meson-gx-mmc.c 35.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39
#include <linux/bitfield.h>
40 41 42 43

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
44 45 46
#define   CLK_DIV_MASK GENMASK(5, 0)
#define   CLK_SRC_MASK GENMASK(7, 6)
#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
47 48
#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
49 50 51
#define   CLK_TX_DELAY_MASK GENMASK(19, 16)
#define   CLK_RX_DELAY_MASK GENMASK(23, 20)
#define   CLK_DELAY_STEP_PS 200
52 53
#define   CLK_PHASE_STEP 30
#define   CLK_PHASE_POINT_NUM (360 / CLK_PHASE_STEP)
54 55
#define   CLK_ALWAYS_ON BIT(24)

56
#define SD_EMMC_DELAY 0x4
57 58 59 60 61
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
62
#define   START_DESC_ADDR_MASK GENMASK(31, 2)
63 64

#define SD_EMMC_CFG 0x44
65
#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
66 67 68 69
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
70 71 72
#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define   CFG_RC_CC_MASK GENMASK(15, 12)
73 74
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
75
#define   CFG_CHK_DS BIT(20)
76 77 78 79
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)
80
#define   STATUS_DATI GENMASK(23, 16)
81 82

#define SD_EMMC_IRQ_EN 0x4c
83
#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
84 85 86
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
87 88
#define   IRQ_CRC_ERR \
	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
89 90
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
91 92
#define   IRQ_TIMEOUTS \
	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
93 94 95
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)
96 97 98
#define   IRQ_EN_MASK \
	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
	 IRQ_SDIO)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
114 115
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
116
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
117 118 119 120 121
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE

#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)

122 123
#define MUX_CLK_NUM_PARENTS 2

124 125 126 127 128 129 130
struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};

131 132 133 134 135 136 137 138
struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	struct clk *core_clk;
139
	struct clk *mmc_clk;
140 141
	struct clk *rx_clk;
	struct clk *tx_clk;
142
	unsigned long req_rate;
143

144 145 146 147
	struct pinctrl *pinctrl;
	struct pinctrl_state *pins_default;
	struct pinctrl_state *pins_clk_gate;

148 149 150
	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;
151 152
	struct sd_emmc_desc *descs;
	dma_addr_t descs_dma_addr;
153 154 155 156

	bool vqmmc_enabled;
};

157
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
158 159 160
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
161
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
162 163 164 165 166 167 168 169
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
170
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
171 172 173
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

174
#define CMD_DATA_MASK GENMASK(31, 2)
175 176
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
177
#define CMD_RESP_MASK GENMASK(31, 1)
178 179
#define CMD_RESP_SRAM BIT(0)

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
struct meson_mmc_phase {
	struct clk_hw hw;
	void __iomem *reg;
	unsigned long phase_mask;
	unsigned long delay_mask;
	unsigned int delay_step_ps;
};

#define to_meson_mmc_phase(_hw) container_of(_hw, struct meson_mmc_phase, hw)

static int meson_mmc_clk_get_phase(struct clk_hw *hw)
{
	struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
	unsigned int phase_num = 1 <<  hweight_long(mmc->phase_mask);
	unsigned long period_ps, p, d;
		int degrees;
	u32 val;

	val = readl(mmc->reg);
199
	p = (val & mmc->phase_mask) >> __ffs(mmc->phase_mask);
200 201 202 203 204
	degrees = p * 360 / phase_num;

	if (mmc->delay_mask) {
		period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
					 clk_get_rate(hw->clk));
205
		d = (val & mmc->delay_mask) >> __ffs(mmc->delay_mask);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
		degrees += d * mmc->delay_step_ps * 360 / period_ps;
		degrees %= 360;
	}

	return degrees;
}

static void meson_mmc_apply_phase_delay(struct meson_mmc_phase *mmc,
					unsigned int phase,
					unsigned int delay)
{
	u32 val;

	val = readl(mmc->reg);
	val &= ~mmc->phase_mask;
221
	val |= phase << __ffs(mmc->phase_mask);
222 223 224

	if (mmc->delay_mask) {
		val &= ~mmc->delay_mask;
225
		val |= delay << __ffs(mmc->delay_mask);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	}

	writel(val, mmc->reg);
}

static int meson_mmc_clk_set_phase(struct clk_hw *hw, int degrees)
{
	struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
	unsigned int phase_num = 1 <<  hweight_long(mmc->phase_mask);
	unsigned long period_ps, d = 0, r;
	uint64_t p;

	p = degrees % 360;

	if (!mmc->delay_mask) {
		p = DIV_ROUND_CLOSEST_ULL(p, 360 / phase_num);
	} else {
		period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
					 clk_get_rate(hw->clk));

		/* First compute the phase index (p), the remainder (r) is the
		 * part we'll try to acheive using the delays (d).
		 */
		r = do_div(p, 360 / phase_num);
		d = DIV_ROUND_CLOSEST(r * period_ps,
				      360 * mmc->delay_step_ps);
252
		d = min(d, mmc->delay_mask >> __ffs(mmc->delay_mask));
253 254 255 256 257 258 259 260 261 262 263
	}

	meson_mmc_apply_phase_delay(mmc, p, d);
	return 0;
}

static const struct clk_ops meson_mmc_clk_phase_ops = {
	.get_phase = meson_mmc_clk_get_phase,
	.set_phase = meson_mmc_clk_set_phase,
};

264 265 266 267 268 269 270 271 272 273 274 275
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;

	if (!timeout)
		return SD_EMMC_CMD_TIMEOUT_DATA;

	timeout = roundup_pow_of_two(timeout);

	return min(timeout, 32768U); /* max. 2^15 ms */
}

H
Heiner Kallweit 已提交
276 277 278 279 280 281 282 283 284 285 286
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
		return cmd->mrq->cmd;
	else if (mmc_op_multi(cmd->opcode) &&
		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
		return cmd->mrq->stop;
	else
		return NULL;
}

287 288 289 290 291 292 293 294
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
					struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;
	struct scatterlist *sg;
	int i;
	bool use_desc_chain_mode = true;

295 296 297 298 299 300 301 302 303
	/*
	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
	 * reported. For some strange reason this occurs in descriptor
	 * chain mode only. So let's fall back to bounce buffer mode
	 * for command SD_IO_RW_EXTENDED.
	 */
	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
		return;

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	for_each_sg(data->sg, sg, data->sg_len, i)
		/* check for 8 byte alignment */
		if (sg->offset & 7) {
			WARN_ONCE(1, "unaligned scatterlist buffer\n");
			use_desc_chain_mode = false;
			break;
		}

	if (use_desc_chain_mode)
		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
	return data && data->flags & MMC_DATA_READ &&
	       !meson_mmc_desc_chain_mode(data);
}

static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data)
		return;

	meson_mmc_get_transfer_mode(mmc, mrq);
	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;

	if (!meson_mmc_desc_chain_mode(data))
		return;

	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
                                   mmc_get_dma_dir(data));
	if (!data->sg_count)
		dev_err(mmc_dev(mmc), "dma_map_sg failed");
}

static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
			       int err)
{
	struct mmc_data *data = mrq->data;

	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
}

356 357 358 359 360 361 362 363 364 365
static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
{
	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
	    ios->timing == MMC_TIMING_UHS_DDR50 ||
	    ios->timing == MMC_TIMING_MMC_HS400)
		return true;

	return false;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * Gating the clock on this controller is tricky.  It seems the mmc clock
 * is also used by the controller.  It may crash during some operation if the
 * clock is stopped.  The safest thing to do, whenever possible, is to keep
 * clock running at stop it at the pad using the pinmux.
 */
static void meson_mmc_clk_gate(struct meson_host *host)
{
	u32 cfg;

	if (host->pins_clk_gate) {
		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
	} else {
		/*
		 * If the pinmux is not provided - default to the classic and
		 * unsafe method
		 */
		cfg = readl(host->regs + SD_EMMC_CFG);
		cfg |= CFG_STOP_CLOCK;
		writel(cfg, host->regs + SD_EMMC_CFG);
	}
}

static void meson_mmc_clk_ungate(struct meson_host *host)
{
	u32 cfg;

	if (host->pins_clk_gate)
		pinctrl_select_state(host->pinctrl, host->pins_default);

	/* Make sure the clock is not stopped in the controller */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);
}

402
static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
403 404
{
	struct mmc_host *mmc = host->mmc;
405
	unsigned long rate = ios->clock;
406
	int ret;
407 408
	u32 cfg;

409 410 411 412
	/* DDR modes require higher module clock */
	if (meson_mmc_timing_is_ddr(ios))
		rate <<= 1;

413
	/* Same request - bail-out */
414
	if (host->req_rate == rate)
415 416 417
		return 0;

	/* stop clock */
418
	meson_mmc_clk_gate(host);
419
	host->req_rate = 0;
420

421
	if (!rate) {
422
		mmc->actual_clock = 0;
423
		/* return with clock being stopped */
424 425 426
		return 0;
	}

427 428 429 430 431
	/* Stop the clock during rate change to avoid glitches */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg |= CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

432
	ret = clk_set_rate(host->mmc_clk, rate);
433 434
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
435
			rate, ret);
436
		return ret;
437 438
	}

439
	host->req_rate = rate;
440
	mmc->actual_clock = clk_get_rate(host->mmc_clk);
441

442 443 444 445
	/* We should report the real output frequency of the controller */
	if (meson_mmc_timing_is_ddr(ios))
		mmc->actual_clock >>= 1;

446
	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
447 448
	if (ios->clock != mmc->actual_clock)
		dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
449 450

	/* (re)start clock */
451
	meson_mmc_clk_ungate(host);
452 453

	return 0;
454 455 456 457 458 459 460 461 462 463
}

/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
464 465
	struct clk_mux *mux;
	struct clk_divider *div;
466
	struct meson_mmc_phase *core, *tx, *rx;
467
	struct clk *clk;
468 469 470
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
471
	const char *clk_parent[1];
472
	u32 clk_reg;
473

474 475 476 477 478 479
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
	clk_reg |= CLK_ALWAYS_ON;
	clk_reg |= CLK_DIV_MASK;
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

480 481
	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
482
		struct clk *clk;
483 484 485
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
486 487 488
		clk = devm_clk_get(host->dev, name);
		if (IS_ERR(clk)) {
			if (clk != ERR_PTR(-EPROBE_DEFER))
489
				dev_err(host->dev, "Missing clock %s\n", name);
490
			return PTR_ERR(clk);
491 492
		}

493
		mux_parent_names[i] = __clk_get_name(clk);
494 495 496
	}

	/* create the mux */
497 498 499 500
	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
	if (!mux)
		return -ENOMEM;

501 502 503 504 505
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
506
	init.num_parents = MUX_CLK_NUM_PARENTS;
507

508
	mux->reg = host->regs + SD_EMMC_CLOCK;
509
	mux->shift = __ffs(CLK_SRC_MASK);
510 511 512 513 514 515
	mux->mask = CLK_SRC_MASK >> mux->shift;
	mux->hw.init = &init;

	clk = devm_clk_register(host->dev, &mux->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);
516 517

	/* create the divider */
518 519 520 521
	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return -ENOMEM;

522
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
523
	init.name = clk_name;
524 525
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
526 527 528 529 530
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	div->reg = host->regs + SD_EMMC_CLOCK;
531
	div->shift = __ffs(CLK_DIV_MASK);
532 533
	div->width = __builtin_popcountl(CLK_DIV_MASK);
	div->hw.init = &init;
534
	div->flags = CLK_DIVIDER_ONE_BASED;
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	clk = devm_clk_register(host->dev, &div->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);

	/* create the mmc core clock */
	core = devm_kzalloc(host->dev, sizeof(*core), GFP_KERNEL);
	if (!core)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#core", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = CLK_SET_RATE_PARENT;
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	core->reg = host->regs + SD_EMMC_CLOCK;
	core->phase_mask = CLK_CORE_PHASE_MASK;
	core->hw.init = &init;

	host->mmc_clk = devm_clk_register(host->dev, &core->hw);
558 559
	if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
		return PTR_ERR(host->mmc_clk);
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	/* create the mmc tx clock */
	tx = devm_kzalloc(host->dev, sizeof(*tx), GFP_KERNEL);
	if (!tx)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#tx", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = 0;
	clk_parent[0] = __clk_get_name(host->mmc_clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	tx->reg = host->regs + SD_EMMC_CLOCK;
	tx->phase_mask = CLK_TX_PHASE_MASK;
	tx->delay_mask = CLK_TX_DELAY_MASK;
	tx->delay_step_ps = CLK_DELAY_STEP_PS;
	tx->hw.init = &init;

	host->tx_clk = devm_clk_register(host->dev, &tx->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->tx_clk)))
		return PTR_ERR(host->tx_clk);

	/* create the mmc rx clock */
	rx = devm_kzalloc(host->dev, sizeof(*rx), GFP_KERNEL);
	if (!rx)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#rx", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = 0;
	clk_parent[0] = __clk_get_name(host->mmc_clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	rx->reg = host->regs + SD_EMMC_CLOCK;
	rx->phase_mask = CLK_RX_PHASE_MASK;
	rx->delay_mask = CLK_RX_DELAY_MASK;
	rx->delay_step_ps = CLK_DELAY_STEP_PS;
	rx->hw.init = &init;

	host->rx_clk = devm_clk_register(host->dev, &rx->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->rx_clk)))
		return PTR_ERR(host->rx_clk);

607 608 609
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
610
	if (ret)
611
		return ret;
612

613 614 615 616 617 618 619 620 621 622
	/*
	 * Set phases : These values are mostly the datasheet recommended ones
	 * except for the Tx phase. Datasheet recommends 180 but some cards
	 * fail at initialisation with it. 270 works just fine, it fixes these
	 * initialisation issues and enable eMMC DDR52 mode.
	 */
	clk_set_phase(host->mmc_clk, 180);
	clk_set_phase(host->tx_clk, 270);
	clk_set_phase(host->rx_clk, 0);

623
	return clk_prepare_enable(host->mmc_clk);
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static void meson_mmc_shift_map(unsigned long *map, unsigned long shift)
{
	DECLARE_BITMAP(left, CLK_PHASE_POINT_NUM);
	DECLARE_BITMAP(right, CLK_PHASE_POINT_NUM);

	/*
	 * shift the bitmap right and reintroduce the dropped bits on the left
	 * of the bitmap
	 */
	bitmap_shift_right(right, map, shift, CLK_PHASE_POINT_NUM);
	bitmap_shift_left(left, map, CLK_PHASE_POINT_NUM - shift,
			  CLK_PHASE_POINT_NUM);
	bitmap_or(map, left, right, CLK_PHASE_POINT_NUM);
}

static void meson_mmc_find_next_region(unsigned long *map,
				       unsigned long *start,
				       unsigned long *stop)
{
	*start = find_next_bit(map, CLK_PHASE_POINT_NUM, *start);
	*stop = find_next_zero_bit(map, CLK_PHASE_POINT_NUM, *start);
}

static int meson_mmc_find_tuning_point(unsigned long *test)
{
	unsigned long shift, stop, offset = 0, start = 0, size = 0;

	/* Get the all good/all bad situation out the way */
	if (bitmap_full(test, CLK_PHASE_POINT_NUM))
		return 0; /* All points are good so point 0 will do */
	else if (bitmap_empty(test, CLK_PHASE_POINT_NUM))
		return -EIO; /* No successful tuning point */

	/*
	 * Now we know there is a least one region find. Make sure it does
	 * not wrap by the shifting the bitmap if necessary
	 */
	shift = find_first_zero_bit(test, CLK_PHASE_POINT_NUM);
	if (shift != 0)
		meson_mmc_shift_map(test, shift);

	while (start < CLK_PHASE_POINT_NUM) {
		meson_mmc_find_next_region(test, &start, &stop);

		if ((stop - start) > size) {
			offset = start;
			size = stop - start;
		}

		start = stop;
	}

	/* Get the center point of the region */
	offset += (size / 2);

	/* Shift the result back */
	offset = (offset + shift) % CLK_PHASE_POINT_NUM;

	return offset;
}

static int meson_mmc_clk_phase_tuning(struct mmc_host *mmc, u32 opcode,
				      struct clk *clk)
{
	int point, ret;
	DECLARE_BITMAP(test, CLK_PHASE_POINT_NUM);

	dev_dbg(mmc_dev(mmc), "%s phase/delay tunning...\n",
		__clk_get_name(clk));
	bitmap_zero(test, CLK_PHASE_POINT_NUM);

	/* Explore tuning points */
	for (point = 0; point < CLK_PHASE_POINT_NUM; point++) {
		clk_set_phase(clk, point * CLK_PHASE_STEP);
		ret = mmc_send_tuning(mmc, opcode, NULL);
		if (!ret)
			set_bit(point, test);
	}

	/* Find the optimal tuning point and apply it */
	point = meson_mmc_find_tuning_point(test);
	if (point < 0)
		return point; /* tuning failed */

	clk_set_phase(clk, point * CLK_PHASE_STEP);
	dev_dbg(mmc_dev(mmc), "success with phase: %d\n",
		clk_get_phase(clk));
	return 0;
}

static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct meson_host *host = mmc_priv(mmc);
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	int ret;

	/*
	 * If this is the initial tuning, try to get a sane Rx starting
	 * phase before doing the actual tuning.
	 */
	if (!mmc->doing_retune) {
		ret = meson_mmc_clk_phase_tuning(mmc, opcode, host->rx_clk);

		if (ret)
			return ret;
	}

	ret = meson_mmc_clk_phase_tuning(mmc, opcode, host->tx_clk);
	if (ret)
		return ret;
735 736 737 738

	return meson_mmc_clk_phase_tuning(mmc, opcode, host->rx_clk);
}

739 740 741
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
742 743
	u32 bus_width, val;
	int err;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
J
Jerome Brunet 已提交
764

765
		/* Reset phases */
J
Jerome Brunet 已提交
766
		clk_set_phase(host->rx_clk, 0);
767
		clk_set_phase(host->tx_clk, 270);
J
Jerome Brunet 已提交
768

769 770 771 772 773 774 775
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
776
				dev_err(host->dev,
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
803 804
	val &= ~CFG_BUS_WIDTH_MASK;
	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
805

806
	val &= ~CFG_DDR;
807
	if (meson_mmc_timing_is_ddr(ios))
808 809 810 811 812 813
		val |= CFG_DDR;

	val &= ~CFG_CHK_DS;
	if (ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_CHK_DS;

814
	err = meson_mmc_clk_set(host, ios);
815 816 817 818 819
	if (err)
		dev_err(host->dev, "Failed to set clock: %d\n,", err);

	writel(val, host->regs + SD_EMMC_CFG);
	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
820 821
}

822 823
static void meson_mmc_request_done(struct mmc_host *mmc,
				   struct mmc_request *mrq)
824 825 826 827 828 829 830
{
	struct meson_host *host = mmc_priv(mmc);

	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 cfg, blksz_old;

	cfg = readl(host->regs + SD_EMMC_CFG);
	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);

	if (!is_power_of_2(blksz))
		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);

	blksz = ilog2(blksz);

	/* check if block-size matches, if not update */
	if (blksz == blksz_old)
		return;

	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
		blksz_old, blksz);

	cfg &= ~CFG_BLK_LEN_MASK;
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
	writel(cfg, host->regs + SD_EMMC_CFG);
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
			*cmd_cfg |= CMD_CFG_RESP_128;
		*cmd_cfg |= CMD_CFG_RESP_NUM;

		if (!(cmd->flags & MMC_RSP_CRC))
			*cmd_cfg |= CMD_CFG_RESP_NOCRC;

		if (cmd->flags & MMC_RSP_BUSY)
			*cmd_cfg |= CMD_CFG_R1B;
	} else {
		*cmd_cfg |= CMD_CFG_NO_RESP;
	}
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
	struct meson_host *host = mmc_priv(mmc);
	struct sd_emmc_desc *desc = host->descs;
	struct mmc_data *data = host->cmd->data;
	struct scatterlist *sg;
	u32 start;
	int i;

	if (data->flags & MMC_DATA_WRITE)
		cmd_cfg |= CMD_CFG_DATA_WR;

	if (data->blocks > 1) {
		cmd_cfg |= CMD_CFG_BLOCK_MODE;
		meson_mmc_set_blksz(mmc, data->blksz);
	}

	for_each_sg(data->sg, sg, data->sg_count, i) {
		unsigned int len = sg_dma_len(sg);

		if (data->blocks > 1)
			len /= data->blksz;

		desc[i].cmd_cfg = cmd_cfg;
		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
		if (i > 0)
			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
		desc[i].cmd_arg = host->cmd->arg;
		desc[i].cmd_resp = 0;
		desc[i].cmd_data = sg_dma_address(sg);
	}
	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;

	dma_wmb(); /* ensure descriptor is written before kicked */
	start = host->descs_dma_addr | START_DESC_BUSY;
	writel(start, host->regs + SD_EMMC_START);
}

911 912 913
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
914
	struct mmc_data *data = cmd->data;
915
	u32 cmd_cfg = 0, cmd_data = 0;
916 917 918 919 920
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();

921 922
	host->cmd = cmd;

923
	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
924
	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
925

926
	meson_mmc_set_response_bits(cmd, &cmd_cfg);
927 928

	/* data? */
929
	if (data) {
930
		data->bytes_xfered = 0;
931
		cmd_cfg |= CMD_CFG_DATA_IO;
932
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
933
				      ilog2(meson_mmc_get_timeout_msecs(data)));
934

935 936 937 938 939
		if (meson_mmc_desc_chain_mode(data)) {
			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
			return;
		}

940
		if (data->blocks > 1) {
941
			cmd_cfg |= CMD_CFG_BLOCK_MODE;
942 943
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
					      data->blocks);
944
			meson_mmc_set_blksz(mmc, data->blksz);
945
		} else {
946
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
947 948
		}

949 950
		xfer_bytes = data->blksz * data->blocks;
		if (data->flags & MMC_DATA_WRITE) {
951
			cmd_cfg |= CMD_CFG_DATA_WR;
952
			WARN_ON(xfer_bytes > host->bounce_buf_size);
953
			sg_copy_to_buffer(data->sg, data->sg_len,
954 955 956 957
					  host->bounce_buf, xfer_bytes);
			dma_wmb();
		}

958
		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
959
	} else {
960 961
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT));
962 963 964
	}

	/* Last descriptor */
965 966 967 968
	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(0, host->regs + SD_EMMC_CMD_RSP);
969
	wmb(); /* ensure descriptor is written before kicked */
970
	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
971 972 973 974 975
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);
976 977 978 979 980 981 982 983 984 985 986
	bool needs_pre_post_req = mrq->data &&
			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);

	if (needs_pre_post_req) {
		meson_mmc_get_transfer_mode(mmc, mrq);
		if (!meson_mmc_desc_chain_mode(mrq->data))
			needs_pre_post_req = false;
	}

	if (needs_pre_post_req)
		meson_mmc_pre_req(mmc, mrq);
987 988 989 990

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

991 992 993 994
	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);

	if (needs_pre_post_req)
		meson_mmc_post_req(mmc, mrq, 0);
995 996
}

997
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
1014
	struct mmc_command *cmd;
1015
	struct mmc_data *data;
1016
	u32 irq_en, status, raw_status;
1017
	irqreturn_t ret = IRQ_NONE;
1018

1019
	if (WARN_ON(!host) || WARN_ON(!host->cmd))
1020 1021
		return IRQ_NONE;

1022
	spin_lock(&host->lock);
1023

1024
	cmd = host->cmd;
1025
	data = cmd->data;
1026 1027 1028 1029 1030
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	cmd->error = 0;
1031 1032
	if (status & IRQ_CRC_ERR) {
		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
1033
		cmd->error = -EILSEQ;
1034 1035
		ret = IRQ_HANDLED;
		goto out;
1036
	}
1037 1038 1039

	if (status & IRQ_TIMEOUTS) {
		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
1040
		cmd->error = -ETIMEDOUT;
1041 1042
		ret = IRQ_HANDLED;
		goto out;
1043
	}
1044 1045 1046 1047 1048 1049

	meson_mmc_read_resp(host->mmc, cmd);

	if (status & IRQ_SDIO) {
		dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
		ret = IRQ_HANDLED;
1050 1051
	}

1052 1053 1054
	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
		if (data && !cmd->error)
			data->bytes_xfered = data->blksz * data->blocks;
1055 1056 1057
		if (meson_mmc_bounce_buf_read(data) ||
		    meson_mmc_get_next_command(cmd))
			ret = IRQ_WAKE_THREAD;
1058 1059
		else
			ret = IRQ_HANDLED;
1060 1061 1062
	}

out:
1063 1064
	/* ack all enabled interrupts */
	writel(irq_en, host->regs + SD_EMMC_STATUS);
1065

1066
	if (ret == IRQ_HANDLED)
1067
		meson_mmc_request_done(host->mmc, cmd->mrq);
1068 1069 1070 1071
	else if (ret == IRQ_NONE)
		dev_warn(host->dev,
			 "Unexpected IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
1072 1073 1074 1075 1076 1077 1078 1079

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
H
Heiner Kallweit 已提交
1080
	struct mmc_command *next_cmd, *cmd = host->cmd;
1081 1082 1083 1084
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!cmd))
1085
		return IRQ_NONE;
1086 1087

	data = cmd->data;
1088
	if (meson_mmc_bounce_buf_read(data)) {
1089
		xfer_bytes = data->blksz * data->blocks;
1090 1091 1092
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
1093 1094
	}

H
Heiner Kallweit 已提交
1095 1096 1097
	next_cmd = meson_mmc_get_next_command(cmd);
	if (next_cmd)
		meson_mmc_start_cmd(host->mmc, next_cmd);
1098
	else
H
Heiner Kallweit 已提交
1099
		meson_mmc_request_done(host->mmc, cmd->mrq);
1100

1101
	return IRQ_HANDLED;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
}

/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

1118 1119 1120 1121
static void meson_mmc_cfg_init(struct meson_host *host)
{
	u32 cfg = 0;

1122 1123 1124 1125
	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1126 1127 1128 1129

	writel(cfg, host->regs + SD_EMMC_CFG);
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static int meson_mmc_card_busy(struct mmc_host *mmc)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 regval;

	regval = readl(host->regs + SD_EMMC_STATUS);

	/* We are only interrested in lines 0 to 3, so mask the other ones */
	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
	/* vqmmc regulator is available */
	if (!IS_ERR(mmc->supply.vqmmc)) {
		/*
		 * The usual amlogic setup uses a GPIO to switch from one
		 * regulator to the other. While the voltage ramp up is
		 * pretty fast, care must be taken when switching from 3.3v
		 * to 1.8v. Please make sure the regulator framework is aware
		 * of your own regulator constraints
		 */
		return mmc_regulator_set_vqmmc(mmc, ios);
	}

	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
		return 0;

	return -EINVAL;
}

1162 1163 1164 1165
static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
1166 1167
	.pre_req	= meson_mmc_pre_req,
	.post_req	= meson_mmc_post_req,
1168
	.execute_tuning = meson_mmc_execute_tuning,
1169
	.card_busy	= meson_mmc_card_busy,
1170
	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1171 1172 1173 1174 1175 1176 1177
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
1178
	int ret, irq;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
1193
	if (ret)
1194 1195 1196 1197
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
1198 1199
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

1210
	irq = platform_get_irq(pdev, 0);
1211
	if (irq <= 0) {
1212 1213 1214 1215 1216
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	host->pinctrl = devm_pinctrl_get(&pdev->dev);
	if (IS_ERR(host->pinctrl)) {
		ret = PTR_ERR(host->pinctrl);
		goto free_host;
	}

	host->pins_default = pinctrl_lookup_state(host->pinctrl,
						  PINCTRL_STATE_DEFAULT);
	if (IS_ERR(host->pins_default)) {
		ret = PTR_ERR(host->pins_default);
		goto free_host;
	}

	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
						   "clk-gate");
	if (IS_ERR(host->pins_clk_gate)) {
		dev_warn(&pdev->dev,
			 "can't get clk-gate pinctrl, using clk_stop bit\n");
		host->pins_clk_gate = NULL;
	}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

	ret = meson_mmc_clk_init(host);
	if (ret)
1250
		goto err_core_clk;
1251

1252 1253 1254
	/* set config to sane default */
	meson_mmc_cfg_init(host);

1255 1256 1257
	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

1258
	/* clear, ack and enable interrupts */
1259
	writel(0, host->regs + SD_EMMC_IRQ_EN);
1260 1261 1262 1263
	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
	       host->regs + SD_EMMC_STATUS);
	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
	       host->regs + SD_EMMC_IRQ_EN);
1264

1265 1266
	ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
					meson_mmc_irq_thread, IRQF_SHARED,
1267
					NULL, host);
1268
	if (ret)
1269
		goto err_init_clk;
1270

H
Heiner Kallweit 已提交
1271
	mmc->caps |= MMC_CAP_CMD23;
1272 1273
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1274 1275
	mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
	mmc->max_seg_size = mmc->max_req_size;
1276

1277
	/* data bounce buffer */
1278
	host->bounce_buf_size = mmc->max_req_size;
1279 1280 1281 1282 1283 1284
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
1285
		goto err_init_clk;
1286 1287
	}

1288 1289 1290 1291 1292 1293 1294 1295
	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
		      &host->descs_dma_addr, GFP_KERNEL);
	if (!host->descs) {
		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
		ret = -ENOMEM;
		goto err_bounce_buf;
	}

1296 1297 1298 1299 1300
	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

1301 1302 1303
err_bounce_buf:
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1304 1305
err_init_clk:
	clk_disable_unprepare(host->mmc_clk);
1306
err_core_clk:
1307
	clk_disable_unprepare(host->core_clk);
1308
free_host:
1309 1310 1311 1312 1313 1314 1315 1316
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

1317 1318
	mmc_remove_host(host->mmc);

1319 1320 1321
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

1322 1323
	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
			  host->descs, host->descs_dma_addr);
1324 1325
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1326

1327
	clk_disable_unprepare(host->mmc_clk);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");