
622
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
623 624
}

625

626
/*
627
 * This function flushes the DTEs for all devices in domain
628
 */
629 630 631 632 633 634 635 636 637 638 639 640 641 642
static void iommu_flush_domain_devices(struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(dev_data, &domain->dev_list, list)
		iommu_flush_device(dev_data->dev);

	spin_unlock_irqrestore(&domain->lock, flags);
}

static void iommu_flush_all_domain_devices(void)
643
{
644
	struct protection_domain *domain;
645
	unsigned long flags;
646

647
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
648

649
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
650
		iommu_flush_domain_devices(domain);
651
		iommu_flush_complete(domain);
652
	}
653

654
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
655 656
}

657 658 659 660 661
void amd_iommu_flush_all_devices(void)
{
	iommu_flush_all_domain_devices();
}

662 663 664 665
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
666
void amd_iommu_flush_all_domains(void)
667
{
668
	struct protection_domain *domain;
669 670 671
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
672

673
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
674
		spin_lock(&domain->lock);
675 676
		iommu_flush_tlb_pde(domain);
		iommu_flush_complete(domain);
677
		spin_unlock(&domain->lock);
678
	}
679 680

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
681 682
}

683 684 685 686
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

687 688 689
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

690
	amd_iommu_reset_cmd_buffer(iommu);
691 692
	amd_iommu_flush_all_devices();
	amd_iommu_flush_all_domains();
693 694

	iommu->reset_in_progress = false;
695 696
}

697 698 699 700 701 702 703
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
733
		      unsigned long page_size,
734 735 736
		      u64 **pte_page,
		      gfp_t gfp)
{
737
	int level, end_lvl;
738
	u64 *pte, *page;
739 740

	BUG_ON(!is_power_of_2(page_size));
741 742 743 744

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

745 746 747 748
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
749 750 751 752 753 754 755 756 757

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

758 759 760 761
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
779
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
780 781 782 783
{
	int level;
	u64 *pte;

784 785 786 787 788
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
789

790 791 792
	while (level > 0) {

		/* Not Present */
793 794 795
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

815 816
		level -= 1;

817
		/* Walk to the next level */
818 819 820 821 822 823 824
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

825 826 827 828 829 830 831
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
832 833 834
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
835
			  int prot,
836
			  unsigned long page_size)
837
{
838
	u64 __pte, *pte;
839
	int i, count;
840

841
	if (!(prot & IOMMU_PROT_MASK))
842 843
		return -EINVAL;

844 845 846 847 848 849 850 851
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
852

853 854 855 856 857
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
858 859 860 861 862 863

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

864 865
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
866

867 868
	update_domain(dom);

869 870 871
	return 0;
}

872 873 874
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
875
{
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;

	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
912

913
	return unmapped;
914 915
}

916 917 918 919
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
920 921 922 923 924 925 926 927 928 929 930 931 932 933
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

934 935 936 937
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
938 939 940 941 942 943 944 945
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
946
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
947
				     PAGE_SIZE);
948 949 950 951 952 953 954
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
955
			__set_bit(addr >> PAGE_SHIFT,
956
				  dma_dom->aperture[0]->bitmap);
957 958 959 960 961
	}

	return 0;
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

984 985 986
/*
 * Inits the unity mappings required for a specific device
 */
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1013

1014
/*
1015
 * The address allocator core functions.
1016 1017 1018
 *
 * called with domain->lock held
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1040 1041 1042 1043 1044
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1045
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1046 1047 1048
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1049
	struct amd_iommu *iommu;
1050
	unsigned long i;
1051

1052 1053 1054 1055
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1075
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1088
	/* Intialize the exclusion range if necessary */
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1111
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1112 1113 1114 1115 1116 1117
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1118 1119
	update_domain(&dma_dom->domain);

1120 1121 1122
	return 0;

out_free:
1123 1124
	update_domain(&dma_dom->domain);

1125 1126 1127 1128 1129 1130 1131 1132
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1133 1134 1135 1136 1137 1138 1139
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1140
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1141 1142 1143 1144 1145 1146
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1147 1148
	next_bit >>= PAGE_SHIFT;

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1167
			dom->next_address = address + (pages << PAGE_SHIFT);
1168 1169 1170 1171 1172 1173 1174 1175 1176
			break;
		}

		next_bit = 0;
	}

	return address;
}

1177 1178
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1179
					     unsigned int pages,
1180 1181
					     unsigned long align_mask,
					     u64 dma_mask)
1182 1183 1184
{
	unsigned long address;

1185 1186 1187 1188
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1189

1190
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1191
				     dma_mask, dom->next_address);
1192

1193
	if (address == -1) {
1194
		dom->next_address = 0;
1195 1196
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1197 1198
		dom->need_flush = true;
	}
1199

1200
	if (unlikely(address == -1))
1201
		address = DMA_ERROR_CODE;
1202 1203 1204 1205 1206 1207

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1208 1209 1210 1211 1212
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1213 1214 1215 1216
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1217 1218
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1219

1220 1221
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1222 1223 1224 1225
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1226

1227
	if (address >= dom->next_address)
1228
		dom->need_flush = true;
1229 1230

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1231

A
Akinobu Mita 已提交
1232
	bitmap_clear(range->bitmap, address, pages);
1233

1234 1235
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1298
static void free_pagetable(struct protection_domain *domain)
1299 1300 1301 1302
{
	int i, j;
	u64 *p1, *p2, *p3;

1303
	p1 = domain->pt_root;
1304 1305 1306 1307 1308 1309 1310 1311 1312

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1313
		for (j = 0; j < 512; ++j) {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1324 1325

	domain->pt_root = NULL;
1326 1327
}

1328 1329 1330 1331
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1332 1333
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1334 1335
	int i;

1336 1337 1338
	if (!dom)
		return;

1339 1340
	del_domain_from_list(&dom->domain);

1341
	free_pagetable(&dom->domain);
1342

1343 1344 1345 1346 1347 1348
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1349 1350 1351 1352

	kfree(dom);
}

1353 1354 1355 1356 1357
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1358
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1371
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1372
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1373
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1374
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1375 1376 1377 1378
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1379
	dma_dom->need_flush = false;
1380
	dma_dom->target_dev = 0xffff;
1381

1382 1383
	add_domain_to_list(&dma_dom->domain);

1384
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1385 1386
		goto free_dma_dom;

1387
	/*
1388 1389
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1390
	 */
1391
	dma_dom->aperture[0]->bitmap[0] = 1;
1392
	dma_dom->next_address = 0;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1412
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1413 1414
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1415

1416 1417 1418
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1419 1420

	amd_iommu_dev_table[devid].data[2] = domain->id;
1421 1422
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
	set_dte_entry(devid, domain);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1455
	iommu_flush_device(dev);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1467 1468

	/* decrease reference counters */
1469 1470 1471 1472 1473 1474 1475
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1476

1477
	/* Flush the DTE entry */
1478
	iommu_flush_device(dev);
1479 1480 1481 1482 1483 1484
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1485 1486
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1487
{
1488 1489 1490 1491
	struct iommu_dev_data *dev_data, *alias_data;

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1492

1493 1494
	if (!alias_data)
		return -EINVAL;
1495

1496 1497 1498
	/* lock domain */
	spin_lock(&domain->lock);

1499
	/* Some sanity checks */
1500 1501
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1502
		return -EBUSY;
1503

1504 1505
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1506 1507 1508
		return -EBUSY;

	/* Do real assignment */
1509 1510 1511 1512
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1513 1514

		atomic_inc(&alias_data->bind);
1515
	}
1516

1517 1518
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1519

1520 1521
	atomic_inc(&dev_data->bind);

1522 1523
	/* ready */
	spin_unlock(&domain->lock);
1524 1525

	return 0;
1526
}
1527

1528 1529 1530 1531
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1532 1533
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1534
{
1535
	unsigned long flags;
1536
	int ret;
1537 1538

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1539
	ret = __attach_device(dev, domain);
1540 1541
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1542 1543 1544 1545 1546
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1547
	iommu_flush_tlb_pde(domain);
1548 1549

	return ret;
1550 1551
}

1552 1553 1554
/*
 * Removes a device from a protection domain (unlocked)
 */
1555
static void __detach_device(struct device *dev)
1556
{
1557
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1558
	struct iommu_dev_data *alias_data;
1559
	struct protection_domain *domain;
1560
	unsigned long flags;
1561

1562
	BUG_ON(!dev_data->domain);
1563

1564 1565 1566
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1567

1568
	if (dev_data->alias != dev) {
1569
		alias_data = get_dev_data(dev_data->alias);
1570 1571
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1572 1573
	}

1574 1575 1576
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1577
	spin_unlock_irqrestore(&domain->lock, flags);
1578 1579 1580

	/*
	 * If we run in passthrough mode the device must be assigned to the
1581 1582
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1583
	 */
1584 1585
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1586
		__attach_device(dev, pt_domain);
1587 1588 1589 1590 1591
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1592
static void detach_device(struct device *dev)
1593 1594 1595 1596 1597
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1598
	__detach_device(dev);
1599 1600
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1601

1602 1603 1604 1605 1606 1607 1608
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1609
	struct iommu_dev_data *dev_data, *alias_data;
1610 1611 1612
	unsigned long flags;
	u16 devid, alias;

1613 1614 1615 1616 1617 1618
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1619 1620

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1621
	dom = dev_data->domain;
1622
	if (dom == NULL &&
1623 1624 1625
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1626 1627 1628 1629 1630 1631 1632
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1633 1634 1635 1636
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1637
	u16 devid;
1638 1639 1640
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1641
	unsigned long flags;
1642

1643 1644
	if (!check_device(dev))
		return 0;
1645

1646 1647
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1648 1649

	switch (action) {
1650
	case BUS_NOTIFY_UNBOUND_DRIVER:
1651 1652 1653

		domain = domain_for_device(dev);

1654 1655
		if (!domain)
			goto out;
1656 1657
		if (iommu_pass_through)
			break;
1658
		detach_device(dev);
1659 1660
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1661 1662 1663 1664 1665

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1666 1667 1668 1669
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1670
		dma_domain = dma_ops_domain_alloc();
1671 1672 1673 1674 1675 1676 1677 1678
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1679
		break;
1680 1681 1682 1683
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1684 1685 1686 1687
	default:
		goto out;
	}

1688
	iommu_flush_device(dev);
1689 1690 1691 1692 1693 1694
	iommu_completion_wait(iommu);

out:
	return 0;
}

1695
static struct notifier_block device_nb = {
1696 1697
	.notifier_call = device_change_notifier,
};
1698

1699 1700 1701 1702 1703
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1717
static struct protection_domain *get_domain(struct device *dev)
1718
{
1719
	struct protection_domain *domain;
1720
	struct dma_ops_domain *dma_dom;
1721
	u16 devid = get_device_id(dev);
1722

1723
	if (!check_device(dev))
1724
		return ERR_PTR(-EINVAL);
1725

1726 1727 1728
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1729

1730 1731
	if (domain != NULL)
		return domain;
1732

1733
	/* Device not bount yet - bind it */
1734
	dma_dom = find_protection_domain(devid);
1735
	if (!dma_dom)
1736 1737
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1738
	DUMP_printk("Using protection domain %d for device %s\n",
1739
		    dma_dom->domain.id, dev_name(dev));
1740

1741
	return &dma_dom->domain;
1742 1743
}

1744 1745
static void update_device_table(struct protection_domain *domain)
{
1746
	struct iommu_dev_data *dev_data;
1747

1748 1749 1750
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		u16 devid = get_device_id(dev_data->dev);
		set_dte_entry(devid, domain);
1751 1752 1753 1754 1755 1756 1757 1758 1759
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1760
	iommu_flush_domain_devices(domain);
1761
	iommu_flush_tlb_pde(domain);
1762 1763 1764 1765

	domain->updated = false;
}

1766 1767 1768 1769 1770 1771
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1772
	struct aperture_range *aperture;
1773 1774
	u64 *pte, *pte_page;

1775 1776 1777 1778 1779
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1780
	if (!pte) {
1781
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1782
				GFP_ATOMIC);
1783 1784
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1785
		pte += PM_LEVEL_INDEX(0, address);
1786

1787
	update_domain(&dom->domain);
1788 1789 1790 1791

	return pte;
}

1792 1793 1794 1795
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1796
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1807
	pte  = dma_ops_get_pte(dom, address);
1808
	if (!pte)
1809
		return DMA_ERROR_CODE;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1827 1828 1829
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1830
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1831 1832
				 unsigned long address)
{
1833
	struct aperture_range *aperture;
1834 1835 1836 1837 1838
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1839 1840 1841 1842 1843 1844 1845
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1846

1847
	pte += PM_LEVEL_INDEX(0, address);
1848 1849 1850 1851 1852 1853

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1854 1855
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1856 1857
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1858 1859
 * Must be called with the domain lock held.
 */
1860 1861 1862 1863
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1864
			       int dir,
1865 1866
			       bool align,
			       u64 dma_mask)
1867 1868
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1869
	dma_addr_t address, start, ret;
1870
	unsigned int pages;
1871
	unsigned long align_mask = 0;
1872 1873
	int i;

1874
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1875 1876
	paddr &= PAGE_MASK;

1877 1878
	INC_STATS_COUNTER(total_map_requests);

1879 1880 1881
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1882 1883 1884
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1885
retry:
1886 1887
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1888
	if (unlikely(address == DMA_ERROR_CODE)) {
1889 1890 1891 1892 1893 1894 1895
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1896
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1897 1898 1899
			goto out;

		/*
1900
		 * aperture was successfully enlarged by 128 MB, try
1901 1902 1903 1904
		 * allocation again
		 */
		goto retry;
	}
1905 1906 1907

	start = address;
	for (i = 0; i < pages; ++i) {
1908
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1909
		if (ret == DMA_ERROR_CODE)
1910 1911
			goto out_unmap;

1912 1913 1914 1915 1916
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1917 1918
	ADD_STATS_COUNTER(alloced_io_mem, size);

1919
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1920
		iommu_flush_tlb(&dma_dom->domain);
1921
		dma_dom->need_flush = false;
1922
	} else if (unlikely(amd_iommu_np_cache))
1923
		iommu_flush_pages(&dma_dom->domain, address, size);
1924

1925 1926
out:
	return address;
1927 1928 1929 1930 1931

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1932
		dma_ops_domain_unmap(dma_dom, start);
1933 1934 1935 1936
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1937
	return DMA_ERROR_CODE;
1938 1939
}

1940 1941 1942 1943
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1944
static void __unmap_single(struct dma_ops_domain *dma_dom,
1945 1946 1947 1948 1949 1950 1951
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1952
	if ((dma_addr == DMA_ERROR_CODE) ||
1953
	    (dma_addr + size > dma_dom->aperture_size))
1954 1955
		return;

1956
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1957 1958 1959 1960
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1961
		dma_ops_domain_unmap(dma_dom, start);
1962 1963 1964
		start += PAGE_SIZE;
	}

1965 1966
	SUB_STATS_COUNTER(alloced_io_mem, size);

1967
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1968

1969
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1970
		iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1971 1972
		dma_dom->need_flush = false;
	}
1973 1974
}

1975 1976 1977
/*
 * The exported map_single function for dma_ops.
 */
1978 1979 1980 1981
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1982 1983 1984 1985
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
1986
	u64 dma_mask;
1987
	phys_addr_t paddr = page_to_phys(page) + offset;
1988

1989 1990
	INC_STATS_COUNTER(cnt_map_single);

1991 1992
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
1993
		return (dma_addr_t)paddr;
1994 1995
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
1996

1997 1998
	dma_mask = *dev->dma_mask;

1999
	spin_lock_irqsave(&domain->lock, flags);
2000

2001
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2002
			    dma_mask);
2003
	if (addr == DMA_ERROR_CODE)
2004 2005
		goto out;

2006
	iommu_flush_complete(domain);
2007 2008 2009 2010 2011 2012 2013

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2014 2015 2016
/*
 * The exported unmap_single function for dma_ops.
 */
2017 2018
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2019 2020 2021 2022
{
	unsigned long flags;
	struct protection_domain *domain;

2023 2024
	INC_STATS_COUNTER(cnt_unmap_single);

2025 2026
	domain = get_domain(dev);
	if (IS_ERR(domain))
2027 2028
		return;

2029 2030
	spin_lock_irqsave(&domain->lock, flags);

2031
	__unmap_single(domain->priv, dma_addr, size, dir);
2032

2033
	iommu_flush_complete(domain);
2034 2035 2036 2037

	spin_unlock_irqrestore(&domain->lock, flags);
}

2038 2039 2040 2041
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2056 2057 2058 2059
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2060
static int map_sg(struct device *dev, struct scatterlist *sglist,
2061 2062
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2063 2064 2065 2066 2067 2068 2069
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2070
	u64 dma_mask;
2071

2072 2073
	INC_STATS_COUNTER(cnt_map_sg);

2074 2075
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2076
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2077 2078
	else if (IS_ERR(domain))
		return 0;
2079

2080
	dma_mask = *dev->dma_mask;
2081 2082 2083 2084 2085 2086

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2087
		s->dma_address = __map_single(dev, domain->priv,
2088 2089
					      paddr, s->length, dir, false,
					      dma_mask);
2090 2091 2092 2093 2094 2095 2096 2097

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2098
	iommu_flush_complete(domain);
2099 2100 2101 2102 2103 2104 2105 2106

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2107
			__unmap_single(domain->priv, s->dma_address,
2108 2109 2110 2111 2112 2113 2114 2115 2116
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2117 2118 2119 2120
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2121
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2122 2123
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2124 2125 2126 2127 2128 2129
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2130 2131
	INC_STATS_COUNTER(cnt_unmap_sg);

2132 2133
	domain = get_domain(dev);
	if (IS_ERR(domain))
2134 2135
		return;

2136 2137 2138
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2139
		__unmap_single(domain->priv, s->dma_address,
2140 2141 2142 2143
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2144
	iommu_flush_complete(domain);
2145 2146 2147 2148

	spin_unlock_irqrestore(&domain->lock, flags);
}

2149 2150 2151
/*
 * The exported alloc_coherent function for dma_ops.
 */
2152 2153 2154 2155 2156 2157 2158
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2159
	u64 dma_mask = dev->coherent_dma_mask;
2160

2161 2162
	INC_STATS_COUNTER(cnt_alloc_coherent);

2163 2164
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2165 2166 2167
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2168 2169
	} else if (IS_ERR(domain))
		return NULL;
2170

2171 2172 2173
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2174 2175 2176

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2177
		return NULL;
2178 2179 2180

	paddr = virt_to_phys(virt_addr);

2181 2182 2183
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2184 2185
	spin_lock_irqsave(&domain->lock, flags);

2186
	*dma_addr = __map_single(dev, domain->priv, paddr,
2187
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2188

2189
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2190
		spin_unlock_irqrestore(&domain->lock, flags);
2191
		goto out_free;
J
Jiri Slaby 已提交
2192
	}
2193

2194
	iommu_flush_complete(domain);
2195 2196 2197 2198

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2199 2200 2201 2202 2203 2204

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2205 2206
}

2207 2208 2209
/*
 * The exported free_coherent function for dma_ops.
 */
2210 2211 2212 2213 2214 2215
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2216 2217
	INC_STATS_COUNTER(cnt_free_coherent);

2218 2219
	domain = get_domain(dev);
	if (IS_ERR(domain))
2220 2221
		goto free_mem;

2222 2223
	spin_lock_irqsave(&domain->lock, flags);

2224
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2225

2226
	iommu_flush_complete(domain);
2227 2228 2229 2230 2231 2232 2233

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2234 2235 2236 2237 2238 2239
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2240
	return check_device(dev);
2241 2242
}

2243
/*
2244 2245
 * The function for pre-allocating protection domains.
 *
2246 2247 2248 2249
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2250
static void prealloc_protection_domains(void)
2251 2252 2253
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2254
	u16 devid;
2255 2256

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2257 2258 2259

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2260
			continue;
2261 2262

		/* Is there already any domain for it? */
2263
		if (domain_for_device(&dev->dev))
2264
			continue;
2265 2266 2267

		devid = get_device_id(&dev->dev);

2268
		dma_dom = dma_ops_domain_alloc();
2269 2270 2271
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2272 2273
		dma_dom->target_dev = devid;

2274
		attach_device(&dev->dev, &dma_dom->domain);
2275

2276
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2277 2278 2279
	}
}

2280
static struct dma_map_ops amd_iommu_dma_ops = {
2281 2282
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2283 2284
	.map_page = map_page,
	.unmap_page = unmap_page,
2285 2286
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2287
	.dma_supported = amd_iommu_dma_supported,
2288 2289
};

2290 2291 2292
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2293 2294 2295 2296 2297 2298

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2299 2300 2301 2302 2303
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2304 2305 2306 2307 2308
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2309
	for_each_iommu(iommu) {
2310
		iommu->default_dom = dma_ops_domain_alloc();
2311 2312
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2313
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2314 2315 2316 2317 2318
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2319
	/*
2320
	 * Pre-allocate the protection domains for each device.
2321
	 */
2322
	prealloc_protection_domains();
2323 2324

	iommu_detected = 1;
2325
	swiotlb = 0;
I
Ingo Molnar 已提交
2326
#ifdef CONFIG_GART_IOMMU
2327 2328
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2329
#endif
2330

2331
	/* Make the driver finally visible to the drivers */
2332 2333
	dma_ops = &amd_iommu_dma_ops;

2334 2335
	amd_iommu_stats_init();

2336 2337 2338 2339
	return 0;

free_domains:

2340
	for_each_iommu(iommu) {
2341 2342 2343 2344 2345 2346
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2360
	struct iommu_dev_data *dev_data, *next;
2361 2362 2363 2364
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2365 2366 2367 2368 2369 2370
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

		do_detach(dev);
		atomic_set(&dev_data->bind, 0);
	}
2371 2372 2373 2374

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2375 2376 2377 2378 2379
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2380 2381
	del_domain_from_list(domain);

2382 2383 2384 2385 2386 2387 2388
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2389 2390 2391 2392 2393
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2394
		return NULL;
2395 2396 2397 2398

	spin_lock_init(&domain->lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
2399
		goto out_err;
2400
	INIT_LIST_HEAD(&domain->dev_list);
2401

2402 2403
	add_domain_to_list(domain);

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2418
		goto out_free;
2419 2420

	domain->mode    = PAGE_MODE_3_LEVEL;
2421 2422 2423 2424 2425 2426 2427 2428 2429
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2430
	protection_domain_free(domain);
2431 2432 2433 2434

	return -ENOMEM;
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2456 2457 2458
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2459
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2460 2461 2462
	struct amd_iommu *iommu;
	u16 devid;

2463
	if (!check_device(dev))
2464 2465
		return;

2466
	devid = get_device_id(dev);
2467

2468
	if (dev_data->domain != NULL)
2469
		detach_device(dev);
2470 2471 2472 2473 2474

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2475
	iommu_flush_device(dev);
2476 2477 2478
	iommu_completion_wait(iommu);
}

2479 2480 2481 2482
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2483
	struct iommu_dev_data *dev_data;
2484
	struct amd_iommu *iommu;
2485
	int ret;
2486 2487
	u16 devid;

2488
	if (!check_device(dev))
2489 2490
		return -EINVAL;

2491 2492
	dev_data = dev->archdata.iommu;

2493
	devid = get_device_id(dev);
2494 2495 2496 2497 2498

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2499
	if (dev_data->domain)
2500
		detach_device(dev);
2501

2502
	ret = attach_device(dev, domain);
2503 2504 2505

	iommu_completion_wait(iommu);

2506
	return ret;
2507 2508
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2527
		ret = iommu_map_page(domain, iova, paddr, prot, PAGE_SIZE);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2548
		iommu_unmap_page(domain, iova, PAGE_SIZE);
2549 2550 2551
		iova  += PAGE_SIZE;
	}

2552
	iommu_flush_tlb_pde(domain);
2553 2554
}

2555 2556 2557 2558
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2559
	unsigned long offset_mask;
2560
	phys_addr_t paddr;
2561
	u64 *pte, __pte;
2562

2563
	pte = fetch_pte(domain, iova);
2564

2565
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2566 2567
		return 0;

2568 2569 2570 2571 2572 2573 2574
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2575 2576 2577 2578

	return paddr;
}

S
Sheng Yang 已提交
2579 2580 2581 2582 2583 2584
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2585 2586 2587 2588 2589
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2590 2591
	.map_range = amd_iommu_map_range,
	.unmap_range = amd_iommu_unmap_range,
2592
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2593
	.domain_has_cap = amd_iommu_domain_has_cap,
2594 2595
};

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2608
	struct amd_iommu *iommu;
2609
	struct pci_dev *dev = NULL;
2610
	u16 devid;
2611

2612
	/* allocate passthrough domain */
2613 2614 2615 2616 2617 2618 2619 2620
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {

2621
		if (!check_device(&dev->dev))
2622 2623
			continue;

2624 2625
		devid = get_device_id(&dev->dev);

2626
		iommu = amd_iommu_rlookup_table[devid];
2627 2628 2629
		if (!iommu)
			continue;

2630
		attach_device(&dev->dev, pt_domain);
2631 2632 2633 2634 2635 2636
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}