cpufeature.h 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

12
#include <asm/cpucaps.h>
13
#include <asm/fpsimd.h>
14
#include <asm/hwcap.h>
15
#include <asm/sigcontext.h>
16
#include <asm/sysreg.h>
17 18 19 20 21 22 23 24 25 26 27

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

28
#ifndef __ASSEMBLY__
29

30 31
#include <linux/bug.h>
#include <linux/jump_label.h>
32 33
#include <linux/kernel.h>

34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

48 49 50 51 52 53 54 55 56
enum ftr_type {
	FTR_EXACT,	/* Use a predefined safe value */
	FTR_LOWER_SAFE,	/* Smaller value is safe */
	FTR_HIGHER_SAFE,/* Bigger value is safe */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

57 58 59
#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

60 61 62
#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

63 64 65
#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)

66
struct arm64_ftr_bits {
67
	bool		sign;	/* Value is signed ? */
68
	bool		visible;
69
	bool		strict;	/* CPU Sanity check: strict matching required ? */
70 71 72
	enum ftr_type	type;
	u8		shift;
	u8		width;
73
	s64		safe_val; /* safe value for FTR_EXACT features */
74 75 76 77 78 79 80 81
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
82 83
	const char			*name;
	u64				strict_mask;
84
	u64				user_mask;
85
	u64				sys_val;
86
	u64				user_val;
87
	const struct arm64_ftr_bits	*ftr_bits;
88 89
};

90 91
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

92 93 94 95 96 97
/* scope of capability check */
enum {
	SCOPE_SYSTEM,
	SCOPE_LOCAL_CPU,
};

98 99 100
struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
101 102
	int def_scope;			/* default scope */
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
103 104 105 106 107 108
	/*
	 * Take the appropriate actions to enable this capability for this CPU.
	 * For each successfully booted CPU, this method is called for each
	 * globally detected capability.
	 */
	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
109 110 111 112
	union {
		struct {	/* To be used for erratum handling only */
			u32 midr_model;
			u32 midr_range_min, midr_range_max;
113 114 115 116
			const struct arm64_midr_revidr {
				u32 midr_rv;		/* revision/variant */
				u32 revidr_mask;
			} * const fixed_revs;
117
		};
118 119

		struct {	/* Feature register checking */
120
			u32 sys_reg;
121 122 123 124
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
125
			unsigned long hwcap;
126
		};
127 128 129
	};
};

130
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
131
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
132
extern struct static_key_false arm64_const_caps_ready;
133

134 135
bool this_cpu_has_cap(unsigned int cap);

136 137 138 139 140
static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

141
/* System capability check for constant caps */
142
static inline bool __cpus_have_const_cap(int num)
143 144 145 146 147 148
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

149 150
static inline bool cpus_have_cap(unsigned int num)
{
151
	if (num >= ARM64_NCAPS)
152
		return false;
153
	return test_bit(num, cpu_hwcaps);
154 155
}

156 157 158 159 160 161 162 163
static inline bool cpus_have_const_cap(int num)
{
	if (static_branch_likely(&arm64_const_caps_ready))
		return __cpus_have_const_cap(num);
	else
		return cpus_have_cap(num);
}

164 165
static inline void cpus_set_cap(unsigned int num)
{
166
	if (num >= ARM64_NCAPS) {
167
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
168
			num, ARM64_NCAPS);
169
	} else {
170
		__set_bit(num, cpu_hwcaps);
171
	}
172 173
}

174
static inline int __attribute_const__
175
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
176
{
177 178 179 180
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
181
cpuid_feature_extract_signed_field(u64 features, int field)
182
{
183
	return cpuid_feature_extract_signed_field_width(features, field, 4);
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

198
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
199 200 201 202
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

203 204 205 206 207
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

208
static inline int __attribute_const__
209
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
210 211
{
	return (sign) ?
212 213 214 215 216 217 218 219
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
220 221
}

222
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
223
{
224
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
225 226
}

227
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
228
{
229 230
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
231 232
}

233 234 235 236 237 238 239
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

240 241 242 243 244 245 246
static inline bool id_aa64pfr0_sve(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);

	return val > 0;
}

247
void __init setup_cpu_features(void);
248 249
void check_local_cpu_capabilities(void);

250

251
u64 read_sanitised_ftr_reg(u32 id);
252

253 254 255 256 257
static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

258 259
static inline bool system_supports_32bit_el0(void)
{
260
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
261 262
}

263 264
static inline bool system_supports_mixed_endian_el0(void)
{
265
	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
266
}
267

268 269 270 271 272
static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

273 274 275
static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
276
		!cpus_have_const_cap(ARM64_HAS_PAN);
277 278
}

279 280
static inline bool system_supports_sve(void)
{
281 282
	return IS_ENABLED(CONFIG_ARM64_SVE) &&
		cpus_have_const_cap(ARM64_SVE);
283 284
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
 * vector length.
 *
 * Use only if SVE is present.
 * This function clobbers the SVE vector length.
 */
static inline u64 read_zcr_features(void)
{
	u64 zcr;
	unsigned int vq_max;

	/*
	 * Set the maximum possible VL, and write zeroes to all other
	 * bits to see if they stick.
	 */
	sve_kernel_enable(NULL);
	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);

	zcr = read_sysreg_s(SYS_ZCR_EL1);
	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
	vq_max = sve_vq_from_vl(sve_get_vl());
	zcr |= vq_max - 1; /* set LEN field to maximum effective value */

	return zcr;
}

312 313
#endif /* __ASSEMBLY__ */

314
#endif