cpufeature.h 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

12
#include <asm/cpucaps.h>
13
#include <asm/hwcap.h>
14
#include <asm/sysreg.h>
15 16 17 18 19 20 21 22 23 24 25

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

26
#ifndef __ASSEMBLY__
27

28 29
#include <linux/bug.h>
#include <linux/jump_label.h>
30 31
#include <linux/kernel.h>

32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

46 47 48 49 50 51 52 53 54
enum ftr_type {
	FTR_EXACT,	/* Use a predefined safe value */
	FTR_LOWER_SAFE,	/* Smaller value is safe */
	FTR_HIGHER_SAFE,/* Bigger value is safe */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

55 56 57
#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

58
struct arm64_ftr_bits {
59 60
	bool		sign;	/* Value is signed ? */
	bool		strict;	/* CPU Sanity check: strict matching required ? */
61 62 63
	enum ftr_type	type;
	u8		shift;
	u8		width;
64
	s64		safe_val; /* safe value for FTR_EXACT features */
65 66 67 68 69 70 71 72
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
73 74 75 76
	const char			*name;
	u64				strict_mask;
	u64				sys_val;
	const struct arm64_ftr_bits	*ftr_bits;
77 78
};

79 80
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

81 82 83 84 85 86
/* scope of capability check */
enum {
	SCOPE_SYSTEM,
	SCOPE_LOCAL_CPU,
};

87 88 89
struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
90 91
	int def_scope;			/* default scope */
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
92
	int (*enable)(void *);		/* Called on all active CPUs */
93 94 95 96 97
	union {
		struct {	/* To be used for erratum handling only */
			u32 midr_model;
			u32 midr_range_min, midr_range_max;
		};
98 99

		struct {	/* Feature register checking */
100
			u32 sys_reg;
101 102 103 104
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
105
			unsigned long hwcap;
106
		};
107 108 109
	};
};

110
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
111
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
112

113 114
bool this_cpu_has_cap(unsigned int cap);

115 116 117 118 119
static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

120 121 122 123 124 125 126 127
/* System capability check for constant caps */
static inline bool cpus_have_const_cap(int num)
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

128 129
static inline bool cpus_have_cap(unsigned int num)
{
130
	if (num >= ARM64_NCAPS)
131
		return false;
132
	return test_bit(num, cpu_hwcaps);
133 134 135 136
}

static inline void cpus_set_cap(unsigned int num)
{
137
	if (num >= ARM64_NCAPS) {
138
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
139
			num, ARM64_NCAPS);
140
	} else {
141
		__set_bit(num, cpu_hwcaps);
142 143
		static_branch_enable(&cpu_hwcap_keys[num]);
	}
144 145
}

146
static inline int __attribute_const__
147
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
148
{
149 150 151 152
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
153
cpuid_feature_extract_signed_field(u64 features, int field)
154
{
155
	return cpuid_feature_extract_signed_field_width(features, field, 4);
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

170
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
171 172 173 174
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

175 176 177 178 179 180 181 182
static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return (sign) ?
		cpuid_feature_extract_signed_field(features, field) :
		cpuid_feature_extract_unsigned_field(features, field);
}

183
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
184
{
185
	return (s64)cpuid_feature_extract_field(val, ftrp->shift, ftrp->sign);
186 187
}

188
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
189
{
190 191
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
192 193
}

194 195 196 197 198 199 200
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

201
void __init setup_cpu_features(void);
202

203
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
204
			    const char *info);
205
void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps);
206 207
void check_local_cpu_capabilities(void);

208
void update_cpu_errata_workarounds(void);
209
void __init enable_errata_workarounds(void);
210
void verify_local_cpu_errata_workarounds(void);
211

212 213
u64 read_system_reg(u32 id);

214 215 216 217 218
static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

219 220
static inline bool system_supports_32bit_el0(void)
{
221
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
222 223
}

224 225 226 227
static inline bool system_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_system_reg(SYS_ID_AA64MMFR0_EL1));
}
228

229 230 231 232 233
static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

234 235 236 237 238 239
static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
		!cpus_have_cap(ARM64_HAS_PAN);
}

240 241
#endif /* __ASSEMBLY__ */

242
#endif