soc-cache.c 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

M
Mark Brown 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#ifdef CONFIG_SPI_MASTER
static int do_spi_write(void *control, const char *data, int len)
{
	struct spi_device *spi = control;
	int ret;

	ret = spi_write(spi, data, len);
	if (ret < 0)
		return ret;

	return len;
}
#endif

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value, const void *data, int len)
{
	int ret;

	if (!snd_soc_codec_volatile_register(codec, reg) &&
	    reg < codec->driver->reg_cache_size &&
	    !codec->cache_bypass) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, len);
	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

64
static unsigned int do_hw_read(struct snd_soc_codec *codec, unsigned int reg)
65
{
66 67
	int ret;
	unsigned int val;
68 69

	if (reg >= codec->driver->reg_cache_size ||
70 71 72 73
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
		if (codec->cache_only)
			return -1;
74

75 76
		BUG_ON(!codec->hw_read);
		return codec->hw_read(codec, reg);
77 78
	}

79 80 81 82
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
83 84
}

85
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
86
				      unsigned int reg)
87 88 89 90
{
	return do_hw_read(codec, reg);
}

91
static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
92
			      unsigned int value)
93
{
94
	u16 data;
95

96
	data = cpu_to_be16((reg << 12) | (value & 0xffffff));
97

98
	return do_hw_write(codec, reg, value, &data, 2);
99 100
}

101 102 103
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
104
	return do_hw_read(codec, reg);
105 106 107 108 109 110 111 112 113 114
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

115
	return do_hw_write(codec, reg, value, data, 2);
116 117
}

118 119 120 121 122
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

123 124
	reg &= 0xff;
	data[0] = reg;
125 126
	data[1] = value & 0xff;

127
	return do_hw_write(codec, reg, value, data, 2);
128 129 130 131 132
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
133
	return do_hw_read(codec, reg);
134 135
}

136 137 138 139 140 141 142 143 144
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

145
	return do_hw_write(codec, reg, value, data, 3);
146 147 148 149 150
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
151
	return do_hw_read(codec, reg);
152 153
}

154
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
155 156 157
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
158 159 160 161 162 163 164 165
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
166 167
	xfer[0].len = reglen;
	xfer[0].buf = reg;
168 169 170 171

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
172 173
	xfer[1].len = datalen;
	xfer[1].buf = data;
174 175

	ret = i2c_transfer(client->adapter, xfer, 2);
176
	if (ret == 2)
177
		return 0;
178 179 180 181 182 183 184 185 186
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
187
					 unsigned int r)
188 189 190 191
{
	u8 reg = r;
	u8 data;
	int ret;
192

193 194 195
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
196 197 198 199 200 201
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
202
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
203 204 205 206 207 208 209
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

210 211
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
212 213 214 215 216 217
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
218

219 220 221 222 223 224 225 226
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

227 228
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
229 230 231 232 233 234 235 236
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
237
				      unsigned int reg)
238
{
239
	return do_hw_read(codec, reg);
240 241 242
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
243
			      unsigned int value)
244 245 246 247 248 249
{
	u8 data[3];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;
250

251
	return do_hw_write(codec, reg, value, data, 3);
252 253
}

254 255 256 257 258 259 260 261
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

262 263
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
264 265 266 267 268 269 270 271 272 273
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
274
	return do_hw_read(codec, reg);
275 276 277 278 279 280 281 282 283 284 285 286
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

287
	return do_hw_write(codec, reg, value, data, 4);
288
}
289

290 291 292 293 294
/* Primitive bulk write support for soc-cache.  The data pointed to by
 * `data' needs to already be in the form the hardware expects
 * including any leading register specific data.  Any data written
 * through this function will not go through the cache as it only
 * handles writing to volatile or out of bounds registers.
295 296 297 298 299 300
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

301 302 303 304
	/* To ensure that we don't get out of sync with the cache, check
	 * whether the base register is volatile or if we've directly asked
	 * to bypass the cache.  Out of bounds registers are considered
	 * volatile.
305
	 */
306 307
	if (!codec->cache_bypass
	    && !snd_soc_codec_volatile_register(codec, reg)
308 309 310 311
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
312
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
313 314 315
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
316 317
#endif
#if defined(CONFIG_SPI_MASTER)
318
	case SND_SOC_SPI:
319
		ret = spi_write(codec->control_data, data, len);
320
		break;
321
#endif
322 323 324 325 326 327 328 329 330 331 332 333
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

334 335 336
static struct {
	int addr_bits;
	int data_bits;
337
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
338
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
339
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
340
} io_types[] = {
341 342 343 344
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
	},
345 346 347 348 349 350 351
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
352
		.i2c_read = snd_soc_8_8_read_i2c,
353 354 355 356 357 358
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
	},
359 360 361 362 363
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
	},
364 365 366 367 368
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
	},
369 370 371 372 373 374 375 376
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
377
 * @control: Control bus used.
378 379 380 381 382 383 384 385 386 387 388 389 390
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
391 392
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
393 394 395 396 397 398 399 400 401 402 403 404 405 406
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

407 408
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
409
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
410

411 412
	switch (control) {
	case SND_SOC_I2C:
R
Randy Dunlap 已提交
413
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
414 415
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
416 417
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
418 419 420 421

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
422 423 424
		break;

	case SND_SOC_SPI:
425
#ifdef CONFIG_SPI_MASTER
M
Mark Brown 已提交
426
		codec->hw_write = do_spi_write;
427
#endif
428 429 430 431

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
432 433 434
		break;
	}

435 436 437
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
466 467 468
	if (!base)
		return -1;

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
549
	int ret;
550 551 552 553 554 555

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
556 557
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, rbnode->reg));
558 559 560
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
561
		codec->cache_bypass = 1;
562
		ret = snd_soc_write(codec, rbnode->reg, val);
563
		codec->cache_bypass = 0;
564 565
		if (ret)
			return ret;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
652
	struct snd_soc_rbtree_node *rbtree_node;
653
	struct snd_soc_rbtree_ctx *rbtree_ctx;
654 655 656 657
	unsigned int val;
	unsigned int word_size;
	int i;
	int ret;
658 659 660 661 662 663 664 665

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

666
	if (!codec->reg_def_copy)
667 668
		return 0;

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	/*
	 * populate the rbtree with the initialized registers.  All other
	 * registers will be inserted when they are first modified.
	 */
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
		val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
		if (!val)
			continue;
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
		if (!rbtree_node) {
			ret = -ENOMEM;
			snd_soc_cache_exit(codec);
			break;
		}
		rbtree_node->reg = i;
		rbtree_node->value = val;
		rbtree_node->defval = val;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
688 689 690 691 692
	}

	return 0;
}

693
#ifdef CONFIG_SND_SOC_CACHE_LZO
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
784
	const struct snd_soc_codec_driver *codec_drv;
785 786 787

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
788
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
789 790 791 792 793
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
794
	const struct snd_soc_codec_driver *codec_drv;
795 796

	codec_drv = codec->driver;
797
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
798 799 800 801 802
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
803
	const struct snd_soc_codec_driver *codec_drv;
804 805

	codec_drv = codec->driver;
806
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
807 808 809 810 811 812 813
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
814
	int ret;
815 816 817

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
818 819
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
820 821 822
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
823
		codec->cache_bypass = 1;
824
		ret = snd_soc_write(codec, i, val);
825
		codec->cache_bypass = 0;
826 827
		if (ret)
			return ret;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
868 869 870 871
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
925
	if (ret >= 0)
926
		/* fetch the value from the cache */
927 928
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
970
	size_t bmp_size;
971
	const struct snd_soc_codec_driver *codec_drv;
972 973 974 975 976 977 978 979 980 981 982 983 984
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
985
	if (!codec->reg_def_copy)
986 987
		tofree = 1;

988
	if (!codec->reg_def_copy) {
989
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
990
		if (!codec->reg_def_copy)
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1010
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1011 1012 1013 1014 1015
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1016
	bitmap_zero(sync_bmp, bmp_size);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1028
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1029 1030 1031 1032 1033 1034 1035
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1036
	p = codec->reg_def_copy;
1037
	end = codec->reg_def_copy + codec->reg_size;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1053 1054 1055 1056
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1057 1058 1059 1060
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1061 1062 1063 1064
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1065 1066
	return ret;
}
1067
#endif
1068

1069 1070 1071
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1072
	int ret;
1073
	const struct snd_soc_codec_driver *codec_drv;
1074 1075 1076 1077
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1078 1079
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
1080 1081 1082
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1083 1084
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1085 1086
						  i, codec_drv->reg_word_size) == val)
				continue;
1087 1088 1089
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1090 1091 1092 1093 1094 1095 1096 1097 1098
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1099 1100
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1101 1102 1103 1104 1105 1106
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1107 1108
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1123
	const struct snd_soc_codec_driver *codec_drv;
1124 1125 1126

	codec_drv = codec->driver;

1127 1128
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1129
					   codec->reg_size, GFP_KERNEL);
1130
	else
1131
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1132 1133 1134 1135 1136 1137 1138 1139
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1140
	/* Flat *must* be the first entry for fallback */
1141
	{
1142
		.id = SND_SOC_FLAT_COMPRESSION,
1143
		.name = "flat",
1144 1145 1146 1147 1148
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1149
	},
1150
#ifdef CONFIG_SND_SOC_CACHE_LZO
1151 1152
	{
		.id = SND_SOC_LZO_COMPRESSION,
1153
		.name = "LZO",
1154 1155 1156 1157 1158
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1159
	},
1160
#endif
1161 1162
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1163
		.name = "rbtree",
1164 1165 1166 1167 1168
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1169 1170 1171 1172 1173 1174 1175 1176
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1177
		if (cache_types[i].id == codec->compress_type)
1178
			break;
1179 1180

	/* Fall back to flat compression */
1181
	if (i == ARRAY_SIZE(cache_types)) {
1182 1183 1184
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1185 1186 1187 1188 1189
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1190 1191 1192 1193
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1194
		return codec->cache_ops->init(codec);
1195
	}
1196
	return -ENOSYS;
1197 1198 1199 1200 1201 1202 1203 1204
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1205 1206 1207 1208
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1209
		return codec->cache_ops->exit(codec);
1210
	}
1211
	return -ENOSYS;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1235
	return -ENOSYS;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1260
	return -ENOSYS;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1276
	const char *name;
1277 1278 1279 1280 1281

	if (!codec->cache_sync) {
		return 0;
	}

1282
	if (!codec->cache_ops || !codec->cache_ops->sync)
1283
		return -ENOSYS;
1284

1285 1286 1287 1288 1289
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1299 1300
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

int snd_soc_default_writable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].write;
}
EXPORT_SYMBOL_GPL(snd_soc_default_writable_register);