core.c 14.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/traps.h>
12

13
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
14

15 16 17
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>

18 19 20 21
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
22
union fpregs_state init_fpstate __read_mostly;
23

I
Ingo Molnar 已提交
24 25 26 27 28 29 30 31 32 33 34
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
35 36
static DEFINE_PER_CPU(bool, in_kernel_fpu);

37
/*
38
 * Track which context is using the FPU on the CPU:
39
 */
40
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
41

42
static void kernel_fpu_disable(void)
43
{
44
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
45 46 47
	this_cpu_write(in_kernel_fpu, true);
}

48
static void kernel_fpu_enable(void)
49
{
50
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
51 52 53
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
54 55 56 57 58
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

59 60 61
/*
 * Were we in an interrupt that interrupted kernel mode?
 *
62
 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
63 64 65 66
 * pair does nothing at all: the thread must not have fpu (so
 * that we don't try to save the FPU state), and TS must
 * be set (so that the clts/stts pair does nothing that is
 * visible in the interrupted kernel thread).
67
 *
68 69
 * Except for the eagerfpu case when we return true; in the likely case
 * the thread has FPU but we are not going to set/clear TS.
70
 */
71
static bool interrupted_kernel_fpu_idle(void)
72
{
I
Ingo Molnar 已提交
73
	if (kernel_fpu_disabled())
74 75
		return false;

76
	if (use_eager_fpu())
77
		return true;
78

79
	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
80 81 82 83 84 85 86 87 88 89
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
90
static bool interrupted_user_mode(void)
91 92
{
	struct pt_regs *regs = get_irq_regs();
93
	return regs && user_mode(regs);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

111
void __kernel_fpu_begin(void)
112
{
113
	struct fpu *fpu = &current->thread.fpu;
114

115
	WARN_ON_FPU(!irq_fpu_usable());
116

117
	kernel_fpu_disable();
118

119
	if (fpu->fpregs_active) {
120 121 122 123
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
124
		copy_fpregs_to_fpstate(fpu);
125
	} else {
126
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
127
		__fpregs_activate_hw();
128 129
	}
}
130
EXPORT_SYMBOL(__kernel_fpu_begin);
131

132
void __kernel_fpu_end(void)
133
{
134
	struct fpu *fpu = &current->thread.fpu;
135

136
	if (fpu->fpregs_active)
137
		copy_kernel_to_fpregs(&fpu->state);
138
	else
139
		__fpregs_deactivate_hw();
140

141
	kernel_fpu_enable();
142
}
143
EXPORT_SYMBOL(__kernel_fpu_end);
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * CR0::TS save/restore functions:
 */
int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(irq_ts_save);

void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}
EXPORT_SYMBOL_GPL(irq_ts_restore);

188
/*
I
Ingo Molnar 已提交
189
 * Save the FPU state (mark it for reload if necessary):
190 191
 *
 * This only ever gets called for the current task.
192
 */
193
void fpu__save(struct fpu *fpu)
194
{
195
	WARN_ON_FPU(fpu != &current->thread.fpu);
196

197
	preempt_disable();
198
	trace_x86_fpu_before_save(fpu);
199
	if (fpu->fpregs_active) {
200 201 202 203 204 205
		if (!copy_fpregs_to_fpstate(fpu)) {
			if (use_eager_fpu())
				copy_kernel_to_fpregs(&fpu->state);
			else
				fpregs_deactivate(fpu);
		}
206
	}
207
	trace_x86_fpu_after_save(fpu);
208 209
	preempt_enable();
}
210
EXPORT_SYMBOL_GPL(fpu__save);
211

212 213 214
/*
 * Legacy x87 fpstate state init:
 */
215
static inline void fpstate_init_fstate(struct fregs_state *fp)
216 217 218 219 220 221 222
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

223
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
224
{
225
	if (!static_cpu_has(X86_FEATURE_FPU)) {
226
		fpstate_init_soft(&state->soft);
227
		return;
228 229
	}

230
	memset(state, 0, xstate_size);
231

232
	if (static_cpu_has(X86_FEATURE_FXSR))
233
		fpstate_init_fxstate(&state->fxsave);
234
	else
235
		fpstate_init_fstate(&state->fsave);
236
}
237
EXPORT_SYMBOL_GPL(fpstate_init);
238

239
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
240
{
241 242 243 244
	dst_fpu->counter = 0;
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

245
	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
246 247
		return 0;

248
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
249

250 251 252 253 254
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
	if (use_eager_fpu())
255
		memset(&dst_fpu->state.xsave, 0, xstate_size);
256 257 258 259

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
260 261 262
	 * In lazy mode, if the FPU context isn't loaded into
	 * fpregs, CR0.TS will be set and do_device_not_available
	 * will load the FPU context.
263 264 265 266 267 268 269 270 271 272 273 274
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
275 276 277 278 279

		if (use_eager_fpu())
			copy_kernel_to_fpregs(&src_fpu->state);
		else
			fpregs_deactivate(src_fpu);
280
	}
281
	preempt_enable();
282

283 284 285
	trace_x86_fpu_copy_src(src_fpu);
	trace_x86_fpu_copy_dst(dst_fpu);

I
Ingo Molnar 已提交
286 287 288
	return 0;
}

289
/*
290 291
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
292
 */
293
void fpu__activate_curr(struct fpu *fpu)
294
{
295
	WARN_ON_FPU(fpu != &current->thread.fpu);
296

297
	if (!fpu->fpstate_active) {
298
		fpstate_init(&fpu->state);
299
		trace_x86_fpu_init_state(fpu);
300

301
		trace_x86_fpu_activate_state(fpu);
302 303 304
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
305
}
306
EXPORT_SYMBOL_GPL(fpu__activate_curr);
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
325
		if (!fpu->fpstate_active) {
326
			fpstate_init(&fpu->state);
327
			trace_x86_fpu_init_state(fpu);
328

329
			trace_x86_fpu_activate_state(fpu);
330 331 332 333 334 335
			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

336
/*
337
 * This function must be called before we write a task's fpstate.
338
 *
339 340
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
341
 *
342 343 344 345 346 347
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
348
 */
349
void fpu__activate_fpstate_write(struct fpu *fpu)
350
{
351
	/*
352 353
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
354
	 */
355 356 357 358 359
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
		fpu->last_cpu = -1;
360
	} else {
361
		fpstate_init(&fpu->state);
362
		trace_x86_fpu_init_state(fpu);
363

364
		trace_x86_fpu_activate_state(fpu);
365 366
		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
367
	}
L
Linus Torvalds 已提交
368 369
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * This function must be called before we write the current
 * task's fpstate.
 *
 * This call gets the current FPU register state and moves
 * it in to the 'fpstate'.  Preemption is disabled so that
 * no writes to the 'fpstate' can occur from context
 * swiches.
 *
 * Must be followed by a fpu__current_fpstate_write_end().
 */
void fpu__current_fpstate_write_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * Ensure that the context-switching code does not write
	 * over the fpstate while we are doing our update.
	 */
	preempt_disable();

	/*
	 * Move the fpregs in to the fpu's 'fpstate'.
	 */
	fpu__activate_fpstate_read(fpu);

	/*
	 * The caller is about to write to 'fpu'.  Ensure that no
	 * CPU thinks that its fpregs match the fpstate.  This
	 * ensures we will not be lazy and skip a XRSTOR in the
	 * future.
	 */
	fpu->last_cpu = -1;
}

/*
 * This function must be paired with fpu__current_fpstate_write_begin()
 *
 * This will ensure that the modified fpstate gets placed back in
 * the fpregs if necessary.
 *
 * Note: This function may be called whether or not an _actual_
 * write to the fpstate occurred.
 */
void fpu__current_fpstate_write_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * 'fpu' now has an updated copy of the state, but the
	 * registers may still be out of date.  Update them with
	 * an XRSTOR if they are active.
	 */
	if (fpregs_active())
		copy_kernel_to_fpregs(&fpu->state);

	/*
	 * Our update is done and the fpregs/fpstate are in sync
	 * if necessary.  Context switches can happen again.
	 */
	preempt_enable();
}

433
/*
434 435 436 437
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
438
 *
439 440 441
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
442
 */
443
void fpu__restore(struct fpu *fpu)
444
{
445
	fpu__activate_curr(fpu);
446

447
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
448
	kernel_fpu_disable();
449
	trace_x86_fpu_before_restore(fpu);
450
	fpregs_activate(fpu);
451
	copy_kernel_to_fpregs(&fpu->state);
452
	fpu->counter++;
453
	trace_x86_fpu_after_restore(fpu);
454 455
	kernel_fpu_enable();
}
456
EXPORT_SYMBOL_GPL(fpu__restore);
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();
	fpu->counter = 0;

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

482 483
	trace_x86_fpu_dropped(fpu);

484 485 486
	preempt_enable();
}

487 488 489 490 491 492 493
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
494
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
495
	else if (static_cpu_has(X86_FEATURE_FXSR))
496
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
497 498
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
499 500
}

501
/*
502 503 504 505
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
506
 */
507
void fpu__clear(struct fpu *fpu)
508
{
509
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
510

511
	if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
512
		/* FPU state will be reallocated lazily at the first use. */
513
		fpu__drop(fpu);
514
	} else {
515
		if (!fpu->fpstate_active) {
516
			fpu__activate_curr(fpu);
517 518
			user_fpu_begin();
		}
519
		copy_init_fpstate_to_fpregs();
520 521 522
	}
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
541
		 * fully reproduce the context of the exception.
542
		 */
543 544 545 546 547 548 549
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}
550 551 552 553 554 555 556 557 558

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
559 560 561 562 563
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}