core.c 12.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/traps.h>
12

13
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
14

15 16 17 18
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
19
union fpregs_state init_fpstate __read_mostly;
20

I
Ingo Molnar 已提交
21 22 23 24 25 26 27 28 29 30 31
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
32 33
static DEFINE_PER_CPU(bool, in_kernel_fpu);

34
/*
35
 * Track which context is using the FPU on the CPU:
36
 */
37
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
38

39
static void kernel_fpu_disable(void)
40
{
41
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
42 43 44
	this_cpu_write(in_kernel_fpu, true);
}

45
static void kernel_fpu_enable(void)
46
{
47
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
48 49 50
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
51 52 53 54 55
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

56 57 58
/*
 * Were we in an interrupt that interrupted kernel mode?
 *
59
 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
60 61 62 63
 * pair does nothing at all: the thread must not have fpu (so
 * that we don't try to save the FPU state), and TS must
 * be set (so that the clts/stts pair does nothing that is
 * visible in the interrupted kernel thread).
64
 *
65 66
 * Except for the eagerfpu case when we return true; in the likely case
 * the thread has FPU but we are not going to set/clear TS.
67
 */
68
static bool interrupted_kernel_fpu_idle(void)
69
{
I
Ingo Molnar 已提交
70
	if (kernel_fpu_disabled())
71 72
		return false;

73
	if (use_eager_fpu())
74
		return true;
75

76
	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
77 78 79 80 81 82 83 84 85 86
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
87
static bool interrupted_user_mode(void)
88 89
{
	struct pt_regs *regs = get_irq_regs();
90
	return regs && user_mode(regs);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

108
void __kernel_fpu_begin(void)
109
{
110
	struct fpu *fpu = &current->thread.fpu;
111

112
	WARN_ON_FPU(!irq_fpu_usable());
113

114
	kernel_fpu_disable();
115

116
	if (fpu->fpregs_active) {
117
		copy_fpregs_to_fpstate(fpu);
118
	} else {
119
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
120
		__fpregs_activate_hw();
121 122
	}
}
123
EXPORT_SYMBOL(__kernel_fpu_begin);
124

125
void __kernel_fpu_end(void)
126
{
127
	struct fpu *fpu = &current->thread.fpu;
128

129
	if (fpu->fpregs_active) {
130
		if (WARN_ON_FPU(copy_fpstate_to_fpregs(fpu)))
131
			fpu__clear(fpu);
132 133
	} else {
		__fpregs_deactivate_hw();
134
	}
135

136
	kernel_fpu_enable();
137
}
138
EXPORT_SYMBOL(__kernel_fpu_end);
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * CR0::TS save/restore functions:
 */
int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(irq_ts_save);

void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}
EXPORT_SYMBOL_GPL(irq_ts_restore);

183
/*
I
Ingo Molnar 已提交
184
 * Save the FPU state (mark it for reload if necessary):
185 186
 *
 * This only ever gets called for the current task.
187
 */
188
void fpu__save(struct fpu *fpu)
189
{
190
	WARN_ON_FPU(fpu != &current->thread.fpu);
191

192
	preempt_disable();
193
	if (fpu->fpregs_active) {
I
Ingo Molnar 已提交
194
		if (!copy_fpregs_to_fpstate(fpu))
195
			fpregs_deactivate(fpu);
196
	}
197 198
	preempt_enable();
}
199
EXPORT_SYMBOL_GPL(fpu__save);
200

201 202 203
/*
 * Legacy x87 fpstate state init:
 */
204
static inline void fpstate_init_fstate(struct fregs_state *fp)
205 206 207 208 209 210 211
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

212
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
213
{
214
	if (!cpu_has_fpu) {
215
		fpstate_init_soft(&state->soft);
216
		return;
217 218
	}

219
	memset(state, 0, xstate_size);
220

221
	if (cpu_has_fxsr)
222
		fpstate_init_fxstate(&state->fxsave);
223
	else
224
		fpstate_init_fstate(&state->fsave);
225
}
226
EXPORT_SYMBOL_GPL(fpstate_init);
227

228 229 230
/*
 * Copy the current task's FPU state to a new task's FPU context.
 *
231 232
 * In both the 'eager' and the 'lazy' case we save hardware registers
 * directly to the destination buffer.
233
 */
234
static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
235
{
236
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
237

238 239 240 241 242
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
	if (use_eager_fpu())
243
		memset(&dst_fpu->state.xsave, 0, xstate_size);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
	 *
	 * If the FPU context got destroyed in the process (FNSAVE
	 * done on old CPUs) then copy it back into the source
	 * context and mark the current task for lazy restore.
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
		fpregs_deactivate(src_fpu);
265
	}
266
	preempt_enable();
267 268
}

269
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
I
Ingo Molnar 已提交
270
{
271
	dst_fpu->counter = 0;
272
	dst_fpu->fpregs_active = 0;
273
	dst_fpu->last_cpu = -1;
I
Ingo Molnar 已提交
274

275
	if (src_fpu->fpstate_active)
276
		fpu_copy(dst_fpu, src_fpu);
277

I
Ingo Molnar 已提交
278 279 280
	return 0;
}

281
/*
282 283
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
284
 */
285
void fpu__activate_curr(struct fpu *fpu)
286
{
287
	WARN_ON_FPU(fpu != &current->thread.fpu);
288

289
	if (!fpu->fpstate_active) {
290
		fpstate_init(&fpu->state);
291

292 293 294
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
295
}
296
EXPORT_SYMBOL_GPL(fpu__activate_curr);
297

298
/*
299
 * This function must be called before we read or write a task's fpstate.
300
 *
301
 * If the task has not used the FPU before then initialize its
302
 * fpstate.
303
 *
304
 * If the task has used the FPU before then save and unlazy it.
305
 *
306 307
 * [ If this function is used for non-current child tasks, then
 *   after this function call, after registers in the fpstate are
308 309
 *   modified and the child task has woken up, the child task will
 *   restore the modified FPU state from the modified context. If we
310
 *   didn't clear its lazy status here then the lazy in-registers
311
 *   state pending on its former CPU could be restored, corrupting
312
 *   the modifications.
313
 *
314 315 316
 *   This function can be used for the current task as well, but
 *   only for reading the fpstate. Modifications to the fpstate
 *   will be lost on eagerfpu systems. ]
317 318 319 320
 *
 * TODO: A future optimization would be to skip the unlazying in
 *       the read-only case, it's not strictly necessary for
 *       read-only access to the context.
321
 */
322
void fpu__activate_fpstate(struct fpu *fpu)
323
{
324 325 326 327 328 329
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
330
	} else {
331 332 333 334 335 336 337 338 339
		if (fpu->fpstate_active) {
			/* Invalidate any lazy state: */
			fpu->last_cpu = -1;
		} else {
			fpstate_init(&fpu->state);

			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
340
	}
L
Linus Torvalds 已提交
341 342
}

343
/*
344 345 346 347
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
348
 *
349 350 351
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
352
 */
353
void fpu__restore(struct fpu *fpu)
354
{
355
	fpu__activate_curr(fpu);
356

357
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
358
	kernel_fpu_disable();
359
	fpregs_activate(fpu);
360
	if (unlikely(copy_fpstate_to_fpregs(fpu))) {
361
		fpu__clear(fpu);
362
		force_sig_info(SIGSEGV, SEND_SIG_PRIV, current);
363
	} else {
364
		fpu->counter++;
365 366 367
	}
	kernel_fpu_enable();
}
368
EXPORT_SYMBOL_GPL(fpu__restore);
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();
	fpu->counter = 0;

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

	preempt_enable();
}

397 398 399 400 401 402 403
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
404
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
405
	else
406
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
407 408
}

409
/*
410 411 412 413
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
414
 */
415
void fpu__clear(struct fpu *fpu)
416
{
417
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
418

419 420
	if (!use_eager_fpu()) {
		/* FPU state will be reallocated lazily at the first use. */
421
		fpu__drop(fpu);
422
	} else {
423
		if (!fpu->fpstate_active) {
424
			fpu__activate_curr(fpu);
425 426
			user_fpu_begin();
		}
427
		copy_init_fpstate_to_fpregs();
428 429 430
	}
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/*
 * x87 math exception handling:
 */

static inline unsigned short get_fpu_cwd(struct fpu *fpu)
{
	if (cpu_has_fxsr) {
		return fpu->state.fxsave.cwd;
	} else {
		return (unsigned short)fpu->state.fsave.cwd;
	}
}

static inline unsigned short get_fpu_swd(struct fpu *fpu)
{
	if (cpu_has_fxsr) {
		return fpu->state.fxsave.swd;
	} else {
		return (unsigned short)fpu->state.fsave.swd;
	}
}

static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
{
	if (cpu_has_xmm) {
		return fpu->state.fxsave.mxcsr;
	} else {
		return MXCSR_DEFAULT;
	}
}

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
		 * fully reproduce the context of the exception
		 */
		cwd = get_fpu_cwd(fpu);
		swd = get_fpu_swd(fpu);

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
		unsigned short mxcsr = get_fpu_mxcsr(fpu);
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}