cpufeature.h 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

12
#include <asm/cpucaps.h>
13
#include <asm/fpsimd.h>
14
#include <asm/hwcap.h>
15
#include <asm/sigcontext.h>
16
#include <asm/sysreg.h>
17 18 19 20 21 22 23 24 25 26 27

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

28
#ifndef __ASSEMBLY__
29

30 31
#include <linux/bug.h>
#include <linux/jump_label.h>
32 33
#include <linux/kernel.h>

34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

48 49 50 51 52 53 54 55 56
enum ftr_type {
	FTR_EXACT,	/* Use a predefined safe value */
	FTR_LOWER_SAFE,	/* Smaller value is safe */
	FTR_HIGHER_SAFE,/* Bigger value is safe */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

57 58 59
#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

60 61 62
#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

63 64 65
#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)

66
struct arm64_ftr_bits {
67
	bool		sign;	/* Value is signed ? */
68
	bool		visible;
69
	bool		strict;	/* CPU Sanity check: strict matching required ? */
70 71 72
	enum ftr_type	type;
	u8		shift;
	u8		width;
73
	s64		safe_val; /* safe value for FTR_EXACT features */
74 75 76 77 78 79 80 81
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
82 83
	const char			*name;
	u64				strict_mask;
84
	u64				user_mask;
85
	u64				sys_val;
86
	u64				user_val;
87
	const struct arm64_ftr_bits	*ftr_bits;
88 89
};

90 91
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * CPU capabilities:
 *
 * We use arm64_cpu_capabilities to represent system features, errata work
 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
 * ELF HWCAPs (which are exposed to user).
 *
 * To support systems with heterogeneous CPUs, we need to make sure that we
 * detect the capabilities correctly on the system and take appropriate
 * measures to ensure there are no incompatibilities.
 *
 * This comment tries to explain how we treat the capabilities.
 * Each capability has the following list of attributes :
 *
 * 1) Scope of Detection : The system detects a given capability by
 *    performing some checks at runtime. This could be, e.g, checking the
 *    value of a field in CPU ID feature register or checking the cpu
 *    model. The capability provides a call back ( @matches() ) to
 *    perform the check. Scope defines how the checks should be performed.
 *    There are two cases:
 *
 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
 *        matches. This implies, we have to run the check on all the
 *        booting CPUs, until the system decides that state of the
 *        capability is finalised. (See section 2 below)
 *		Or
 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
 *        matches. This implies, we run the check only once, when the
 *        system decides to finalise the state of the capability. If the
 *        capability relies on a field in one of the CPU ID feature
 *        registers, we use the sanitised value of the register from the
 *        CPU feature infrastructure to make the decision.
 *
 *    The process of detection is usually denoted by "update" capability
 *    state in the code.
 *
 * 2) Finalise the state : The kernel should finalise the state of a
 *    capability at some point during its execution and take necessary
 *    actions if any. Usually, this is done, after all the boot-time
 *    enabled CPUs are brought up by the kernel, so that it can make
 *    better decision based on the available set of CPUs. However, there
 *    are some special cases, where the action is taken during the early
 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
 *    Virtualisation Host Extensions). The kernel usually disallows any
 *    changes to the state of a capability once it finalises the capability
 *    and takes any action, as it may be impossible to execute the actions
 *    safely. A CPU brought up after a capability is "finalised" is
 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
 *    CPUs are treated "late CPUs" for capabilities determined by the boot
 *    CPU.
 *
 * 3) Verification: When a CPU is brought online (e.g, by user or by the
 *    kernel), the kernel should make sure that it is safe to use the CPU,
 *    by verifying that the CPU is compliant with the state of the
 *    capabilities finalised already. This happens via :
 *
 *	secondary_start_kernel()-> check_local_cpu_capabilities()
 *
 *    As explained in (2) above, capabilities could be finalised at
 *    different points in the execution. Each CPU is verified against the
 *    "finalised" capabilities and if there is a conflict, the kernel takes
 *    an action, based on the severity (e.g, a CPU could be prevented from
 *    booting or cause a kernel panic). The CPU is allowed to "affect" the
 *    state of the capability, if it has not been finalised already.
156
 *    See section 5 for more details on conflicts.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
 *
 * 4) Action: As mentioned in (2), the kernel can take an action for each
 *    detected capability, on all CPUs on the system. Appropriate actions
 *    include, turning on an architectural feature, modifying the control
 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
 *    alternatives. The kernel patching is batched and performed at later
 *    point. The actions are always initiated only after the capability
 *    is finalised. This is usally denoted by "enabling" the capability.
 *    The actions are initiated as follows :
 *	a) Action is triggered on all online CPUs, after the capability is
 *	finalised, invoked within the stop_machine() context from
 *	enable_cpu_capabilitie().
 *
 *	b) Any late CPU, brought up after (1), the action is triggered via:
 *
 *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
 *
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
 *    the system state, we could have the following combinations :
 *
 *		x-----------------------------x
 *		| Type  | System   | Late CPU |
 *		|-----------------------------|
 *		|  a    |   y      |    n     |
 *		|-----------------------------|
 *		|  b    |   n      |    y     |
 *		x-----------------------------x
 *
 *     Two separate flag bits are defined to indicate whether each kind of
 *     conflict can be allowed:
 *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
 *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
 *
 *     Case (a) is not permitted for a capability that the system requires
 *     all CPUs to have in order for the capability to be enabled. This is
 *     typical for capabilities that represent enhanced functionality.
 *
 *     Case (b) is not permitted for a capability that must be enabled
 *     during boot if any CPU in the system requires it in order to run
 *     safely. This is typical for erratum work arounds that cannot be
 *     enabled after the corresponding capability is finalised.
 *
 *     In some non-typical cases either both (a) and (b), or neither,
 *     should be permitted. This can be described by including neither
 *     or both flags in the capability's type field.
202 203 204 205 206 207 208 209 210 211 212 213
 */


/* Decide how the capability is detected. On a local CPU vs System wide */
#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
#define ARM64_CPUCAP_SCOPE_MASK			\
	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
	 ARM64_CPUCAP_SCOPE_LOCAL_CPU)

#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Is it permitted for a late CPU to have this capability when system
 * hasn't already enabled it ?
 */
#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
/* Is it safe for a late CPU to miss this capability when system has it */
#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))

/*
 * CPU errata workarounds that need to be enabled at boot time if one or
 * more CPUs in the system requires it. When one of these capabilities
 * has been enabled, it is safe to allow any CPU to boot that doesn't
 * require the workaround. However, it is not safe if a "late" CPU
 * requires a workaround and the system hasn't enabled it already.
 */
#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
/*
 * CPU feature detected at boot time based on system-wide value of a
 * feature. It is safe for a late CPU to have this feature even though
 * the system hasn't enabled it, although the featuer will not be used
 * by Linux in this case. If the system has enabled this feature already,
 * then every late CPU must have it.
 */
#define ARM64_CPUCAP_SYSTEM_FEATURE	\
	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)

242 243 244
struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
245
	u16 type;
246
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
247 248 249 250 251 252
	/*
	 * Take the appropriate actions to enable this capability for this CPU.
	 * For each successfully booted CPU, this method is called for each
	 * globally detected capability.
	 */
	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
253 254 255 256
	union {
		struct {	/* To be used for erratum handling only */
			u32 midr_model;
			u32 midr_range_min, midr_range_max;
257 258 259 260
			const struct arm64_midr_revidr {
				u32 midr_rv;		/* revision/variant */
				u32 revidr_mask;
			} * const fixed_revs;
261
		};
262 263

		struct {	/* Feature register checking */
264
			u32 sys_reg;
265 266 267 268
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
269
			unsigned long hwcap;
270
		};
271 272 273
	};
};

274 275 276 277 278
static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
{
	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}

279 280 281 282 283 284 285 286 287 288 289 290
static inline bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
}

static inline bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
}

291
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
292
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
293
extern struct static_key_false arm64_const_caps_ready;
294

295 296
bool this_cpu_has_cap(unsigned int cap);

297 298 299 300 301
static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

302
/* System capability check for constant caps */
303
static inline bool __cpus_have_const_cap(int num)
304 305 306 307 308 309
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

310 311
static inline bool cpus_have_cap(unsigned int num)
{
312
	if (num >= ARM64_NCAPS)
313
		return false;
314
	return test_bit(num, cpu_hwcaps);
315 316
}

317 318 319 320 321 322 323 324
static inline bool cpus_have_const_cap(int num)
{
	if (static_branch_likely(&arm64_const_caps_ready))
		return __cpus_have_const_cap(num);
	else
		return cpus_have_cap(num);
}

325 326
static inline void cpus_set_cap(unsigned int num)
{
327
	if (num >= ARM64_NCAPS) {
328
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
329
			num, ARM64_NCAPS);
330
	} else {
331
		__set_bit(num, cpu_hwcaps);
332
	}
333 334
}

335
static inline int __attribute_const__
336
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
337
{
338 339 340 341
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
342
cpuid_feature_extract_signed_field(u64 features, int field)
343
{
344
	return cpuid_feature_extract_signed_field_width(features, field, 4);
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

359
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
360 361 362 363
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

364 365 366 367 368
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

369
static inline int __attribute_const__
370
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
371 372
{
	return (sign) ?
373 374 375 376 377 378 379 380
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
381 382
}

383
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
384
{
385
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
386 387
}

388
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
389
{
390 391
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
392 393
}

394 395 396 397 398 399 400
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

401 402 403 404 405 406 407
static inline bool id_aa64pfr0_sve(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);

	return val > 0;
}

408
void __init setup_cpu_features(void);
409 410
void check_local_cpu_capabilities(void);

411

412
u64 read_sanitised_ftr_reg(u32 id);
413

414 415 416 417 418
static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

419 420
static inline bool system_supports_32bit_el0(void)
{
421
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
422 423
}

424 425
static inline bool system_supports_mixed_endian_el0(void)
{
426
	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
427
}
428

429 430 431 432 433
static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

434 435 436
static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
437
		!cpus_have_const_cap(ARM64_HAS_PAN);
438 439
}

440 441
static inline bool system_supports_sve(void)
{
442 443
	return IS_ENABLED(CONFIG_ARM64_SVE) &&
		cpus_have_const_cap(ARM64_SVE);
444 445
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
 * vector length.
 *
 * Use only if SVE is present.
 * This function clobbers the SVE vector length.
 */
static inline u64 read_zcr_features(void)
{
	u64 zcr;
	unsigned int vq_max;

	/*
	 * Set the maximum possible VL, and write zeroes to all other
	 * bits to see if they stick.
	 */
	sve_kernel_enable(NULL);
	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);

	zcr = read_sysreg_s(SYS_ZCR_EL1);
	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
	vq_max = sve_vq_from_vl(sve_get_vl());
	zcr |= vq_max - 1; /* set LEN field to maximum effective value */

	return zcr;
}

473 474
#endif /* __ASSEMBLY__ */

475
#endif