core.c 13.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/fpu/types.h>
12
#include <asm/fpu/xstate.h>
13
#include <asm/traps.h>
14

15
#include <linux/hardirq.h>
16
#include <linux/pkeys.h>
L
Linus Torvalds 已提交
17

18 19 20
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>

21 22 23 24
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
25
union fpregs_state init_fpstate __read_mostly;
26

I
Ingo Molnar 已提交
27 28 29 30 31 32 33 34 35 36 37
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
38 39
static DEFINE_PER_CPU(bool, in_kernel_fpu);

40
/*
41
 * Track which context is using the FPU on the CPU:
42
 */
43
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
44

45
static void kernel_fpu_disable(void)
46
{
47
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
48 49 50
	this_cpu_write(in_kernel_fpu, true);
}

51
static void kernel_fpu_enable(void)
52
{
53
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
54 55 56
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
57 58 59 60 61
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

62
static bool interrupted_kernel_fpu_idle(void)
63
{
A
Andy Lutomirski 已提交
64
	return !kernel_fpu_disabled();
65 66 67 68 69 70 71 72 73 74
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
75
static bool interrupted_user_mode(void)
76 77
{
	struct pt_regs *regs = get_irq_regs();
78
	return regs && user_mode(regs);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

96
void __kernel_fpu_begin(void)
97
{
98
	struct fpu *fpu = &current->thread.fpu;
99

100
	WARN_ON_FPU(!irq_fpu_usable());
101

102
	kernel_fpu_disable();
103

104
	if (fpu->fpregs_active) {
105 106 107 108
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
109
		copy_fpregs_to_fpstate(fpu);
110
	} else {
111
		__cpu_invalidate_fpregs_state();
112 113
	}
}
114
EXPORT_SYMBOL(__kernel_fpu_begin);
115

116
void __kernel_fpu_end(void)
117
{
118
	struct fpu *fpu = &current->thread.fpu;
119

120
	if (fpu->fpregs_active)
121
		copy_kernel_to_fpregs(&fpu->state);
122

123
	kernel_fpu_enable();
124
}
125
EXPORT_SYMBOL(__kernel_fpu_end);
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

141
/*
I
Ingo Molnar 已提交
142
 * Save the FPU state (mark it for reload if necessary):
143 144
 *
 * This only ever gets called for the current task.
145
 */
146
void fpu__save(struct fpu *fpu)
147
{
148
	WARN_ON_FPU(fpu != &current->thread.fpu);
149

150
	preempt_disable();
151
	trace_x86_fpu_before_save(fpu);
152
	if (fpu->fpregs_active) {
153
		if (!copy_fpregs_to_fpstate(fpu)) {
A
Andy Lutomirski 已提交
154
			copy_kernel_to_fpregs(&fpu->state);
155
		}
156
	}
157
	trace_x86_fpu_after_save(fpu);
158 159
	preempt_enable();
}
160
EXPORT_SYMBOL_GPL(fpu__save);
161

162 163 164
/*
 * Legacy x87 fpstate state init:
 */
165
static inline void fpstate_init_fstate(struct fregs_state *fp)
166 167 168 169 170 171 172
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

173
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
174
{
175
	if (!static_cpu_has(X86_FEATURE_FPU)) {
176
		fpstate_init_soft(&state->soft);
177
		return;
178 179
	}

180
	memset(state, 0, fpu_kernel_xstate_size);
181

182 183 184 185 186
	/*
	 * XRSTORS requires that this bit is set in xcomp_bv, or
	 * it will #GP. Make sure it is replaced after the memset().
	 */
	if (static_cpu_has(X86_FEATURE_XSAVES))
187 188
		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT |
					       xfeatures_mask;
189

190
	if (static_cpu_has(X86_FEATURE_FXSR))
191
		fpstate_init_fxstate(&state->fxsave);
192
	else
193
		fpstate_init_fstate(&state->fsave);
194
}
195
EXPORT_SYMBOL_GPL(fpstate_init);
196

197
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
198
{
199 200 201
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

202
	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
203 204
		return 0;

205
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
206

207 208 209 210
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
A
Andy Lutomirski 已提交
211
	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
212 213 214 215

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
216 217 218
	 * In lazy mode, if the FPU context isn't loaded into
	 * fpregs, CR0.TS will be set and do_device_not_available
	 * will load the FPU context.
219 220 221 222 223 224 225 226 227 228 229
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
230 231
		memcpy(&src_fpu->state, &dst_fpu->state,
		       fpu_kernel_xstate_size);
232

A
Andy Lutomirski 已提交
233
		copy_kernel_to_fpregs(&src_fpu->state);
234
	}
235
	preempt_enable();
236

237 238 239
	trace_x86_fpu_copy_src(src_fpu);
	trace_x86_fpu_copy_dst(dst_fpu);

I
Ingo Molnar 已提交
240 241 242
	return 0;
}

243
/*
244 245
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
246
 */
247
void fpu__activate_curr(struct fpu *fpu)
248
{
249
	WARN_ON_FPU(fpu != &current->thread.fpu);
250

251
	if (!fpu->fpstate_active) {
252
		fpstate_init(&fpu->state);
253
		trace_x86_fpu_init_state(fpu);
254

255
		trace_x86_fpu_activate_state(fpu);
256 257 258
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
259
}
260
EXPORT_SYMBOL_GPL(fpu__activate_curr);
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
279
		if (!fpu->fpstate_active) {
280
			fpstate_init(&fpu->state);
281
			trace_x86_fpu_init_state(fpu);
282

283
			trace_x86_fpu_activate_state(fpu);
284 285 286 287 288 289
			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

290
/*
291
 * This function must be called before we write a task's fpstate.
292
 *
293 294
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
295
 *
296 297 298 299 300 301
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
302
 */
303
void fpu__activate_fpstate_write(struct fpu *fpu)
304
{
305
	/*
306 307
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
308
	 */
309 310 311 312
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
313
		__fpu_invalidate_fpregs_state(fpu);
314
	} else {
315
		fpstate_init(&fpu->state);
316
		trace_x86_fpu_init_state(fpu);
317

318
		trace_x86_fpu_activate_state(fpu);
319 320
		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
321
	}
L
Linus Torvalds 已提交
322 323
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * This function must be called before we write the current
 * task's fpstate.
 *
 * This call gets the current FPU register state and moves
 * it in to the 'fpstate'.  Preemption is disabled so that
 * no writes to the 'fpstate' can occur from context
 * swiches.
 *
 * Must be followed by a fpu__current_fpstate_write_end().
 */
void fpu__current_fpstate_write_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * Ensure that the context-switching code does not write
	 * over the fpstate while we are doing our update.
	 */
	preempt_disable();

	/*
	 * Move the fpregs in to the fpu's 'fpstate'.
	 */
	fpu__activate_fpstate_read(fpu);

	/*
	 * The caller is about to write to 'fpu'.  Ensure that no
	 * CPU thinks that its fpregs match the fpstate.  This
	 * ensures we will not be lazy and skip a XRSTOR in the
	 * future.
	 */
356
	__fpu_invalidate_fpregs_state(fpu);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
}

/*
 * This function must be paired with fpu__current_fpstate_write_begin()
 *
 * This will ensure that the modified fpstate gets placed back in
 * the fpregs if necessary.
 *
 * Note: This function may be called whether or not an _actual_
 * write to the fpstate occurred.
 */
void fpu__current_fpstate_write_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * 'fpu' now has an updated copy of the state, but the
	 * registers may still be out of date.  Update them with
	 * an XRSTOR if they are active.
	 */
	if (fpregs_active())
		copy_kernel_to_fpregs(&fpu->state);

	/*
	 * Our update is done and the fpregs/fpstate are in sync
	 * if necessary.  Context switches can happen again.
	 */
	preempt_enable();
}

387
/*
388 389 390 391
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
392
 *
393 394 395
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
396
 */
397
void fpu__restore(struct fpu *fpu)
398
{
399
	fpu__activate_curr(fpu);
400

401
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
402
	kernel_fpu_disable();
403
	trace_x86_fpu_before_restore(fpu);
404
	fpregs_activate(fpu);
405
	copy_kernel_to_fpregs(&fpu->state);
406
	trace_x86_fpu_after_restore(fpu);
407 408
	kernel_fpu_enable();
}
409
EXPORT_SYMBOL_GPL(fpu__restore);
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

434 435
	trace_x86_fpu_dropped(fpu);

436 437 438
	preempt_enable();
}

439 440 441 442 443 444 445
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
446
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
447
	else if (static_cpu_has(X86_FEATURE_FXSR))
448
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
449 450
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
451 452 453

	if (boot_cpu_has(X86_FEATURE_OSPKE))
		copy_init_pkru_to_fpregs();
454 455
}

456
/*
457 458 459 460
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
461
 */
462
void fpu__clear(struct fpu *fpu)
463
{
464
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
465

466 467 468 469 470 471 472 473
	fpu__drop(fpu);

	/*
	 * Make sure fpstate is cleared and initialized.
	 */
	if (static_cpu_has(X86_FEATURE_FPU)) {
		fpu__activate_curr(fpu);
		user_fpu_begin();
474
		copy_init_fpstate_to_fpregs();
475 476 477
	}
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
496
		 * fully reproduce the context of the exception.
497
		 */
498 499 500 501 502 503 504
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}
505 506 507 508 509 510 511 512 513

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
514 515 516 517 518
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}