meson-gx-mmc.c 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39
#include <linux/bitfield.h>
40 41 42 43

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
44
#define   CLK_DIV_MASK GENMASK(5, 0)
45
#define   CLK_DIV_MAX 63
46
#define   CLK_SRC_MASK GENMASK(7, 6)
47 48
#define   CLK_SRC_XTAL 0   /* external crystal */
#define   CLK_SRC_PLL 1    /* FCLK_DIV2 */
49
#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
50 51
#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
52 53 54 55 56 57
#define   CLK_PHASE_0 0
#define   CLK_PHASE_90 1
#define   CLK_PHASE_180 2
#define   CLK_PHASE_270 3
#define   CLK_ALWAYS_ON BIT(24)

58
#define SD_EMMC_DELAY 0x4
59 60 61 62 63
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
64
#define   START_DESC_ADDR_MASK GENMASK(31, 2)
65 66

#define SD_EMMC_CFG 0x44
67
#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
68 69 70 71
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
72 73 74
#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define   CFG_RC_CC_MASK GENMASK(15, 12)
75 76
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
77
#define   CFG_CHK_DS BIT(20)
78 79 80 81 82 83
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)

#define SD_EMMC_IRQ_EN 0x4c
84 85
#define   IRQ_EN_MASK GENMASK(13, 0)
#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
109 110
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
111
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
112 113 114 115 116
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE

#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)

117 118
#define MUX_CLK_NUM_PARENTS 2

119 120 121 122 123 124
struct meson_tuning_params {
	u8 core_phase;
	u8 tx_phase;
	u8 rx_phase;
};

125 126 127 128 129 130 131
struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};

132 133 134 135 136 137 138 139 140 141
struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	struct clk *core_clk;
	struct clk_mux mux;
	struct clk *mux_clk;
142
	unsigned long current_clock;
143 144 145 146 147 148 149

	struct clk_divider cfg_div;
	struct clk *cfg_div_clk;

	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;
150 151
	struct sd_emmc_desc *descs;
	dma_addr_t descs_dma_addr;
152

153
	struct meson_tuning_params tp;
154 155 156
	bool vqmmc_enabled;
};

157
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
158 159 160
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
161
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
162 163 164 165 166 167 168 169
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
170
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
171 172 173
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

174
#define CMD_DATA_MASK GENMASK(31, 2)
175 176
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
177
#define CMD_RESP_MASK GENMASK(31, 1)
178 179
#define CMD_RESP_SRAM BIT(0)

180 181 182 183 184 185 186 187 188 189 190 191
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;

	if (!timeout)
		return SD_EMMC_CMD_TIMEOUT_DATA;

	timeout = roundup_pow_of_two(timeout);

	return min(timeout, 32768U); /* max. 2^15 ms */
}

H
Heiner Kallweit 已提交
192 193 194 195 196 197 198 199 200 201 202
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
		return cmd->mrq->cmd;
	else if (mmc_op_multi(cmd->opcode) &&
		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
		return cmd->mrq->stop;
	else
		return NULL;
}

203 204 205 206 207 208 209 210
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
					struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;
	struct scatterlist *sg;
	int i;
	bool use_desc_chain_mode = true;

211 212 213 214 215 216 217 218 219
	/*
	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
	 * reported. For some strange reason this occurs in descriptor
	 * chain mode only. So let's fall back to bounce buffer mode
	 * for command SD_IO_RW_EXTENDED.
	 */
	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
		return;

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	for_each_sg(data->sg, sg, data->sg_len, i)
		/* check for 8 byte alignment */
		if (sg->offset & 7) {
			WARN_ONCE(1, "unaligned scatterlist buffer\n");
			use_desc_chain_mode = false;
			break;
		}

	if (use_desc_chain_mode)
		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
	return data && data->flags & MMC_DATA_READ &&
	       !meson_mmc_desc_chain_mode(data);
}

static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data)
		return;

	meson_mmc_get_transfer_mode(mmc, mrq);
	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;

	if (!meson_mmc_desc_chain_mode(data))
		return;

	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
                                   mmc_get_dma_dir(data));
	if (!data->sg_count)
		dev_err(mmc_dev(mmc), "dma_map_sg failed");
}

static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
			       int err)
{
	struct mmc_data *data = mrq->data;

	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
}

272 273 274
static int meson_mmc_clk_set(struct meson_host *host, unsigned long clk_rate)
{
	struct mmc_host *mmc = host->mmc;
275
	int ret;
276 277 278 279 280 281 282 283 284
	u32 cfg;

	if (clk_rate) {
		if (WARN_ON(clk_rate > mmc->f_max))
			clk_rate = mmc->f_max;
		else if (WARN_ON(clk_rate < mmc->f_min))
			clk_rate = mmc->f_min;
	}

285
	if (clk_rate == host->current_clock)
286 287 288 289 290 291 292 293 294 295 296 297
		return 0;

	/* stop clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	if (!(cfg & CFG_STOP_CLOCK)) {
		cfg |= CFG_STOP_CLOCK;
		writel(cfg, host->regs + SD_EMMC_CFG);
	}

	dev_dbg(host->dev, "change clock rate %u -> %lu\n",
		mmc->actual_clock, clk_rate);

298
	if (!clk_rate) {
299
		mmc->actual_clock = 0;
300 301
		host->current_clock = 0;
		/* return with clock being stopped */
302 303 304 305
		return 0;
	}

	ret = clk_set_rate(host->cfg_div_clk, clk_rate);
306 307 308 309
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
			clk_rate, ret);
		return ret;
310 311
	}

312 313 314 315 316 317 318 319 320 321 322 323 324 325
	mmc->actual_clock = clk_get_rate(host->cfg_div_clk);
	host->current_clock = clk_rate;

	if (clk_rate != mmc->actual_clock)
		dev_dbg(host->dev,
			"divider requested rate %lu != actual rate %u\n",
			clk_rate, mmc->actual_clock);

	/* (re)start clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	return 0;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
	const char *clk_div_parents[1];
	u32 clk_reg, cfg;

342 343 344 345 346 347 348 349 350
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
	clk_reg |= CLK_ALWAYS_ON;
	clk_reg |= CLK_DIV_MASK;
	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, host->tp.core_phase);
	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, host->tp.tx_phase);
	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, host->tp.rx_phase);
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

351 352
	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
353
		struct clk *clk;
354 355 356
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
357 358 359
		clk = devm_clk_get(host->dev, name);
		if (IS_ERR(clk)) {
			if (clk != ERR_PTR(-EPROBE_DEFER))
360
				dev_err(host->dev, "Missing clock %s\n", name);
361
			return PTR_ERR(clk);
362 363
		}

364
		mux_parent_names[i] = __clk_get_name(clk);
365 366 367 368 369 370 371 372
	}

	/* create the mux */
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
373
	init.num_parents = MUX_CLK_NUM_PARENTS;
374
	host->mux.reg = host->regs + SD_EMMC_CLOCK;
375
	host->mux.shift = __bf_shf(CLK_SRC_MASK);
376
	host->mux.mask = CLK_SRC_MASK >> host->mux.shift;
377 378 379 380 381 382 383 384 385 386
	host->mux.flags = 0;
	host->mux.table = NULL;
	host->mux.hw.init = &init;

	host->mux_clk = devm_clk_register(host->dev, &host->mux.hw);
	if (WARN_ON(IS_ERR(host->mux_clk)))
		return PTR_ERR(host->mux_clk);

	/* create the divider */
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
387
	init.name = clk_name;
388 389 390 391 392 393 394
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
	clk_div_parents[0] = __clk_get_name(host->mux_clk);
	init.parent_names = clk_div_parents;
	init.num_parents = ARRAY_SIZE(clk_div_parents);

	host->cfg_div.reg = host->regs + SD_EMMC_CLOCK;
395 396
	host->cfg_div.shift = __bf_shf(CLK_DIV_MASK);
	host->cfg_div.width = __builtin_popcountl(CLK_DIV_MASK);
397 398
	host->cfg_div.hw.init = &init;
	host->cfg_div.flags = CLK_DIVIDER_ONE_BASED |
399
		CLK_DIVIDER_ROUND_CLOSEST;
400 401 402 403 404 405 406 407 408 409 410 411

	host->cfg_div_clk = devm_clk_register(host->dev, &host->cfg_div.hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->cfg_div_clk)))
		return PTR_ERR(host->cfg_div_clk);

	/* Ensure clock starts in "auto" mode, not "always on" */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_CLK_ALWAYS_ON;
	cfg |= CFG_AUTO_CLK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	ret = clk_prepare_enable(host->cfg_div_clk);
412 413 414 415 416
	if (ret)
		return ret;

	/* Get the nearest minimum clock to 400KHz */
	host->mmc->f_min = clk_round_rate(host->cfg_div_clk, 400000);
417

418
	ret = meson_mmc_clk_set(host, host->mmc->f_min);
419
	if (ret)
420 421 422 423 424
		clk_disable_unprepare(host->cfg_div_clk);

	return ret;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static void meson_mmc_set_tuning_params(struct mmc_host *mmc)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 regval;

	/* stop clock */
	regval = readl(host->regs + SD_EMMC_CFG);
	regval |= CFG_STOP_CLOCK;
	writel(regval, host->regs + SD_EMMC_CFG);

	regval = readl(host->regs + SD_EMMC_CLOCK);
	regval &= ~CLK_CORE_PHASE_MASK;
	regval |= FIELD_PREP(CLK_CORE_PHASE_MASK, host->tp.core_phase);
	regval &= ~CLK_TX_PHASE_MASK;
	regval |= FIELD_PREP(CLK_TX_PHASE_MASK, host->tp.tx_phase);
	regval &= ~CLK_RX_PHASE_MASK;
	regval |= FIELD_PREP(CLK_RX_PHASE_MASK, host->tp.rx_phase);
	writel(regval, host->regs + SD_EMMC_CLOCK);

	/* start clock */
	regval = readl(host->regs + SD_EMMC_CFG);
	regval &= ~CFG_STOP_CLOCK;
	writel(regval, host->regs + SD_EMMC_CFG);
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 bus_width;
	u32 val, orig;

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
				dev_err(mmc_dev(mmc),
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}


	meson_mmc_clk_set(host, ios->clock);

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
	orig = val;

514 515
	val &= ~CFG_BUS_WIDTH_MASK;
	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
516

517 518 519 520 521 522 523 524 525 526
	val &= ~CFG_DDR;
	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
	    ios->timing == MMC_TIMING_MMC_DDR52 ||
	    ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_DDR;

	val &= ~CFG_CHK_DS;
	if (ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_CHK_DS;

527 528
	if (val != orig) {
		writel(val, host->regs + SD_EMMC_CFG);
529 530
		dev_dbg(host->dev, "%s: SD_EMMC_CFG: 0x%08x -> 0x%08x\n",
			__func__, orig, val);
531
	}
532 533
}

534 535
static void meson_mmc_request_done(struct mmc_host *mmc,
				   struct mmc_request *mrq)
536 537 538 539 540 541 542
{
	struct meson_host *host = mmc_priv(mmc);

	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 cfg, blksz_old;

	cfg = readl(host->regs + SD_EMMC_CFG);
	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);

	if (!is_power_of_2(blksz))
		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);

	blksz = ilog2(blksz);

	/* check if block-size matches, if not update */
	if (blksz == blksz_old)
		return;

	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
		blksz_old, blksz);

	cfg &= ~CFG_BLK_LEN_MASK;
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
	writel(cfg, host->regs + SD_EMMC_CFG);
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
			*cmd_cfg |= CMD_CFG_RESP_128;
		*cmd_cfg |= CMD_CFG_RESP_NUM;

		if (!(cmd->flags & MMC_RSP_CRC))
			*cmd_cfg |= CMD_CFG_RESP_NOCRC;

		if (cmd->flags & MMC_RSP_BUSY)
			*cmd_cfg |= CMD_CFG_R1B;
	} else {
		*cmd_cfg |= CMD_CFG_NO_RESP;
	}
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
	struct meson_host *host = mmc_priv(mmc);
	struct sd_emmc_desc *desc = host->descs;
	struct mmc_data *data = host->cmd->data;
	struct scatterlist *sg;
	u32 start;
	int i;

	if (data->flags & MMC_DATA_WRITE)
		cmd_cfg |= CMD_CFG_DATA_WR;

	if (data->blocks > 1) {
		cmd_cfg |= CMD_CFG_BLOCK_MODE;
		meson_mmc_set_blksz(mmc, data->blksz);
	}

	for_each_sg(data->sg, sg, data->sg_count, i) {
		unsigned int len = sg_dma_len(sg);

		if (data->blocks > 1)
			len /= data->blksz;

		desc[i].cmd_cfg = cmd_cfg;
		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
		if (i > 0)
			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
		desc[i].cmd_arg = host->cmd->arg;
		desc[i].cmd_resp = 0;
		desc[i].cmd_data = sg_dma_address(sg);
	}
	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;

	dma_wmb(); /* ensure descriptor is written before kicked */
	start = host->descs_dma_addr | START_DESC_BUSY;
	writel(start, host->regs + SD_EMMC_START);
}

623 624 625
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
626
	struct mmc_data *data = cmd->data;
627
	u32 cmd_cfg = 0, cmd_data = 0;
628 629 630 631 632
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();

633 634
	host->cmd = cmd;

635
	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
636
	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
637

638
	meson_mmc_set_response_bits(cmd, &cmd_cfg);
639 640

	/* data? */
641
	if (data) {
642
		data->bytes_xfered = 0;
643
		cmd_cfg |= CMD_CFG_DATA_IO;
644
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
645
				      ilog2(meson_mmc_get_timeout_msecs(data)));
646

647 648 649 650 651
		if (meson_mmc_desc_chain_mode(data)) {
			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
			return;
		}

652
		if (data->blocks > 1) {
653
			cmd_cfg |= CMD_CFG_BLOCK_MODE;
654 655
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
					      data->blocks);
656
			meson_mmc_set_blksz(mmc, data->blksz);
657
		} else {
658
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
659 660
		}

661 662
		xfer_bytes = data->blksz * data->blocks;
		if (data->flags & MMC_DATA_WRITE) {
663
			cmd_cfg |= CMD_CFG_DATA_WR;
664
			WARN_ON(xfer_bytes > host->bounce_buf_size);
665
			sg_copy_to_buffer(data->sg, data->sg_len,
666 667 668 669
					  host->bounce_buf, xfer_bytes);
			dma_wmb();
		}

670
		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
671
	} else {
672 673
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT));
674 675 676
	}

	/* Last descriptor */
677 678 679 680
	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(0, host->regs + SD_EMMC_CMD_RSP);
681
	wmb(); /* ensure descriptor is written before kicked */
682
	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
683 684 685 686 687
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);
688 689 690 691 692 693 694 695 696 697 698
	bool needs_pre_post_req = mrq->data &&
			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);

	if (needs_pre_post_req) {
		meson_mmc_get_transfer_mode(mmc, mrq);
		if (!meson_mmc_desc_chain_mode(mrq->data))
			needs_pre_post_req = false;
	}

	if (needs_pre_post_req)
		meson_mmc_pre_req(mmc, mrq);
699 700 701 702

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

703 704 705 706
	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);

	if (needs_pre_post_req)
		meson_mmc_post_req(mmc, mrq, 0);
707 708
}

709
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
726
	struct mmc_command *cmd;
727
	struct mmc_data *data;
728 729 730 731 732 733
	u32 irq_en, status, raw_status;
	irqreturn_t ret = IRQ_HANDLED;

	if (WARN_ON(!host))
		return IRQ_NONE;

734 735
	cmd = host->cmd;

736 737 738
	if (WARN_ON(!cmd))
		return IRQ_NONE;

739 740
	data = cmd->data;

741 742 743 744 745 746 747 748 749 750 751 752
	spin_lock(&host->lock);
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	if (!status) {
		dev_warn(host->dev, "Spurious IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
		ret = IRQ_NONE;
		goto out;
	}

753 754
	meson_mmc_read_resp(host->mmc, cmd);

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	cmd->error = 0;
	if (status & IRQ_RXD_ERR_MASK) {
		dev_dbg(host->dev, "Unhandled IRQ: RXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_TXD_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: TXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_DESC_ERR)
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor error\n");
	if (status & IRQ_RESP_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: Response error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_RESP_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Response timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_DESC_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_SDIO)
		dev_dbg(host->dev, "Unhandled IRQ: SDIO.\n");

781 782 783
	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
		if (data && !cmd->error)
			data->bytes_xfered = data->blksz * data->blocks;
784 785 786
		if (meson_mmc_bounce_buf_read(data) ||
		    meson_mmc_get_next_command(cmd))
			ret = IRQ_WAKE_THREAD;
787
	} else {
788 789
		dev_warn(host->dev, "Unknown IRQ! status=0x%04x: MMC CMD%u arg=0x%08x flags=0x%08x stop=%d\n",
			 status, cmd->opcode, cmd->arg,
790
			 cmd->flags, cmd->mrq->stop ? 1 : 0);
791 792 793 794 795 796 797 798 799 800 801 802 803 804
		if (cmd->data) {
			struct mmc_data *data = cmd->data;

			dev_warn(host->dev, "\tblksz %u blocks %u flags 0x%08x (%s%s)",
				 data->blksz, data->blocks, data->flags,
				 data->flags & MMC_DATA_WRITE ? "write" : "",
				 data->flags & MMC_DATA_READ ? "read" : "");
		}
	}

out:
	/* ack all (enabled) interrupts */
	writel(status, host->regs + SD_EMMC_STATUS);

805
	if (ret == IRQ_HANDLED)
806 807 808 809 810 811 812 813 814
		meson_mmc_request_done(host->mmc, cmd->mrq);

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
H
Heiner Kallweit 已提交
815
	struct mmc_command *next_cmd, *cmd = host->cmd;
816 817 818 819
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!cmd))
820
		return IRQ_NONE;
821 822

	data = cmd->data;
823
	if (meson_mmc_bounce_buf_read(data)) {
824
		xfer_bytes = data->blksz * data->blocks;
825 826 827
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
828 829
	}

H
Heiner Kallweit 已提交
830 831 832
	next_cmd = meson_mmc_get_next_command(cmd);
	if (next_cmd)
		meson_mmc_start_cmd(host->mmc, next_cmd);
833
	else
H
Heiner Kallweit 已提交
834
		meson_mmc_request_done(host->mmc, cmd->mrq);
835

836
	return IRQ_HANDLED;
837 838
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct meson_host *host = mmc_priv(mmc);
	struct meson_tuning_params tp_old = host->tp;
	int ret = -EINVAL, i, cmd_error;

	dev_info(mmc_dev(mmc), "(re)tuning...\n");

	for (i = CLK_PHASE_0; i <= CLK_PHASE_270; i++) {
		host->tp.rx_phase = i;
		/* exclude the active parameter set if retuning */
		if (!memcmp(&tp_old, &host->tp, sizeof(tp_old)) &&
		    mmc->doing_retune)
			continue;
		meson_mmc_set_tuning_params(mmc);
		ret = mmc_send_tuning(mmc, opcode, &cmd_error);
		if (!ret)
			break;
	}

	return ret;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

876 877 878 879
static void meson_mmc_cfg_init(struct meson_host *host)
{
	u32 cfg = 0;

880 881 882 883
	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
884 885 886 887

	writel(cfg, host->regs + SD_EMMC_CFG);
}

888 889 890 891
static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
892 893
	.pre_req	= meson_mmc_pre_req,
	.post_req	= meson_mmc_post_req,
894
	.execute_tuning = meson_mmc_execute_tuning,
895 896 897 898 899 900 901
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
902
	int ret, irq;
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
	if (ret == -EPROBE_DEFER)
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
922 923
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
924 925 926 927 928 929 930 931 932 933
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

934 935
	irq = platform_get_irq(pdev, 0);
	if (!irq) {
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

951 952 953 954
	host->tp.core_phase = CLK_PHASE_180;
	host->tp.tx_phase = CLK_PHASE_0;
	host->tp.rx_phase = CLK_PHASE_0;

955 956
	ret = meson_mmc_clk_init(host);
	if (ret)
957
		goto err_core_clk;
958 959 960 961 962 963 964

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

	/* clear, ack, enable all interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
965
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
966

967 968 969
	/* set config to sane default */
	meson_mmc_cfg_init(host);

970 971
	ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
					meson_mmc_irq_thread, IRQF_SHARED,
972
					NULL, host);
973
	if (ret)
974
		goto err_div_clk;
975

H
Heiner Kallweit 已提交
976
	mmc->caps |= MMC_CAP_CMD23;
977 978
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
979 980
	mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
	mmc->max_seg_size = mmc->max_req_size;
981

982
	/* data bounce buffer */
983
	host->bounce_buf_size = mmc->max_req_size;
984 985 986 987 988 989
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
990
		goto err_div_clk;
991 992
	}

993 994 995 996 997 998 999 1000
	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
		      &host->descs_dma_addr, GFP_KERNEL);
	if (!host->descs) {
		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
		ret = -ENOMEM;
		goto err_bounce_buf;
	}

1001 1002 1003 1004 1005
	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

1006 1007 1008
err_bounce_buf:
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1009
err_div_clk:
1010
	clk_disable_unprepare(host->cfg_div_clk);
1011
err_core_clk:
1012
	clk_disable_unprepare(host->core_clk);
1013
free_host:
1014 1015 1016 1017 1018 1019 1020 1021
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

1022 1023
	mmc_remove_host(host->mmc);

1024 1025 1026
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

1027 1028
	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
			  host->descs, host->descs_dma_addr);
1029 1030
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	clk_disable_unprepare(host->cfg_div_clk);
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");