amd_iommu.c 60.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
A
Akinobu Mita 已提交
21
#include <linux/bitmap.h>
22
#include <linux/slab.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_proto.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48 49 50
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

51 52
static struct iommu_ops amd_iommu_ops;

53 54 55
/*
 * general struct to manage commands send to an IOMMU
 */
56
struct iommu_cmd {
57 58 59
	u32 data[4];
};

60
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

109 110 111 112 113 114 115 116 117 118 119 120
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
121
	if (dev->bus != &pci_bus_type)
122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

149 150
	dev_data->dev = dev;

151 152 153 154 155 156
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

157 158
	atomic_set(&dev_data->bind, 0);

159 160 161 162 163 164 165 166 167 168
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
206 207 208 209 210 211
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

212
DECLARE_STATS_COUNTER(compl_wait);
213
DECLARE_STATS_COUNTER(cnt_map_single);
214
DECLARE_STATS_COUNTER(cnt_unmap_single);
215
DECLARE_STATS_COUNTER(cnt_map_sg);
216
DECLARE_STATS_COUNTER(cnt_unmap_sg);
217
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218
DECLARE_STATS_COUNTER(cnt_free_coherent);
219
DECLARE_STATS_COUNTER(cross_page);
220
DECLARE_STATS_COUNTER(domain_flush_single);
221
DECLARE_STATS_COUNTER(domain_flush_all);
222
DECLARE_STATS_COUNTER(alloced_io_mem);
223
DECLARE_STATS_COUNTER(total_map_requests);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
245 246

	amd_iommu_stats_add(&compl_wait);
247
	amd_iommu_stats_add(&cnt_map_single);
248
	amd_iommu_stats_add(&cnt_unmap_single);
249
	amd_iommu_stats_add(&cnt_map_sg);
250
	amd_iommu_stats_add(&cnt_unmap_sg);
251
	amd_iommu_stats_add(&cnt_alloc_coherent);
252
	amd_iommu_stats_add(&cnt_free_coherent);
253
	amd_iommu_stats_add(&cross_page);
254
	amd_iommu_stats_add(&domain_flush_single);
255
	amd_iommu_stats_add(&domain_flush_all);
256
	amd_iommu_stats_add(&alloced_io_mem);
257
	amd_iommu_stats_add(&total_map_requests);
258 259 260 261
}

#endif

262 263 264 265 266 267
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

268 269 270 271 272 273 274 275 276
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

277 278 279 280 281 282 283 284 285
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

286
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 288 289 290 291 292 293 294
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

295
	printk(KERN_ERR "AMD-Vi: Event logged [");
296 297 298 299 300 301 302

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
303
		dump_dte_entry(devid);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325
		iommu->reset_in_progress = true;
326
		reset_iommu_command_buffer(iommu);
327
		dump_command(address);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
361
		iommu_print_event(iommu, iommu->evt_buf + head);
362 363 364 365 366 367 368 369
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

370 371
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
372 373
	struct amd_iommu *iommu;

374
	for_each_iommu(iommu)
375 376 377
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
378 379
}

380 381 382 383 384 385
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

386 387 388 389 390 391 392
static void build_completion_wait(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = CMD_COMPL_WAIT_INT_MASK;
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

393 394 395 396
/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
397
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
398 399 400 401
{
	u32 tail, head;
	u8 *target;

402
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
403
	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
404
	target = iommu->cmd_buf + tail;
405 406 407 408 409 410 411 412 413 414
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

415 416 417 418
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
419
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
420 421 422 423 424 425
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
426
	if (!ret)
427
		iommu->need_sync = true;
428 429 430 431 432
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

433 434 435 436 437 438 439 440 441 442
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

443 444
	INC_STATS_COUNTER(compl_wait);

445 446 447 448 449 450 451 452 453 454 455
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

456 457
	if (unlikely(i == EXIT_LOOP_COUNT))
		iommu->reset_in_progress = true;
458 459 460 461 462 463 464 465 466 467
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

468
	build_completion_wait(&cmd);
469 470 471 472

	 return __iommu_queue_command(iommu, &cmd);
}

473 474 475 476 477 478 479
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
480 481
static int iommu_completion_wait(struct amd_iommu *iommu)
{
482 483
	int ret = 0;
	unsigned long flags;
484

485 486
	spin_lock_irqsave(&iommu->lock, flags);

487 488 489
	if (!iommu->need_sync)
		goto out;

490
	ret = __iommu_completion_wait(iommu);
491

492
	iommu->need_sync = false;
493 494

	if (ret)
495
		goto out;
496

497
	__iommu_wait_for_completion(iommu);
498

499 500
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
501

502 503 504
	if (iommu->reset_in_progress)
		reset_iommu_command_buffer(iommu);

505 506 507
	return 0;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void iommu_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
}

524 525 526
/*
 * Command send function for invalidating a device table entry
 */
527 528 529
static int iommu_flush_device(struct device *dev)
{
	struct amd_iommu *iommu;
530
	struct iommu_cmd cmd;
531 532 533 534 535
	u16 devid;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

536 537 538 539 540 541
	/* Build command */
	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	return iommu_queue_command(iommu, &cmd);
542 543
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

559 560 561
/*
 * Generic command send function for invalidaing TLB entries
 */
562 563 564
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
565
	struct iommu_cmd cmd;
566
	int ret;
567

568
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
569

570 571 572
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
573 574
}

575 576 577 578 579
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
580 581
static void __iommu_flush_pages(struct protection_domain *domain,
				u64 address, size_t size, int pde)
582
{
583
	int s = 0, i;
584
	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
585 586 587

	address &= PAGE_MASK;

588 589 590 591 592 593 594
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
595 596
	}

597

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
					    domain->id, pde, s);
	}

	return;
}

static void iommu_flush_pages(struct protection_domain *domain,
			     u64 address, size_t size)
{
	__iommu_flush_pages(domain, address, size, 0);
617
}
618

619
/* Flush the whole IO/TLB for a given protection domain */
620
static void iommu_flush_tlb(struct protection_domain *domain)
621
{
622
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
623 624
}

625
/* Flush the whole IO/TLB for a given protection domain - including PDE */
626
static void iommu_flush_tlb_pde(struct protection_domain *domain)
627
{
628
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
629 630
}

631

632
/*
633
 * This function flushes the DTEs for all devices in domain
634
 */
635 636 637 638 639 640 641 642 643 644 645 646 647 648
static void iommu_flush_domain_devices(struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(dev_data, &domain->dev_list, list)
		iommu_flush_device(dev_data->dev);

	spin_unlock_irqrestore(&domain->lock, flags);
}

static void iommu_flush_all_domain_devices(void)
649
{
650
	struct protection_domain *domain;
651
	unsigned long flags;
652

653
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
654

655
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
656
		iommu_flush_domain_devices(domain);
657
		iommu_flush_complete(domain);
658
	}
659

660
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
661 662
}

663 664 665 666 667
void amd_iommu_flush_all_devices(void)
{
	iommu_flush_all_domain_devices();
}

668 669 670 671
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
672
void amd_iommu_flush_all_domains(void)
673
{
674
	struct protection_domain *domain;
675 676 677
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
678

679
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
680
		spin_lock(&domain->lock);
681 682
		iommu_flush_tlb_pde(domain);
		iommu_flush_complete(domain);
683
		spin_unlock(&domain->lock);
684
	}
685 686

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
687 688
}

689 690 691 692
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

693 694 695
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

696
	amd_iommu_reset_cmd_buffer(iommu);
697 698
	amd_iommu_flush_all_devices();
	amd_iommu_flush_all_domains();
699 700

	iommu->reset_in_progress = false;
701 702
}

703 704 705 706 707 708 709
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
739
		      unsigned long page_size,
740 741 742
		      u64 **pte_page,
		      gfp_t gfp)
{
743
	int level, end_lvl;
744
	u64 *pte, *page;
745 746

	BUG_ON(!is_power_of_2(page_size));
747 748 749 750

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

751 752 753 754
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
755 756 757 758 759 760 761 762 763

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

764 765 766 767
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
785
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
786 787 788 789
{
	int level;
	u64 *pte;

790 791 792 793 794
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
795

796 797 798
	while (level > 0) {

		/* Not Present */
799 800 801
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

821 822
		level -= 1;

823
		/* Walk to the next level */
824 825 826 827 828 829 830
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

831 832 833 834 835 836 837
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
838 839 840
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
841
			  int prot,
842
			  unsigned long page_size)
843
{
844
	u64 __pte, *pte;
845
	int i, count;
846

847
	if (!(prot & IOMMU_PROT_MASK))
848 849
		return -EINVAL;

850 851 852 853 854 855 856 857
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
858

859 860 861 862 863
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
864 865 866 867 868 869

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

870 871
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
872

873 874
	update_domain(dom);

875 876 877
	return 0;
}

878 879 880
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
881
{
882 883 884 885 886 887
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
918

919
	return unmapped;
920 921
}

922 923 924 925
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
926 927 928 929 930 931 932 933 934 935 936 937 938 939
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

940 941 942 943
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
944 945 946 947 948 949 950 951
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
952
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
953
				     PAGE_SIZE);
954 955 956 957 958 959 960
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
961
			__set_bit(addr >> PAGE_SHIFT,
962
				  dma_dom->aperture[0]->bitmap);
963 964 965 966 967
	}

	return 0;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

990 991 992
/*
 * Inits the unity mappings required for a specific device
 */
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1019

1020
/*
1021
 * The address allocator core functions.
1022 1023 1024
 *
 * called with domain->lock held
 */
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1046 1047 1048 1049 1050
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1051
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1052 1053 1054
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1055
	struct amd_iommu *iommu;
1056
	unsigned long i;
1057

1058 1059 1060 1061
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1081
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1094
	/* Initialize the exclusion range if necessary */
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1117
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1118 1119 1120 1121 1122 1123
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1124 1125
	update_domain(&dma_dom->domain);

1126 1127 1128
	return 0;

out_free:
1129 1130
	update_domain(&dma_dom->domain);

1131 1132 1133 1134 1135 1136 1137 1138
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1139 1140 1141 1142 1143 1144 1145
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1146
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1147 1148 1149 1150 1151 1152
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1153 1154
	next_bit >>= PAGE_SHIFT;

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1173
			dom->next_address = address + (pages << PAGE_SHIFT);
1174 1175 1176 1177 1178 1179 1180 1181 1182
			break;
		}

		next_bit = 0;
	}

	return address;
}

1183 1184
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1185
					     unsigned int pages,
1186 1187
					     unsigned long align_mask,
					     u64 dma_mask)
1188 1189 1190
{
	unsigned long address;

1191 1192 1193 1194
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1195

1196
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1197
				     dma_mask, dom->next_address);
1198

1199
	if (address == -1) {
1200
		dom->next_address = 0;
1201 1202
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1203 1204
		dom->need_flush = true;
	}
1205

1206
	if (unlikely(address == -1))
1207
		address = DMA_ERROR_CODE;
1208 1209 1210 1211 1212 1213

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1214 1215 1216 1217 1218
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1219 1220 1221 1222
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1223 1224
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1225

1226 1227
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1228 1229 1230 1231
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1232

1233
	if (address >= dom->next_address)
1234
		dom->need_flush = true;
1235 1236

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1237

A
Akinobu Mita 已提交
1238
	bitmap_clear(range->bitmap, address, pages);
1239

1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1304
static void free_pagetable(struct protection_domain *domain)
1305 1306 1307 1308
{
	int i, j;
	u64 *p1, *p2, *p3;

1309
	p1 = domain->pt_root;
1310 1311 1312 1313 1314 1315 1316 1317 1318

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1319
		for (j = 0; j < 512; ++j) {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1330 1331

	domain->pt_root = NULL;
1332 1333
}

1334 1335 1336 1337
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1338 1339
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1340 1341
	int i;

1342 1343 1344
	if (!dom)
		return;

1345 1346
	del_domain_from_list(&dom->domain);

1347
	free_pagetable(&dom->domain);
1348

1349 1350 1351 1352 1353 1354
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1355 1356 1357 1358

	kfree(dom);
}

1359 1360
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1361
 * It also initializes the page table and the address allocator data
1362 1363
 * structures required for the dma_ops interface
 */
1364
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1377
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1378
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1379
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1380
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1381 1382 1383 1384
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1385
	dma_dom->need_flush = false;
1386
	dma_dom->target_dev = 0xffff;
1387

1388 1389
	add_domain_to_list(&dma_dom->domain);

1390
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1391 1392
		goto free_dma_dom;

1393
	/*
1394 1395
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1396
	 */
1397
	dma_dom->aperture[0]->bitmap[0] = 1;
1398
	dma_dom->next_address = 0;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1418
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1419 1420
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1421

1422 1423 1424
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1425 1426

	amd_iommu_dev_table[devid].data[2] = domain->id;
1427 1428
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
	set_dte_entry(devid, domain);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1461
	iommu_flush_device(dev);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1473 1474

	/* decrease reference counters */
1475 1476 1477 1478 1479 1480 1481
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1482

1483
	/* Flush the DTE entry */
1484
	iommu_flush_device(dev);
1485 1486 1487 1488 1489 1490
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1491 1492
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1493
{
1494
	struct iommu_dev_data *dev_data, *alias_data;
1495
	int ret;
1496 1497 1498

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1499

1500 1501
	if (!alias_data)
		return -EINVAL;
1502

1503 1504 1505
	/* lock domain */
	spin_lock(&domain->lock);

1506
	/* Some sanity checks */
1507
	ret = -EBUSY;
1508 1509
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1510
		goto out_unlock;
1511

1512 1513
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1514
		goto out_unlock;
1515 1516

	/* Do real assignment */
1517 1518 1519 1520
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1521 1522

		atomic_inc(&alias_data->bind);
1523
	}
1524

1525 1526
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1527

1528 1529
	atomic_inc(&dev_data->bind);

1530 1531 1532 1533
	ret = 0;

out_unlock:

1534 1535
	/* ready */
	spin_unlock(&domain->lock);
1536

1537
	return ret;
1538
}
1539

1540 1541 1542 1543
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1544 1545
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1546
{
1547
	unsigned long flags;
1548
	int ret;
1549 1550

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1551
	ret = __attach_device(dev, domain);
1552 1553
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1554 1555 1556 1557 1558
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1559
	iommu_flush_tlb_pde(domain);
1560 1561

	return ret;
1562 1563
}

1564 1565 1566
/*
 * Removes a device from a protection domain (unlocked)
 */
1567
static void __detach_device(struct device *dev)
1568
{
1569
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1570
	struct iommu_dev_data *alias_data;
1571
	struct protection_domain *domain;
1572
	unsigned long flags;
1573

1574
	BUG_ON(!dev_data->domain);
1575

1576 1577 1578
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1579

1580
	if (dev_data->alias != dev) {
1581
		alias_data = get_dev_data(dev_data->alias);
1582 1583
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1584 1585
	}

1586 1587 1588
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1589
	spin_unlock_irqrestore(&domain->lock, flags);
1590 1591 1592

	/*
	 * If we run in passthrough mode the device must be assigned to the
1593 1594
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1595
	 */
1596 1597
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1598
		__attach_device(dev, pt_domain);
1599 1600 1601 1602 1603
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1604
static void detach_device(struct device *dev)
1605 1606 1607 1608 1609
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1610
	__detach_device(dev);
1611 1612
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1613

1614 1615 1616 1617 1618 1619 1620
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1621
	struct iommu_dev_data *dev_data, *alias_data;
1622 1623 1624
	unsigned long flags;
	u16 devid, alias;

1625 1626 1627 1628 1629 1630
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1631 1632

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1633
	dom = dev_data->domain;
1634
	if (dom == NULL &&
1635 1636 1637
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1638 1639 1640 1641 1642 1643 1644
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1645 1646 1647 1648
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1649
	u16 devid;
1650 1651 1652
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1653
	unsigned long flags;
1654

1655 1656
	if (!check_device(dev))
		return 0;
1657

1658 1659
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1660 1661

	switch (action) {
1662
	case BUS_NOTIFY_UNBOUND_DRIVER:
1663 1664 1665

		domain = domain_for_device(dev);

1666 1667
		if (!domain)
			goto out;
1668 1669
		if (iommu_pass_through)
			break;
1670
		detach_device(dev);
1671 1672
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1673 1674 1675 1676 1677

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1678 1679 1680 1681
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1682
		dma_domain = dma_ops_domain_alloc();
1683 1684 1685 1686 1687 1688 1689 1690
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1691
		break;
1692 1693 1694 1695
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1696 1697 1698 1699
	default:
		goto out;
	}

1700
	iommu_flush_device(dev);
1701 1702 1703 1704 1705 1706
	iommu_completion_wait(iommu);

out:
	return 0;
}

1707
static struct notifier_block device_nb = {
1708 1709
	.notifier_call = device_change_notifier,
};
1710

1711 1712 1713 1714 1715
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1729
static struct protection_domain *get_domain(struct device *dev)
1730
{
1731
	struct protection_domain *domain;
1732
	struct dma_ops_domain *dma_dom;
1733
	u16 devid = get_device_id(dev);
1734

1735
	if (!check_device(dev))
1736
		return ERR_PTR(-EINVAL);
1737

1738 1739 1740
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1741

1742 1743
	if (domain != NULL)
		return domain;
1744

1745
	/* Device not bount yet - bind it */
1746
	dma_dom = find_protection_domain(devid);
1747
	if (!dma_dom)
1748 1749
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1750
	DUMP_printk("Using protection domain %d for device %s\n",
1751
		    dma_dom->domain.id, dev_name(dev));
1752

1753
	return &dma_dom->domain;
1754 1755
}

1756 1757
static void update_device_table(struct protection_domain *domain)
{
1758
	struct iommu_dev_data *dev_data;
1759

1760 1761 1762
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		u16 devid = get_device_id(dev_data->dev);
		set_dte_entry(devid, domain);
1763 1764 1765 1766 1767 1768 1769 1770 1771
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1772
	iommu_flush_domain_devices(domain);
1773
	iommu_flush_tlb_pde(domain);
1774 1775 1776 1777

	domain->updated = false;
}

1778 1779 1780 1781 1782 1783
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1784
	struct aperture_range *aperture;
1785 1786
	u64 *pte, *pte_page;

1787 1788 1789 1790 1791
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1792
	if (!pte) {
1793
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1794
				GFP_ATOMIC);
1795 1796
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1797
		pte += PM_LEVEL_INDEX(0, address);
1798

1799
	update_domain(&dom->domain);
1800 1801 1802 1803

	return pte;
}

1804 1805 1806 1807
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1808
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1819
	pte  = dma_ops_get_pte(dom, address);
1820
	if (!pte)
1821
		return DMA_ERROR_CODE;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1839 1840 1841
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1842
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1843 1844
				 unsigned long address)
{
1845
	struct aperture_range *aperture;
1846 1847 1848 1849 1850
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1851 1852 1853 1854 1855 1856 1857
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1858

1859
	pte += PM_LEVEL_INDEX(0, address);
1860 1861 1862 1863 1864 1865

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1866 1867
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1868 1869
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1870 1871
 * Must be called with the domain lock held.
 */
1872 1873 1874 1875
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1876
			       int dir,
1877 1878
			       bool align,
			       u64 dma_mask)
1879 1880
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1881
	dma_addr_t address, start, ret;
1882
	unsigned int pages;
1883
	unsigned long align_mask = 0;
1884 1885
	int i;

1886
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1887 1888
	paddr &= PAGE_MASK;

1889 1890
	INC_STATS_COUNTER(total_map_requests);

1891 1892 1893
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1894 1895 1896
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1897
retry:
1898 1899
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1900
	if (unlikely(address == DMA_ERROR_CODE)) {
1901 1902 1903 1904 1905 1906 1907
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1908
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1909 1910 1911
			goto out;

		/*
1912
		 * aperture was successfully enlarged by 128 MB, try
1913 1914 1915 1916
		 * allocation again
		 */
		goto retry;
	}
1917 1918 1919

	start = address;
	for (i = 0; i < pages; ++i) {
1920
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1921
		if (ret == DMA_ERROR_CODE)
1922 1923
			goto out_unmap;

1924 1925 1926 1927 1928
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1929 1930
	ADD_STATS_COUNTER(alloced_io_mem, size);

1931
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1932
		iommu_flush_tlb(&dma_dom->domain);
1933
		dma_dom->need_flush = false;
1934
	} else if (unlikely(amd_iommu_np_cache))
1935
		iommu_flush_pages(&dma_dom->domain, address, size);
1936

1937 1938
out:
	return address;
1939 1940 1941 1942 1943

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1944
		dma_ops_domain_unmap(dma_dom, start);
1945 1946 1947 1948
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1949
	return DMA_ERROR_CODE;
1950 1951
}

1952 1953 1954 1955
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1956
static void __unmap_single(struct dma_ops_domain *dma_dom,
1957 1958 1959 1960
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
1961
	dma_addr_t flush_addr;
1962 1963 1964
	dma_addr_t i, start;
	unsigned int pages;

1965
	if ((dma_addr == DMA_ERROR_CODE) ||
1966
	    (dma_addr + size > dma_dom->aperture_size))
1967 1968
		return;

1969
	flush_addr = dma_addr;
1970
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1971 1972 1973 1974
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1975
		dma_ops_domain_unmap(dma_dom, start);
1976 1977 1978
		start += PAGE_SIZE;
	}

1979 1980
	SUB_STATS_COUNTER(alloced_io_mem, size);

1981
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1982

1983
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1984
		iommu_flush_pages(&dma_dom->domain, flush_addr, size);
1985 1986
		dma_dom->need_flush = false;
	}
1987 1988
}

1989 1990 1991
/*
 * The exported map_single function for dma_ops.
 */
1992 1993 1994 1995
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1996 1997 1998 1999
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2000
	u64 dma_mask;
2001
	phys_addr_t paddr = page_to_phys(page) + offset;
2002

2003 2004
	INC_STATS_COUNTER(cnt_map_single);

2005 2006
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2007
		return (dma_addr_t)paddr;
2008 2009
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2010

2011 2012
	dma_mask = *dev->dma_mask;

2013
	spin_lock_irqsave(&domain->lock, flags);
2014

2015
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2016
			    dma_mask);
2017
	if (addr == DMA_ERROR_CODE)
2018 2019
		goto out;

2020
	iommu_flush_complete(domain);
2021 2022 2023 2024 2025 2026 2027

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2028 2029 2030
/*
 * The exported unmap_single function for dma_ops.
 */
2031 2032
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2033 2034 2035 2036
{
	unsigned long flags;
	struct protection_domain *domain;

2037 2038
	INC_STATS_COUNTER(cnt_unmap_single);

2039 2040
	domain = get_domain(dev);
	if (IS_ERR(domain))
2041 2042
		return;

2043 2044
	spin_lock_irqsave(&domain->lock, flags);

2045
	__unmap_single(domain->priv, dma_addr, size, dir);
2046

2047
	iommu_flush_complete(domain);
2048 2049 2050 2051

	spin_unlock_irqrestore(&domain->lock, flags);
}

2052 2053 2054 2055
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2070 2071 2072 2073
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2074
static int map_sg(struct device *dev, struct scatterlist *sglist,
2075 2076
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2077 2078 2079 2080 2081 2082 2083
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2084
	u64 dma_mask;
2085

2086 2087
	INC_STATS_COUNTER(cnt_map_sg);

2088 2089
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2090
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2091 2092
	else if (IS_ERR(domain))
		return 0;
2093

2094
	dma_mask = *dev->dma_mask;
2095 2096 2097 2098 2099 2100

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2101
		s->dma_address = __map_single(dev, domain->priv,
2102 2103
					      paddr, s->length, dir, false,
					      dma_mask);
2104 2105 2106 2107 2108 2109 2110 2111

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2112
	iommu_flush_complete(domain);
2113 2114 2115 2116 2117 2118 2119 2120

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2121
			__unmap_single(domain->priv, s->dma_address,
2122 2123 2124 2125 2126 2127 2128 2129 2130
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2131 2132 2133 2134
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2135
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2136 2137
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2138 2139 2140 2141 2142 2143
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2144 2145
	INC_STATS_COUNTER(cnt_unmap_sg);

2146 2147
	domain = get_domain(dev);
	if (IS_ERR(domain))
2148 2149
		return;

2150 2151 2152
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2153
		__unmap_single(domain->priv, s->dma_address,
2154 2155 2156 2157
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2158
	iommu_flush_complete(domain);
2159 2160 2161 2162

	spin_unlock_irqrestore(&domain->lock, flags);
}

2163 2164 2165
/*
 * The exported alloc_coherent function for dma_ops.
 */
2166 2167 2168 2169 2170 2171 2172
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2173
	u64 dma_mask = dev->coherent_dma_mask;
2174

2175 2176
	INC_STATS_COUNTER(cnt_alloc_coherent);

2177 2178
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2179 2180 2181
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2182 2183
	} else if (IS_ERR(domain))
		return NULL;
2184

2185 2186 2187
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2188 2189 2190

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2191
		return NULL;
2192 2193 2194

	paddr = virt_to_phys(virt_addr);

2195 2196 2197
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2198 2199
	spin_lock_irqsave(&domain->lock, flags);

2200
	*dma_addr = __map_single(dev, domain->priv, paddr,
2201
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2202

2203
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2204
		spin_unlock_irqrestore(&domain->lock, flags);
2205
		goto out_free;
J
Jiri Slaby 已提交
2206
	}
2207

2208
	iommu_flush_complete(domain);
2209 2210 2211 2212

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2213 2214 2215 2216 2217 2218

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2219 2220
}

2221 2222 2223
/*
 * The exported free_coherent function for dma_ops.
 */
2224 2225 2226 2227 2228 2229
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2230 2231
	INC_STATS_COUNTER(cnt_free_coherent);

2232 2233
	domain = get_domain(dev);
	if (IS_ERR(domain))
2234 2235
		goto free_mem;

2236 2237
	spin_lock_irqsave(&domain->lock, flags);

2238
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2239

2240
	iommu_flush_complete(domain);
2241 2242 2243 2244 2245 2246 2247

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2248 2249 2250 2251 2252 2253
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2254
	return check_device(dev);
2255 2256
}

2257
/*
2258 2259
 * The function for pre-allocating protection domains.
 *
2260 2261 2262 2263
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2264
static void prealloc_protection_domains(void)
2265 2266 2267
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2268
	u16 devid;
2269

2270
	for_each_pci_dev(dev) {
2271 2272 2273

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2274
			continue;
2275 2276

		/* Is there already any domain for it? */
2277
		if (domain_for_device(&dev->dev))
2278
			continue;
2279 2280 2281

		devid = get_device_id(&dev->dev);

2282
		dma_dom = dma_ops_domain_alloc();
2283 2284 2285
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2286 2287
		dma_dom->target_dev = devid;

2288
		attach_device(&dev->dev, &dma_dom->domain);
2289

2290
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2291 2292 2293
	}
}

2294
static struct dma_map_ops amd_iommu_dma_ops = {
2295 2296
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2297 2298
	.map_page = map_page,
	.unmap_page = unmap_page,
2299 2300
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2301
	.dma_supported = amd_iommu_dma_supported,
2302 2303
};

2304 2305 2306
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2307 2308 2309 2310 2311 2312

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2313 2314 2315 2316 2317
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2318 2319 2320 2321 2322
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2323
	for_each_iommu(iommu) {
2324
		iommu->default_dom = dma_ops_domain_alloc();
2325 2326
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2327
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2328 2329 2330 2331 2332
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2333
	/*
2334
	 * Pre-allocate the protection domains for each device.
2335
	 */
2336
	prealloc_protection_domains();
2337 2338

	iommu_detected = 1;
2339
	swiotlb = 0;
2340

2341
	/* Make the driver finally visible to the drivers */
2342 2343
	dma_ops = &amd_iommu_dma_ops;

2344 2345
	amd_iommu_stats_init();

2346 2347 2348 2349
	return 0;

free_domains:

2350
	for_each_iommu(iommu) {
2351 2352 2353 2354 2355 2356
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2370
	struct iommu_dev_data *dev_data, *next;
2371 2372 2373 2374
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2375 2376 2377
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

2378
		__detach_device(dev);
2379 2380
		atomic_set(&dev_data->bind, 0);
	}
2381 2382 2383 2384

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2385 2386 2387 2388 2389
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2390 2391
	del_domain_from_list(domain);

2392 2393 2394 2395 2396 2397 2398
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2399 2400 2401 2402 2403
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2404
		return NULL;
2405 2406

	spin_lock_init(&domain->lock);
2407
	mutex_init(&domain->api_lock);
2408 2409
	domain->id = domain_id_alloc();
	if (!domain->id)
2410
		goto out_err;
2411
	INIT_LIST_HEAD(&domain->dev_list);
2412

2413 2414
	add_domain_to_list(domain);

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2429
		goto out_free;
2430 2431

	domain->mode    = PAGE_MODE_3_LEVEL;
2432 2433 2434 2435 2436 2437 2438 2439 2440
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2441
	protection_domain_free(domain);
2442 2443 2444 2445

	return -ENOMEM;
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2460
	protection_domain_free(domain);
2461 2462 2463 2464

	dom->priv = NULL;
}

2465 2466 2467
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2468
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2469 2470 2471
	struct amd_iommu *iommu;
	u16 devid;

2472
	if (!check_device(dev))
2473 2474
		return;

2475
	devid = get_device_id(dev);
2476

2477
	if (dev_data->domain != NULL)
2478
		detach_device(dev);
2479 2480 2481 2482 2483

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2484
	iommu_flush_device(dev);
2485 2486 2487
	iommu_completion_wait(iommu);
}

2488 2489 2490 2491
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2492
	struct iommu_dev_data *dev_data;
2493
	struct amd_iommu *iommu;
2494
	int ret;
2495 2496
	u16 devid;

2497
	if (!check_device(dev))
2498 2499
		return -EINVAL;

2500 2501
	dev_data = dev->archdata.iommu;

2502
	devid = get_device_id(dev);
2503 2504 2505 2506 2507

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2508
	if (dev_data->domain)
2509
		detach_device(dev);
2510

2511
	ret = attach_device(dev, domain);
2512 2513 2514

	iommu_completion_wait(iommu);

2515
	return ret;
2516 2517
}

2518 2519
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2520
{
2521
	unsigned long page_size = 0x1000UL << gfp_order;
2522 2523 2524 2525 2526 2527 2528 2529 2530
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2531
	mutex_lock(&domain->api_lock);
2532
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2533 2534
	mutex_unlock(&domain->api_lock);

2535
	return ret;
2536 2537
}

2538 2539
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2540 2541
{
	struct protection_domain *domain = dom->priv;
2542
	unsigned long page_size, unmap_size;
2543

2544
	page_size  = 0x1000UL << gfp_order;
2545

2546
	mutex_lock(&domain->api_lock);
2547
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2548
	mutex_unlock(&domain->api_lock);
2549

2550
	iommu_flush_tlb_pde(domain);
2551

2552
	return get_order(unmap_size);
2553 2554
}

2555 2556 2557 2558
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2559
	unsigned long offset_mask;
2560
	phys_addr_t paddr;
2561
	u64 *pte, __pte;
2562

2563
	pte = fetch_pte(domain, iova);
2564

2565
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2566 2567
		return 0;

2568 2569 2570 2571 2572 2573 2574
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2575 2576 2577 2578

	return paddr;
}

S
Sheng Yang 已提交
2579 2580 2581
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2582 2583 2584 2585 2586
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2587 2588 2589
	return 0;
}

2590 2591 2592 2593 2594
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2595 2596
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2597
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2598
	.domain_has_cap = amd_iommu_domain_has_cap,
2599 2600
};

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2613
	struct amd_iommu *iommu;
2614
	struct pci_dev *dev = NULL;
2615
	u16 devid;
2616

2617
	/* allocate passthrough domain */
2618 2619 2620 2621 2622 2623
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2624
	for_each_pci_dev(dev) {
2625
		if (!check_device(&dev->dev))
2626 2627
			continue;

2628 2629
		devid = get_device_id(&dev->dev);

2630
		iommu = amd_iommu_rlookup_table[devid];
2631 2632 2633
		if (!iommu)
			continue;

2634
		attach_device(&dev->dev, pt_domain);
2635 2636 2637 2638 2639 2640
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}