core.c 13.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/traps.h>
12

13
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
14

15 16 17 18
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
19
union fpregs_state init_fpstate __read_mostly;
20

I
Ingo Molnar 已提交
21 22 23 24 25 26 27 28 29 30 31
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
32 33
static DEFINE_PER_CPU(bool, in_kernel_fpu);

34
/*
35
 * Track which context is using the FPU on the CPU:
36
 */
37
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
38

39
static void kernel_fpu_disable(void)
40
{
41
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
42 43 44
	this_cpu_write(in_kernel_fpu, true);
}

45
static void kernel_fpu_enable(void)
46
{
47
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
48 49 50
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
51 52 53 54 55
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

56 57 58
/*
 * Were we in an interrupt that interrupted kernel mode?
 *
59
 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
60 61 62 63
 * pair does nothing at all: the thread must not have fpu (so
 * that we don't try to save the FPU state), and TS must
 * be set (so that the clts/stts pair does nothing that is
 * visible in the interrupted kernel thread).
64
 *
65 66
 * Except for the eagerfpu case when we return true; in the likely case
 * the thread has FPU but we are not going to set/clear TS.
67
 */
68
static bool interrupted_kernel_fpu_idle(void)
69
{
I
Ingo Molnar 已提交
70
	if (kernel_fpu_disabled())
71 72
		return false;

73
	if (use_eager_fpu())
74
		return true;
75

76
	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
77 78 79 80 81 82 83 84 85 86
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
87
static bool interrupted_user_mode(void)
88 89
{
	struct pt_regs *regs = get_irq_regs();
90
	return regs && user_mode(regs);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

108
void __kernel_fpu_begin(void)
109
{
110
	struct fpu *fpu = &current->thread.fpu;
111

112
	WARN_ON_FPU(!irq_fpu_usable());
113

114
	kernel_fpu_disable();
115

116
	if (fpu->fpregs_active) {
117 118 119 120
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
121
		copy_fpregs_to_fpstate(fpu);
122
	} else {
123
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
124
		__fpregs_activate_hw();
125 126
	}
}
127
EXPORT_SYMBOL(__kernel_fpu_begin);
128

129
void __kernel_fpu_end(void)
130
{
131
	struct fpu *fpu = &current->thread.fpu;
132

133
	if (fpu->fpregs_active)
134
		copy_kernel_to_fpregs(&fpu->state);
135
	else
136
		__fpregs_deactivate_hw();
137

138
	kernel_fpu_enable();
139
}
140
EXPORT_SYMBOL(__kernel_fpu_end);
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * CR0::TS save/restore functions:
 */
int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(irq_ts_save);

void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}
EXPORT_SYMBOL_GPL(irq_ts_restore);

185
/*
I
Ingo Molnar 已提交
186
 * Save the FPU state (mark it for reload if necessary):
187 188
 *
 * This only ever gets called for the current task.
189
 */
190
void fpu__save(struct fpu *fpu)
191
{
192
	WARN_ON_FPU(fpu != &current->thread.fpu);
193

194
	preempt_disable();
195
	if (fpu->fpregs_active) {
196 197 198 199 200 201
		if (!copy_fpregs_to_fpstate(fpu)) {
			if (use_eager_fpu())
				copy_kernel_to_fpregs(&fpu->state);
			else
				fpregs_deactivate(fpu);
		}
202
	}
203 204
	preempt_enable();
}
205
EXPORT_SYMBOL_GPL(fpu__save);
206

207 208 209
/*
 * Legacy x87 fpstate state init:
 */
210
static inline void fpstate_init_fstate(struct fregs_state *fp)
211 212 213 214 215 216 217
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

218
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
219
{
220
	if (!static_cpu_has(X86_FEATURE_FPU)) {
221
		fpstate_init_soft(&state->soft);
222
		return;
223 224
	}

225
	memset(state, 0, xstate_size);
226

227
	if (static_cpu_has(X86_FEATURE_FXSR))
228
		fpstate_init_fxstate(&state->fxsave);
229
	else
230
		fpstate_init_fstate(&state->fsave);
231
}
232
EXPORT_SYMBOL_GPL(fpstate_init);
233

234
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
235
{
236 237 238 239
	dst_fpu->counter = 0;
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

240
	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
241 242
		return 0;

243
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
244

245 246 247 248 249
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
	if (use_eager_fpu())
250
		memset(&dst_fpu->state.xsave, 0, xstate_size);
251 252 253 254

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
255 256 257
	 * In lazy mode, if the FPU context isn't loaded into
	 * fpregs, CR0.TS will be set and do_device_not_available
	 * will load the FPU context.
258 259 260 261 262 263 264 265 266 267 268 269
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
270 271 272 273 274

		if (use_eager_fpu())
			copy_kernel_to_fpregs(&src_fpu->state);
		else
			fpregs_deactivate(src_fpu);
275
	}
276
	preempt_enable();
277

I
Ingo Molnar 已提交
278 279 280
	return 0;
}

281
/*
282 283
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
284
 */
285
void fpu__activate_curr(struct fpu *fpu)
286
{
287
	WARN_ON_FPU(fpu != &current->thread.fpu);
288

289
	if (!fpu->fpstate_active) {
290
		fpstate_init(&fpu->state);
291

292 293 294
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
295
}
296
EXPORT_SYMBOL_GPL(fpu__activate_curr);
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
315
		if (!fpu->fpstate_active) {
316 317 318 319 320 321 322 323
			fpstate_init(&fpu->state);

			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

324
/*
325
 * This function must be called before we write a task's fpstate.
326
 *
327 328
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
329
 *
330 331 332 333 334 335
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
336
 */
337
void fpu__activate_fpstate_write(struct fpu *fpu)
338
{
339
	/*
340 341
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
342
	 */
343 344 345 346 347
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
		fpu->last_cpu = -1;
348
	} else {
349
		fpstate_init(&fpu->state);
350

351 352
		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
353
	}
L
Linus Torvalds 已提交
354 355
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * This function must be called before we write the current
 * task's fpstate.
 *
 * This call gets the current FPU register state and moves
 * it in to the 'fpstate'.  Preemption is disabled so that
 * no writes to the 'fpstate' can occur from context
 * swiches.
 *
 * Must be followed by a fpu__current_fpstate_write_end().
 */
void fpu__current_fpstate_write_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * Ensure that the context-switching code does not write
	 * over the fpstate while we are doing our update.
	 */
	preempt_disable();

	/*
	 * Move the fpregs in to the fpu's 'fpstate'.
	 */
	fpu__activate_fpstate_read(fpu);

	/*
	 * The caller is about to write to 'fpu'.  Ensure that no
	 * CPU thinks that its fpregs match the fpstate.  This
	 * ensures we will not be lazy and skip a XRSTOR in the
	 * future.
	 */
	fpu->last_cpu = -1;
}

/*
 * This function must be paired with fpu__current_fpstate_write_begin()
 *
 * This will ensure that the modified fpstate gets placed back in
 * the fpregs if necessary.
 *
 * Note: This function may be called whether or not an _actual_
 * write to the fpstate occurred.
 */
void fpu__current_fpstate_write_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * 'fpu' now has an updated copy of the state, but the
	 * registers may still be out of date.  Update them with
	 * an XRSTOR if they are active.
	 */
	if (fpregs_active())
		copy_kernel_to_fpregs(&fpu->state);

	/*
	 * Our update is done and the fpregs/fpstate are in sync
	 * if necessary.  Context switches can happen again.
	 */
	preempt_enable();
}

419
/*
420 421 422 423
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
424
 *
425 426 427
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
428
 */
429
void fpu__restore(struct fpu *fpu)
430
{
431
	fpu__activate_curr(fpu);
432

433
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
434
	kernel_fpu_disable();
435
	fpregs_activate(fpu);
436
	copy_kernel_to_fpregs(&fpu->state);
437
	fpu->counter++;
438 439
	kernel_fpu_enable();
}
440
EXPORT_SYMBOL_GPL(fpu__restore);
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();
	fpu->counter = 0;

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

	preempt_enable();
}

469 470 471 472 473 474 475
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
476
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
477
	else if (static_cpu_has(X86_FEATURE_FXSR))
478
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
479 480
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
481 482
}

483
/*
484 485 486 487
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
488
 */
489
void fpu__clear(struct fpu *fpu)
490
{
491
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
492

493
	if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
494
		/* FPU state will be reallocated lazily at the first use. */
495
		fpu__drop(fpu);
496
	} else {
497
		if (!fpu->fpstate_active) {
498
			fpu__activate_curr(fpu);
499 500
			user_fpu_begin();
		}
501
		copy_init_fpstate_to_fpregs();
502 503 504
	}
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
523
		 * fully reproduce the context of the exception.
524
		 */
525 526 527 528 529 530 531
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}
532 533 534 535 536 537 538 539 540

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
541 542 543 544 545
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}