meson-gx-mmc.c 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39
#include <linux/bitfield.h>
40 41 42 43

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
44 45 46
#define   CLK_DIV_MASK GENMASK(5, 0)
#define   CLK_SRC_MASK GENMASK(7, 6)
#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
47 48
#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
49 50 51
#define   CLK_TX_DELAY_MASK GENMASK(19, 16)
#define   CLK_RX_DELAY_MASK GENMASK(23, 20)
#define   CLK_DELAY_STEP_PS 200
52 53
#define   CLK_ALWAYS_ON BIT(24)

54
#define SD_EMMC_DELAY 0x4
55 56 57 58 59
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
60
#define   START_DESC_ADDR_MASK GENMASK(31, 2)
61 62

#define SD_EMMC_CFG 0x44
63
#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
64 65 66 67
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
68 69 70
#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define   CFG_RC_CC_MASK GENMASK(15, 12)
71 72
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
73
#define   CFG_CHK_DS BIT(20)
74 75 76 77
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)
78
#define   STATUS_DATI GENMASK(23, 16)
79 80

#define SD_EMMC_IRQ_EN 0x4c
81
#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
82 83 84
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
85 86
#define   IRQ_CRC_ERR \
	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
87 88
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
89 90
#define   IRQ_TIMEOUTS \
	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
91 92 93
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)
94 95 96
#define   IRQ_EN_MASK \
	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
	 IRQ_SDIO)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
112 113
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
114
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
115 116 117 118 119
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE

#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)

120 121
#define MUX_CLK_NUM_PARENTS 2

122
struct meson_tuning_params {
123 124 125
	unsigned int core_phase;
	unsigned int tx_phase;
	unsigned int rx_phase;
126 127
};

128 129 130 131 132 133 134
struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};

135 136 137 138 139 140 141 142
struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	struct clk *core_clk;
143
	struct clk *mmc_clk;
144 145
	struct clk *rx_clk;
	struct clk *tx_clk;
146
	unsigned long req_rate;
147

148 149 150 151
	struct pinctrl *pinctrl;
	struct pinctrl_state *pins_default;
	struct pinctrl_state *pins_clk_gate;

152 153 154
	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;
155 156
	struct sd_emmc_desc *descs;
	dma_addr_t descs_dma_addr;
157

158
	struct meson_tuning_params tp;
159 160 161
	bool vqmmc_enabled;
};

162
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
163 164 165
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
166
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
167 168 169 170 171 172 173 174
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
175
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
176 177 178
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

179
#define CMD_DATA_MASK GENMASK(31, 2)
180 181
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
182
#define CMD_RESP_MASK GENMASK(31, 1)
183 184
#define CMD_RESP_SRAM BIT(0)

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct meson_mmc_phase {
	struct clk_hw hw;
	void __iomem *reg;
	unsigned long phase_mask;
	unsigned long delay_mask;
	unsigned int delay_step_ps;
};

#define to_meson_mmc_phase(_hw) container_of(_hw, struct meson_mmc_phase, hw)

static int meson_mmc_clk_get_phase(struct clk_hw *hw)
{
	struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
	unsigned int phase_num = 1 <<  hweight_long(mmc->phase_mask);
	unsigned long period_ps, p, d;
		int degrees;
	u32 val;

	val = readl(mmc->reg);
	p = (val & mmc->phase_mask) >> __bf_shf(mmc->phase_mask);
	degrees = p * 360 / phase_num;

	if (mmc->delay_mask) {
		period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
					 clk_get_rate(hw->clk));
		d = (val & mmc->delay_mask) >> __bf_shf(mmc->delay_mask);
		degrees += d * mmc->delay_step_ps * 360 / period_ps;
		degrees %= 360;
	}

	return degrees;
}

static void meson_mmc_apply_phase_delay(struct meson_mmc_phase *mmc,
					unsigned int phase,
					unsigned int delay)
{
	u32 val;

	val = readl(mmc->reg);
	val &= ~mmc->phase_mask;
	val |= phase << __bf_shf(mmc->phase_mask);

	if (mmc->delay_mask) {
		val &= ~mmc->delay_mask;
		val |= delay << __bf_shf(mmc->delay_mask);
	}

	writel(val, mmc->reg);
}

static int meson_mmc_clk_set_phase(struct clk_hw *hw, int degrees)
{
	struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
	unsigned int phase_num = 1 <<  hweight_long(mmc->phase_mask);
	unsigned long period_ps, d = 0, r;
	uint64_t p;

	p = degrees % 360;

	if (!mmc->delay_mask) {
		p = DIV_ROUND_CLOSEST_ULL(p, 360 / phase_num);
	} else {
		period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
					 clk_get_rate(hw->clk));

		/* First compute the phase index (p), the remainder (r) is the
		 * part we'll try to acheive using the delays (d).
		 */
		r = do_div(p, 360 / phase_num);
		d = DIV_ROUND_CLOSEST(r * period_ps,
				      360 * mmc->delay_step_ps);
		d = min(d, mmc->delay_mask >> __bf_shf(mmc->delay_mask));
	}

	meson_mmc_apply_phase_delay(mmc, p, d);
	return 0;
}

static const struct clk_ops meson_mmc_clk_phase_ops = {
	.get_phase = meson_mmc_clk_get_phase,
	.set_phase = meson_mmc_clk_set_phase,
};

269 270 271 272 273 274 275 276 277 278 279 280
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;

	if (!timeout)
		return SD_EMMC_CMD_TIMEOUT_DATA;

	timeout = roundup_pow_of_two(timeout);

	return min(timeout, 32768U); /* max. 2^15 ms */
}

H
Heiner Kallweit 已提交
281 282 283 284 285 286 287 288 289 290 291
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
		return cmd->mrq->cmd;
	else if (mmc_op_multi(cmd->opcode) &&
		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
		return cmd->mrq->stop;
	else
		return NULL;
}

292 293 294 295 296 297 298 299
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
					struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;
	struct scatterlist *sg;
	int i;
	bool use_desc_chain_mode = true;

300 301 302 303 304 305 306 307 308
	/*
	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
	 * reported. For some strange reason this occurs in descriptor
	 * chain mode only. So let's fall back to bounce buffer mode
	 * for command SD_IO_RW_EXTENDED.
	 */
	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
		return;

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	for_each_sg(data->sg, sg, data->sg_len, i)
		/* check for 8 byte alignment */
		if (sg->offset & 7) {
			WARN_ONCE(1, "unaligned scatterlist buffer\n");
			use_desc_chain_mode = false;
			break;
		}

	if (use_desc_chain_mode)
		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
	return data && data->flags & MMC_DATA_READ &&
	       !meson_mmc_desc_chain_mode(data);
}

static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data)
		return;

	meson_mmc_get_transfer_mode(mmc, mrq);
	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;

	if (!meson_mmc_desc_chain_mode(data))
		return;

	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
                                   mmc_get_dma_dir(data));
	if (!data->sg_count)
		dev_err(mmc_dev(mmc), "dma_map_sg failed");
}

static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
			       int err)
{
	struct mmc_data *data = mrq->data;

	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
}

361 362 363 364 365 366 367 368 369 370
static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
{
	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
	    ios->timing == MMC_TIMING_UHS_DDR50 ||
	    ios->timing == MMC_TIMING_MMC_HS400)
		return true;

	return false;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/*
 * Gating the clock on this controller is tricky.  It seems the mmc clock
 * is also used by the controller.  It may crash during some operation if the
 * clock is stopped.  The safest thing to do, whenever possible, is to keep
 * clock running at stop it at the pad using the pinmux.
 */
static void meson_mmc_clk_gate(struct meson_host *host)
{
	u32 cfg;

	if (host->pins_clk_gate) {
		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
	} else {
		/*
		 * If the pinmux is not provided - default to the classic and
		 * unsafe method
		 */
		cfg = readl(host->regs + SD_EMMC_CFG);
		cfg |= CFG_STOP_CLOCK;
		writel(cfg, host->regs + SD_EMMC_CFG);
	}
}

static void meson_mmc_clk_ungate(struct meson_host *host)
{
	u32 cfg;

	if (host->pins_clk_gate)
		pinctrl_select_state(host->pinctrl, host->pins_default);

	/* Make sure the clock is not stopped in the controller */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);
}

407
static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
408 409
{
	struct mmc_host *mmc = host->mmc;
410
	unsigned long rate = ios->clock;
411
	int ret;
412 413
	u32 cfg;

414 415 416 417
	/* DDR modes require higher module clock */
	if (meson_mmc_timing_is_ddr(ios))
		rate <<= 1;

418
	/* Same request - bail-out */
419
	if (host->req_rate == rate)
420 421 422
		return 0;

	/* stop clock */
423
	meson_mmc_clk_gate(host);
424
	host->req_rate = 0;
425

426
	if (!rate) {
427
		mmc->actual_clock = 0;
428
		/* return with clock being stopped */
429 430 431
		return 0;
	}

432 433 434 435 436
	/* Stop the clock during rate change to avoid glitches */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg |= CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

437
	ret = clk_set_rate(host->mmc_clk, rate);
438 439
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
440
			rate, ret);
441
		return ret;
442 443
	}

444
	host->req_rate = rate;
445
	mmc->actual_clock = clk_get_rate(host->mmc_clk);
446

447 448 449 450
	/* We should report the real output frequency of the controller */
	if (meson_mmc_timing_is_ddr(ios))
		mmc->actual_clock >>= 1;

451
	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
452 453
	if (ios->clock != mmc->actual_clock)
		dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
454 455

	/* (re)start clock */
456
	meson_mmc_clk_ungate(host);
457 458

	return 0;
459 460
}

461 462 463 464 465 466 467
static void meson_mmc_set_phase_params(struct meson_host *host)
{
	clk_set_phase(host->mmc_clk, host->tp.core_phase);
	clk_set_phase(host->tx_clk, host->tp.tx_phase);
	clk_set_phase(host->rx_clk, host->tp.rx_phase);
}

468 469 470 471 472 473 474 475
/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
476 477
	struct clk_mux *mux;
	struct clk_divider *div;
478
	struct meson_mmc_phase *core, *tx, *rx;
479
	struct clk *clk;
480 481 482
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
483
	const char *clk_parent[1];
484
	u32 clk_reg;
485

486 487 488 489 490 491
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
	clk_reg |= CLK_ALWAYS_ON;
	clk_reg |= CLK_DIV_MASK;
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

492 493
	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
494
		struct clk *clk;
495 496 497
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
498 499 500
		clk = devm_clk_get(host->dev, name);
		if (IS_ERR(clk)) {
			if (clk != ERR_PTR(-EPROBE_DEFER))
501
				dev_err(host->dev, "Missing clock %s\n", name);
502
			return PTR_ERR(clk);
503 504
		}

505
		mux_parent_names[i] = __clk_get_name(clk);
506 507 508
	}

	/* create the mux */
509 510 511 512
	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
	if (!mux)
		return -ENOMEM;

513 514 515 516 517
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
518
	init.num_parents = MUX_CLK_NUM_PARENTS;
519

520 521 522 523 524 525 526 527
	mux->reg = host->regs + SD_EMMC_CLOCK;
	mux->shift = __bf_shf(CLK_SRC_MASK);
	mux->mask = CLK_SRC_MASK >> mux->shift;
	mux->hw.init = &init;

	clk = devm_clk_register(host->dev, &mux->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);
528 529

	/* create the divider */
530 531 532 533
	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return -ENOMEM;

534
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
535
	init.name = clk_name;
536 537
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
538 539 540 541 542 543 544 545 546 547
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	div->reg = host->regs + SD_EMMC_CLOCK;
	div->shift = __bf_shf(CLK_DIV_MASK);
	div->width = __builtin_popcountl(CLK_DIV_MASK);
	div->hw.init = &init;
	div->flags = (CLK_DIVIDER_ONE_BASED |
		      CLK_DIVIDER_ROUND_CLOSEST);
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	clk = devm_clk_register(host->dev, &div->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);

	/* create the mmc core clock */
	core = devm_kzalloc(host->dev, sizeof(*core), GFP_KERNEL);
	if (!core)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#core", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = CLK_SET_RATE_PARENT;
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	core->reg = host->regs + SD_EMMC_CLOCK;
	core->phase_mask = CLK_CORE_PHASE_MASK;
	core->hw.init = &init;

	host->mmc_clk = devm_clk_register(host->dev, &core->hw);
571 572
	if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
		return PTR_ERR(host->mmc_clk);
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	/* create the mmc tx clock */
	tx = devm_kzalloc(host->dev, sizeof(*tx), GFP_KERNEL);
	if (!tx)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#tx", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = 0;
	clk_parent[0] = __clk_get_name(host->mmc_clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	tx->reg = host->regs + SD_EMMC_CLOCK;
	tx->phase_mask = CLK_TX_PHASE_MASK;
	tx->delay_mask = CLK_TX_DELAY_MASK;
	tx->delay_step_ps = CLK_DELAY_STEP_PS;
	tx->hw.init = &init;

	host->tx_clk = devm_clk_register(host->dev, &tx->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->tx_clk)))
		return PTR_ERR(host->tx_clk);

	/* create the mmc rx clock */
	rx = devm_kzalloc(host->dev, sizeof(*rx), GFP_KERNEL);
	if (!rx)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#rx", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = 0;
	clk_parent[0] = __clk_get_name(host->mmc_clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	rx->reg = host->regs + SD_EMMC_CLOCK;
	rx->phase_mask = CLK_RX_PHASE_MASK;
	rx->delay_mask = CLK_RX_DELAY_MASK;
	rx->delay_step_ps = CLK_DELAY_STEP_PS;
	rx->hw.init = &init;

	host->rx_clk = devm_clk_register(host->dev, &rx->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->rx_clk)))
		return PTR_ERR(host->rx_clk);

	/* Set the initial phase parameters */
	meson_mmc_set_phase_params(host);

623 624 625
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
626
	if (ret)
627
		return ret;
628

629
	return clk_prepare_enable(host->mmc_clk);
630 631 632 633 634
}

static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
635 636
	u32 bus_width, val;
	int err;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
664
				dev_err(host->dev,
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
691 692
	val &= ~CFG_BUS_WIDTH_MASK;
	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
693

694
	val &= ~CFG_DDR;
695
	if (meson_mmc_timing_is_ddr(ios))
696 697 698 699 700 701
		val |= CFG_DDR;

	val &= ~CFG_CHK_DS;
	if (ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_CHK_DS;

702
	err = meson_mmc_clk_set(host, ios);
703 704 705 706 707
	if (err)
		dev_err(host->dev, "Failed to set clock: %d\n,", err);

	writel(val, host->regs + SD_EMMC_CFG);
	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
708 709
}

710 711
static void meson_mmc_request_done(struct mmc_host *mmc,
				   struct mmc_request *mrq)
712 713 714 715 716 717 718
{
	struct meson_host *host = mmc_priv(mmc);

	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 cfg, blksz_old;

	cfg = readl(host->regs + SD_EMMC_CFG);
	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);

	if (!is_power_of_2(blksz))
		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);

	blksz = ilog2(blksz);

	/* check if block-size matches, if not update */
	if (blksz == blksz_old)
		return;

	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
		blksz_old, blksz);

	cfg &= ~CFG_BLK_LEN_MASK;
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
	writel(cfg, host->regs + SD_EMMC_CFG);
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
			*cmd_cfg |= CMD_CFG_RESP_128;
		*cmd_cfg |= CMD_CFG_RESP_NUM;

		if (!(cmd->flags & MMC_RSP_CRC))
			*cmd_cfg |= CMD_CFG_RESP_NOCRC;

		if (cmd->flags & MMC_RSP_BUSY)
			*cmd_cfg |= CMD_CFG_R1B;
	} else {
		*cmd_cfg |= CMD_CFG_NO_RESP;
	}
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
	struct meson_host *host = mmc_priv(mmc);
	struct sd_emmc_desc *desc = host->descs;
	struct mmc_data *data = host->cmd->data;
	struct scatterlist *sg;
	u32 start;
	int i;

	if (data->flags & MMC_DATA_WRITE)
		cmd_cfg |= CMD_CFG_DATA_WR;

	if (data->blocks > 1) {
		cmd_cfg |= CMD_CFG_BLOCK_MODE;
		meson_mmc_set_blksz(mmc, data->blksz);
	}

	for_each_sg(data->sg, sg, data->sg_count, i) {
		unsigned int len = sg_dma_len(sg);

		if (data->blocks > 1)
			len /= data->blksz;

		desc[i].cmd_cfg = cmd_cfg;
		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
		if (i > 0)
			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
		desc[i].cmd_arg = host->cmd->arg;
		desc[i].cmd_resp = 0;
		desc[i].cmd_data = sg_dma_address(sg);
	}
	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;

	dma_wmb(); /* ensure descriptor is written before kicked */
	start = host->descs_dma_addr | START_DESC_BUSY;
	writel(start, host->regs + SD_EMMC_START);
}

799 800 801
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
802
	struct mmc_data *data = cmd->data;
803
	u32 cmd_cfg = 0, cmd_data = 0;
804 805 806 807 808
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();

809 810
	host->cmd = cmd;

811
	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
812
	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
813

814
	meson_mmc_set_response_bits(cmd, &cmd_cfg);
815 816

	/* data? */
817
	if (data) {
818
		data->bytes_xfered = 0;
819
		cmd_cfg |= CMD_CFG_DATA_IO;
820
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
821
				      ilog2(meson_mmc_get_timeout_msecs(data)));
822

823 824 825 826 827
		if (meson_mmc_desc_chain_mode(data)) {
			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
			return;
		}

828
		if (data->blocks > 1) {
829
			cmd_cfg |= CMD_CFG_BLOCK_MODE;
830 831
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
					      data->blocks);
832
			meson_mmc_set_blksz(mmc, data->blksz);
833
		} else {
834
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
835 836
		}

837 838
		xfer_bytes = data->blksz * data->blocks;
		if (data->flags & MMC_DATA_WRITE) {
839
			cmd_cfg |= CMD_CFG_DATA_WR;
840
			WARN_ON(xfer_bytes > host->bounce_buf_size);
841
			sg_copy_to_buffer(data->sg, data->sg_len,
842 843 844 845
					  host->bounce_buf, xfer_bytes);
			dma_wmb();
		}

846
		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
847
	} else {
848 849
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT));
850 851 852
	}

	/* Last descriptor */
853 854 855 856
	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(0, host->regs + SD_EMMC_CMD_RSP);
857
	wmb(); /* ensure descriptor is written before kicked */
858
	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
859 860 861 862 863
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);
864 865 866 867 868 869 870 871 872 873 874
	bool needs_pre_post_req = mrq->data &&
			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);

	if (needs_pre_post_req) {
		meson_mmc_get_transfer_mode(mmc, mrq);
		if (!meson_mmc_desc_chain_mode(mrq->data))
			needs_pre_post_req = false;
	}

	if (needs_pre_post_req)
		meson_mmc_pre_req(mmc, mrq);
875 876 877 878

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

879 880 881 882
	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);

	if (needs_pre_post_req)
		meson_mmc_post_req(mmc, mrq, 0);
883 884
}

885
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
902
	struct mmc_command *cmd;
903
	struct mmc_data *data;
904
	u32 irq_en, status, raw_status;
905
	irqreturn_t ret = IRQ_NONE;
906

907
	if (WARN_ON(!host) || WARN_ON(!host->cmd))
908 909
		return IRQ_NONE;

910
	spin_lock(&host->lock);
911

912
	cmd = host->cmd;
913
	data = cmd->data;
914 915 916 917 918
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	cmd->error = 0;
919 920
	if (status & IRQ_CRC_ERR) {
		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
921
		cmd->error = -EILSEQ;
922 923
		ret = IRQ_HANDLED;
		goto out;
924
	}
925 926 927

	if (status & IRQ_TIMEOUTS) {
		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
928
		cmd->error = -ETIMEDOUT;
929 930
		ret = IRQ_HANDLED;
		goto out;
931
	}
932 933 934 935 936 937

	meson_mmc_read_resp(host->mmc, cmd);

	if (status & IRQ_SDIO) {
		dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
		ret = IRQ_HANDLED;
938 939
	}

940 941 942
	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
		if (data && !cmd->error)
			data->bytes_xfered = data->blksz * data->blocks;
943 944 945
		if (meson_mmc_bounce_buf_read(data) ||
		    meson_mmc_get_next_command(cmd))
			ret = IRQ_WAKE_THREAD;
946 947
		else
			ret = IRQ_HANDLED;
948 949 950
	}

out:
951 952
	/* ack all enabled interrupts */
	writel(irq_en, host->regs + SD_EMMC_STATUS);
953

954
	if (ret == IRQ_HANDLED)
955
		meson_mmc_request_done(host->mmc, cmd->mrq);
956 957 958 959
	else if (ret == IRQ_NONE)
		dev_warn(host->dev,
			 "Unexpected IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
960 961 962 963 964 965 966 967

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
H
Heiner Kallweit 已提交
968
	struct mmc_command *next_cmd, *cmd = host->cmd;
969 970 971 972
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!cmd))
973
		return IRQ_NONE;
974 975

	data = cmd->data;
976
	if (meson_mmc_bounce_buf_read(data)) {
977
		xfer_bytes = data->blksz * data->blocks;
978 979 980
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
981 982
	}

H
Heiner Kallweit 已提交
983 984 985
	next_cmd = meson_mmc_get_next_command(cmd);
	if (next_cmd)
		meson_mmc_start_cmd(host->mmc, next_cmd);
986
	else
H
Heiner Kallweit 已提交
987
		meson_mmc_request_done(host->mmc, cmd->mrq);
988

989
	return IRQ_HANDLED;
990 991
}

992 993 994 995 996 997 998 999
static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct meson_host *host = mmc_priv(mmc);
	struct meson_tuning_params tp_old = host->tp;
	int ret = -EINVAL, i, cmd_error;

	dev_info(mmc_dev(mmc), "(re)tuning...\n");

1000
	for (i = 0; i < 360; i += 90) {
1001 1002 1003 1004 1005
		host->tp.rx_phase = i;
		/* exclude the active parameter set if retuning */
		if (!memcmp(&tp_old, &host->tp, sizeof(tp_old)) &&
		    mmc->doing_retune)
			continue;
1006
		meson_mmc_set_phase_params(host);
1007 1008 1009 1010 1011 1012 1013 1014
		ret = mmc_send_tuning(mmc, opcode, &cmd_error);
		if (!ret)
			break;
	}

	return ret;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

1029 1030 1031 1032
static void meson_mmc_cfg_init(struct meson_host *host)
{
	u32 cfg = 0;

1033 1034 1035 1036
	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1037 1038 1039 1040

	writel(cfg, host->regs + SD_EMMC_CFG);
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static int meson_mmc_card_busy(struct mmc_host *mmc)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 regval;

	regval = readl(host->regs + SD_EMMC_STATUS);

	/* We are only interrested in lines 0 to 3, so mask the other ones */
	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
	/* vqmmc regulator is available */
	if (!IS_ERR(mmc->supply.vqmmc)) {
		/*
		 * The usual amlogic setup uses a GPIO to switch from one
		 * regulator to the other. While the voltage ramp up is
		 * pretty fast, care must be taken when switching from 3.3v
		 * to 1.8v. Please make sure the regulator framework is aware
		 * of your own regulator constraints
		 */
		return mmc_regulator_set_vqmmc(mmc, ios);
	}

	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
		return 0;

	return -EINVAL;
}

1073 1074 1075 1076
static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
1077 1078
	.pre_req	= meson_mmc_pre_req,
	.post_req	= meson_mmc_post_req,
1079
	.execute_tuning = meson_mmc_execute_tuning,
1080
	.card_busy	= meson_mmc_card_busy,
1081
	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1082 1083 1084 1085 1086 1087 1088
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
1089
	int ret, irq;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
	if (ret == -EPROBE_DEFER)
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
1109 1110
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

1121 1122
	irq = platform_get_irq(pdev, 0);
	if (!irq) {
1123 1124 1125 1126 1127
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	host->pinctrl = devm_pinctrl_get(&pdev->dev);
	if (IS_ERR(host->pinctrl)) {
		ret = PTR_ERR(host->pinctrl);
		goto free_host;
	}

	host->pins_default = pinctrl_lookup_state(host->pinctrl,
						  PINCTRL_STATE_DEFAULT);
	if (IS_ERR(host->pins_default)) {
		ret = PTR_ERR(host->pins_default);
		goto free_host;
	}

	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
						   "clk-gate");
	if (IS_ERR(host->pins_clk_gate)) {
		dev_warn(&pdev->dev,
			 "can't get clk-gate pinctrl, using clk_stop bit\n");
		host->pins_clk_gate = NULL;
	}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

1159 1160 1161 1162 1163 1164
	/*
	 * Set phases : These values are mostly the datasheet recommended ones
	 * except for the Tx phase. Datasheet recommends 180 but some cards
	 * fail at initialisation with it. 270 works just fine, it fixes these
	 * initialisation issues and enable eMMC DDR52 mode.
	 */
1165
	host->tp.core_phase = 180;
1166
	host->tp.tx_phase = 270;
1167
	host->tp.rx_phase = 0;
1168

1169 1170
	ret = meson_mmc_clk_init(host);
	if (ret)
1171
		goto err_core_clk;
1172

1173 1174 1175
	/* set config to sane default */
	meson_mmc_cfg_init(host);

1176 1177 1178
	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

1179
	/* clear, ack and enable interrupts */
1180
	writel(0, host->regs + SD_EMMC_IRQ_EN);
1181 1182 1183 1184
	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
	       host->regs + SD_EMMC_STATUS);
	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
	       host->regs + SD_EMMC_IRQ_EN);
1185

1186 1187
	ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
					meson_mmc_irq_thread, IRQF_SHARED,
1188
					NULL, host);
1189
	if (ret)
1190
		goto err_init_clk;
1191

H
Heiner Kallweit 已提交
1192
	mmc->caps |= MMC_CAP_CMD23;
1193 1194
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1195 1196
	mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
	mmc->max_seg_size = mmc->max_req_size;
1197

1198
	/* data bounce buffer */
1199
	host->bounce_buf_size = mmc->max_req_size;
1200 1201 1202 1203 1204 1205
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
1206
		goto err_init_clk;
1207 1208
	}

1209 1210 1211 1212 1213 1214 1215 1216
	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
		      &host->descs_dma_addr, GFP_KERNEL);
	if (!host->descs) {
		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
		ret = -ENOMEM;
		goto err_bounce_buf;
	}

1217 1218 1219 1220 1221
	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

1222 1223 1224
err_bounce_buf:
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1225 1226
err_init_clk:
	clk_disable_unprepare(host->mmc_clk);
1227
err_core_clk:
1228
	clk_disable_unprepare(host->core_clk);
1229
free_host:
1230 1231 1232 1233 1234 1235 1236 1237
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

1238 1239
	mmc_remove_host(host->mmc);

1240 1241 1242
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

1243 1244
	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
			  host->descs, host->descs_dma_addr);
1245 1246
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1247

1248
	clk_disable_unprepare(host->mmc_clk);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");