core.c 13.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/fpu/types.h>
12
#include <asm/traps.h>
13

14
#include <linux/hardirq.h>
15
#include <linux/pkeys.h>
L
Linus Torvalds 已提交
16

17 18 19
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>

20 21 22 23
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
24
union fpregs_state init_fpstate __read_mostly;
25

I
Ingo Molnar 已提交
26 27 28 29 30 31 32 33 34 35 36
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
37 38
static DEFINE_PER_CPU(bool, in_kernel_fpu);

39
/*
40
 * Track which context is using the FPU on the CPU:
41
 */
42
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43

44
static void kernel_fpu_disable(void)
45
{
46
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 48 49
	this_cpu_write(in_kernel_fpu, true);
}

50
static void kernel_fpu_enable(void)
51
{
52
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 54 55
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
56 57 58 59 60
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

61
static bool interrupted_kernel_fpu_idle(void)
62
{
A
Andy Lutomirski 已提交
63
	return !kernel_fpu_disabled();
64 65 66 67 68 69 70 71 72 73
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
74
static bool interrupted_user_mode(void)
75 76
{
	struct pt_regs *regs = get_irq_regs();
77
	return regs && user_mode(regs);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

95
void __kernel_fpu_begin(void)
96
{
97
	struct fpu *fpu = &current->thread.fpu;
98

99
	WARN_ON_FPU(!irq_fpu_usable());
100

101
	kernel_fpu_disable();
102

103
	if (fpu->fpregs_active) {
104 105 106 107
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
108
		copy_fpregs_to_fpstate(fpu);
109
	} else {
110
		__cpu_invalidate_fpregs_state();
111 112
	}
}
113
EXPORT_SYMBOL(__kernel_fpu_begin);
114

115
void __kernel_fpu_end(void)
116
{
117
	struct fpu *fpu = &current->thread.fpu;
118

119
	if (fpu->fpregs_active)
120
		copy_kernel_to_fpregs(&fpu->state);
121

122
	kernel_fpu_enable();
123
}
124
EXPORT_SYMBOL(__kernel_fpu_end);
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

140
/*
I
Ingo Molnar 已提交
141
 * Save the FPU state (mark it for reload if necessary):
142 143
 *
 * This only ever gets called for the current task.
144
 */
145
void fpu__save(struct fpu *fpu)
146
{
147
	WARN_ON_FPU(fpu != &current->thread.fpu);
148

149
	preempt_disable();
150
	trace_x86_fpu_before_save(fpu);
151
	if (fpu->fpregs_active) {
152
		if (!copy_fpregs_to_fpstate(fpu)) {
A
Andy Lutomirski 已提交
153
			copy_kernel_to_fpregs(&fpu->state);
154
		}
155
	}
156
	trace_x86_fpu_after_save(fpu);
157 158
	preempt_enable();
}
159
EXPORT_SYMBOL_GPL(fpu__save);
160

161 162 163
/*
 * Legacy x87 fpstate state init:
 */
164
static inline void fpstate_init_fstate(struct fregs_state *fp)
165 166 167 168 169 170 171
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

172
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
173
{
174
	if (!static_cpu_has(X86_FEATURE_FPU)) {
175
		fpstate_init_soft(&state->soft);
176
		return;
177 178
	}

179
	memset(state, 0, fpu_kernel_xstate_size);
180

181 182 183 184 185 186 187
	/*
	 * XRSTORS requires that this bit is set in xcomp_bv, or
	 * it will #GP. Make sure it is replaced after the memset().
	 */
	if (static_cpu_has(X86_FEATURE_XSAVES))
		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;

188
	if (static_cpu_has(X86_FEATURE_FXSR))
189
		fpstate_init_fxstate(&state->fxsave);
190
	else
191
		fpstate_init_fstate(&state->fsave);
192
}
193
EXPORT_SYMBOL_GPL(fpstate_init);
194

195
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
196
{
197 198 199
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

200
	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
201 202
		return 0;

203
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
204

205 206 207 208
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
A
Andy Lutomirski 已提交
209
	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
210 211 212 213

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
214 215 216
	 * In lazy mode, if the FPU context isn't loaded into
	 * fpregs, CR0.TS will be set and do_device_not_available
	 * will load the FPU context.
217 218 219 220 221 222 223 224 225 226 227
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
228 229
		memcpy(&src_fpu->state, &dst_fpu->state,
		       fpu_kernel_xstate_size);
230

A
Andy Lutomirski 已提交
231
		copy_kernel_to_fpregs(&src_fpu->state);
232
	}
233
	preempt_enable();
234

235 236 237
	trace_x86_fpu_copy_src(src_fpu);
	trace_x86_fpu_copy_dst(dst_fpu);

I
Ingo Molnar 已提交
238 239 240
	return 0;
}

241
/*
242 243
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
244
 */
245
void fpu__activate_curr(struct fpu *fpu)
246
{
247
	WARN_ON_FPU(fpu != &current->thread.fpu);
248

249
	if (!fpu->fpstate_active) {
250
		fpstate_init(&fpu->state);
251
		trace_x86_fpu_init_state(fpu);
252

253
		trace_x86_fpu_activate_state(fpu);
254 255 256
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
257
}
258
EXPORT_SYMBOL_GPL(fpu__activate_curr);
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
277
		if (!fpu->fpstate_active) {
278
			fpstate_init(&fpu->state);
279
			trace_x86_fpu_init_state(fpu);
280

281
			trace_x86_fpu_activate_state(fpu);
282 283 284 285 286 287
			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

288
/*
289
 * This function must be called before we write a task's fpstate.
290
 *
291 292
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
293
 *
294 295 296 297 298 299
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
300
 */
301
void fpu__activate_fpstate_write(struct fpu *fpu)
302
{
303
	/*
304 305
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
306
	 */
307 308 309 310
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
311
		__fpu_invalidate_fpregs_state(fpu);
312
	} else {
313
		fpstate_init(&fpu->state);
314
		trace_x86_fpu_init_state(fpu);
315

316
		trace_x86_fpu_activate_state(fpu);
317 318
		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
319
	}
L
Linus Torvalds 已提交
320 321
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * This function must be called before we write the current
 * task's fpstate.
 *
 * This call gets the current FPU register state and moves
 * it in to the 'fpstate'.  Preemption is disabled so that
 * no writes to the 'fpstate' can occur from context
 * swiches.
 *
 * Must be followed by a fpu__current_fpstate_write_end().
 */
void fpu__current_fpstate_write_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * Ensure that the context-switching code does not write
	 * over the fpstate while we are doing our update.
	 */
	preempt_disable();

	/*
	 * Move the fpregs in to the fpu's 'fpstate'.
	 */
	fpu__activate_fpstate_read(fpu);

	/*
	 * The caller is about to write to 'fpu'.  Ensure that no
	 * CPU thinks that its fpregs match the fpstate.  This
	 * ensures we will not be lazy and skip a XRSTOR in the
	 * future.
	 */
354
	__fpu_invalidate_fpregs_state(fpu);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

/*
 * This function must be paired with fpu__current_fpstate_write_begin()
 *
 * This will ensure that the modified fpstate gets placed back in
 * the fpregs if necessary.
 *
 * Note: This function may be called whether or not an _actual_
 * write to the fpstate occurred.
 */
void fpu__current_fpstate_write_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * 'fpu' now has an updated copy of the state, but the
	 * registers may still be out of date.  Update them with
	 * an XRSTOR if they are active.
	 */
	if (fpregs_active())
		copy_kernel_to_fpregs(&fpu->state);

	/*
	 * Our update is done and the fpregs/fpstate are in sync
	 * if necessary.  Context switches can happen again.
	 */
	preempt_enable();
}

385
/*
386 387 388 389
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
390
 *
391 392 393
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
394
 */
395
void fpu__restore(struct fpu *fpu)
396
{
397
	fpu__activate_curr(fpu);
398

399
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
400
	kernel_fpu_disable();
401
	trace_x86_fpu_before_restore(fpu);
402
	fpregs_activate(fpu);
403
	copy_kernel_to_fpregs(&fpu->state);
404
	trace_x86_fpu_after_restore(fpu);
405 406
	kernel_fpu_enable();
}
407
EXPORT_SYMBOL_GPL(fpu__restore);
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

432 433
	trace_x86_fpu_dropped(fpu);

434 435 436
	preempt_enable();
}

437 438 439 440 441 442 443
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
444
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
445
	else if (static_cpu_has(X86_FEATURE_FXSR))
446
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
447 448
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
449 450 451

	if (boot_cpu_has(X86_FEATURE_OSPKE))
		copy_init_pkru_to_fpregs();
452 453
}

454
/*
455 456 457 458
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
459
 */
460
void fpu__clear(struct fpu *fpu)
461
{
462
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
463

464 465 466 467 468 469 470 471
	fpu__drop(fpu);

	/*
	 * Make sure fpstate is cleared and initialized.
	 */
	if (static_cpu_has(X86_FEATURE_FPU)) {
		fpu__activate_curr(fpu);
		user_fpu_begin();
472
		copy_init_fpstate_to_fpregs();
473 474 475
	}
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
494
		 * fully reproduce the context of the exception.
495
		 */
496 497 498 499 500 501 502
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}
503 504 505 506 507 508 509 510 511

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
512 513 514 515 516
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}