cpufeature.h 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

12
#include <asm/cpucaps.h>
13
#include <asm/fpsimd.h>
14
#include <asm/hwcap.h>
15
#include <asm/sigcontext.h>
16
#include <asm/sysreg.h>
17 18 19 20 21 22 23 24 25 26 27

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

28
#ifndef __ASSEMBLY__
29

30 31
#include <linux/bug.h>
#include <linux/jump_label.h>
32 33
#include <linux/kernel.h>

34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

48 49 50 51 52 53 54 55 56
enum ftr_type {
	FTR_EXACT,	/* Use a predefined safe value */
	FTR_LOWER_SAFE,	/* Smaller value is safe */
	FTR_HIGHER_SAFE,/* Bigger value is safe */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

57 58 59
#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

60 61 62
#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

63
struct arm64_ftr_bits {
64
	bool		sign;	/* Value is signed ? */
65
	bool		visible;
66
	bool		strict;	/* CPU Sanity check: strict matching required ? */
67 68 69
	enum ftr_type	type;
	u8		shift;
	u8		width;
70
	s64		safe_val; /* safe value for FTR_EXACT features */
71 72 73 74 75 76 77 78
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
79 80
	const char			*name;
	u64				strict_mask;
81
	u64				user_mask;
82
	u64				sys_val;
83
	u64				user_val;
84
	const struct arm64_ftr_bits	*ftr_bits;
85 86
};

87 88
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

89 90 91 92 93 94
/* scope of capability check */
enum {
	SCOPE_SYSTEM,
	SCOPE_LOCAL_CPU,
};

95 96 97
struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
98 99
	int def_scope;			/* default scope */
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
100
	int (*enable)(void *);		/* Called on all active CPUs */
101 102 103 104 105
	union {
		struct {	/* To be used for erratum handling only */
			u32 midr_model;
			u32 midr_range_min, midr_range_max;
		};
106 107

		struct {	/* Feature register checking */
108
			u32 sys_reg;
109 110 111 112
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
113
			unsigned long hwcap;
114
		};
115 116 117
	};
};

118
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
119
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
120
extern struct static_key_false arm64_const_caps_ready;
121

122 123
bool this_cpu_has_cap(unsigned int cap);

124 125 126 127 128
static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

129
/* System capability check for constant caps */
130
static inline bool __cpus_have_const_cap(int num)
131 132 133 134 135 136
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

137 138
static inline bool cpus_have_cap(unsigned int num)
{
139
	if (num >= ARM64_NCAPS)
140
		return false;
141
	return test_bit(num, cpu_hwcaps);
142 143
}

144 145 146 147 148 149 150 151
static inline bool cpus_have_const_cap(int num)
{
	if (static_branch_likely(&arm64_const_caps_ready))
		return __cpus_have_const_cap(num);
	else
		return cpus_have_cap(num);
}

152 153
static inline void cpus_set_cap(unsigned int num)
{
154
	if (num >= ARM64_NCAPS) {
155
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
156
			num, ARM64_NCAPS);
157
	} else {
158
		__set_bit(num, cpu_hwcaps);
159
	}
160 161
}

162
static inline int __attribute_const__
163
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
164
{
165 166 167 168
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
169
cpuid_feature_extract_signed_field(u64 features, int field)
170
{
171
	return cpuid_feature_extract_signed_field_width(features, field, 4);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

186
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
187 188 189 190
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

191 192 193 194 195
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

196
static inline int __attribute_const__
197
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
198 199
{
	return (sign) ?
200 201 202 203 204 205 206 207
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
208 209
}

210
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
211
{
212
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
213 214
}

215
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
216
{
217 218
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
219 220
}

221 222 223 224 225 226 227
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

228 229 230 231 232 233 234
static inline bool id_aa64pfr0_sve(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);

	return val > 0;
}

235
void __init setup_cpu_features(void);
236

237
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
238
			    const char *info);
239
void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps);
240 241
void check_local_cpu_capabilities(void);

242
void update_cpu_errata_workarounds(void);
243
void __init enable_errata_workarounds(void);
244
void verify_local_cpu_errata_workarounds(void);
245

246
u64 read_sanitised_ftr_reg(u32 id);
247

248 249 250 251 252
static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

253 254
static inline bool system_supports_32bit_el0(void)
{
255
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
256 257
}

258 259
static inline bool system_supports_mixed_endian_el0(void)
{
260
	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
261
}
262

263 264 265 266 267
static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

268 269 270
static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
271
		!cpus_have_const_cap(ARM64_HAS_PAN);
272 273
}

274 275 276 277 278
static inline bool system_supports_sve(void)
{
	return false;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*
 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
 * vector length.
 *
 * Use only if SVE is present.
 * This function clobbers the SVE vector length.
 */
static inline u64 read_zcr_features(void)
{
	u64 zcr;
	unsigned int vq_max;

	/*
	 * Set the maximum possible VL, and write zeroes to all other
	 * bits to see if they stick.
	 */
	sve_kernel_enable(NULL);
	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);

	zcr = read_sysreg_s(SYS_ZCR_EL1);
	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
	vq_max = sve_vq_from_vl(sve_get_vl());
	zcr |= vq_max - 1; /* set LEN field to maximum effective value */

	return zcr;
}

306 307
#endif /* __ASSEMBLY__ */

308
#endif