meson-gx-mmc.c 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39
#include <linux/bitfield.h>
40 41 42 43

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
44
#define   CLK_DIV_MASK GENMASK(5, 0)
45
#define   CLK_DIV_MAX 63
46
#define   CLK_SRC_MASK GENMASK(7, 6)
47 48 49 50
#define   CLK_SRC_XTAL 0   /* external crystal */
#define   CLK_SRC_XTAL_RATE 24000000
#define   CLK_SRC_PLL 1    /* FCLK_DIV2 */
#define   CLK_SRC_PLL_RATE 1000000000
51
#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
52 53 54 55 56 57 58 59 60 61 62 63
#define   CLK_PHASE_0 0
#define   CLK_PHASE_90 1
#define   CLK_PHASE_180 2
#define   CLK_PHASE_270 3
#define   CLK_ALWAYS_ON BIT(24)

#define SD_EMMC_DElAY 0x4
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
64
#define   START_DESC_ADDR_MASK GENMASK(31, 2)
65 66

#define SD_EMMC_CFG 0x44
67
#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
68 69 70 71
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
72 73 74
#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define   CFG_RC_CC_MASK GENMASK(15, 12)
75 76
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
77
#define   CFG_CHK_DS BIT(20)
78 79 80 81 82 83
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)

#define SD_EMMC_IRQ_EN 0x4c
84 85
#define   IRQ_EN_MASK GENMASK(13, 0)
#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
109 110
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
111 112 113 114 115 116 117 118 119 120 121 122 123
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
#define MUX_CLK_NUM_PARENTS 2

struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	struct clk *core_clk;
	struct clk_mux mux;
	struct clk *mux_clk;
124
	unsigned long current_clock;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

	struct clk_divider cfg_div;
	struct clk *cfg_div_clk;

	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;

	bool vqmmc_enabled;
};

struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};
142 143

#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
144 145 146
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
147
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
148 149 150 151 152 153 154 155
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
156
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
157 158 159
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

160
#define CMD_DATA_MASK GENMASK(31, 2)
161 162
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
163
#define CMD_RESP_MASK GENMASK(31, 1)
164 165 166 167 168
#define CMD_RESP_SRAM BIT(0)

static int meson_mmc_clk_set(struct meson_host *host, unsigned long clk_rate)
{
	struct mmc_host *mmc = host->mmc;
169
	int ret;
170 171 172 173 174 175 176 177 178
	u32 cfg;

	if (clk_rate) {
		if (WARN_ON(clk_rate > mmc->f_max))
			clk_rate = mmc->f_max;
		else if (WARN_ON(clk_rate < mmc->f_min))
			clk_rate = mmc->f_min;
	}

179
	if (clk_rate == host->current_clock)
180 181 182 183 184 185 186 187 188 189 190 191
		return 0;

	/* stop clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	if (!(cfg & CFG_STOP_CLOCK)) {
		cfg |= CFG_STOP_CLOCK;
		writel(cfg, host->regs + SD_EMMC_CFG);
	}

	dev_dbg(host->dev, "change clock rate %u -> %lu\n",
		mmc->actual_clock, clk_rate);

192
	if (!clk_rate) {
193
		mmc->actual_clock = 0;
194 195
		host->current_clock = 0;
		/* return with clock being stopped */
196 197 198 199
		return 0;
	}

	ret = clk_set_rate(host->cfg_div_clk, clk_rate);
200 201 202 203
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
			clk_rate, ret);
		return ret;
204 205
	}

206 207 208 209 210 211 212 213 214 215 216 217 218 219
	mmc->actual_clock = clk_get_rate(host->cfg_div_clk);
	host->current_clock = clk_rate;

	if (clk_rate != mmc->actual_clock)
		dev_dbg(host->dev,
			"divider requested rate %lu != actual rate %u\n",
			clk_rate, mmc->actual_clock);

	/* (re)start clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	return 0;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
	const char *clk_div_parents[1];
	u32 clk_reg, cfg;

	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
238
		struct clk *clk;
239 240 241
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
242 243 244
		clk = devm_clk_get(host->dev, name);
		if (IS_ERR(clk)) {
			if (clk != ERR_PTR(-EPROBE_DEFER))
245
				dev_err(host->dev, "Missing clock %s\n", name);
246
			return PTR_ERR(clk);
247 248
		}

249
		mux_parent_names[i] = __clk_get_name(clk);
250 251 252 253 254 255 256 257
	}

	/* create the mux */
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
258
	init.num_parents = MUX_CLK_NUM_PARENTS;
259
	host->mux.reg = host->regs + SD_EMMC_CLOCK;
260
	host->mux.shift = __bf_shf(CLK_SRC_MASK);
261 262 263 264 265 266 267 268 269 270 271
	host->mux.mask = CLK_SRC_MASK;
	host->mux.flags = 0;
	host->mux.table = NULL;
	host->mux.hw.init = &init;

	host->mux_clk = devm_clk_register(host->dev, &host->mux.hw);
	if (WARN_ON(IS_ERR(host->mux_clk)))
		return PTR_ERR(host->mux_clk);

	/* create the divider */
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
272
	init.name = clk_name;
273 274 275 276 277 278 279
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
	clk_div_parents[0] = __clk_get_name(host->mux_clk);
	init.parent_names = clk_div_parents;
	init.num_parents = ARRAY_SIZE(clk_div_parents);

	host->cfg_div.reg = host->regs + SD_EMMC_CLOCK;
280 281
	host->cfg_div.shift = __bf_shf(CLK_DIV_MASK);
	host->cfg_div.width = __builtin_popcountl(CLK_DIV_MASK);
282 283 284 285 286 287 288 289 290 291
	host->cfg_div.hw.init = &init;
	host->cfg_div.flags = CLK_DIVIDER_ONE_BASED |
		CLK_DIVIDER_ROUND_CLOSEST | CLK_DIVIDER_ALLOW_ZERO;

	host->cfg_div_clk = devm_clk_register(host->dev, &host->cfg_div.hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->cfg_div_clk)))
		return PTR_ERR(host->cfg_div_clk);

	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
292 293 294
	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
	clk_reg |= FIELD_PREP(CLK_SRC_MASK, CLK_SRC_XTAL);
	clk_reg |= FIELD_PREP(CLK_DIV_MASK, CLK_DIV_MAX);
295 296 297 298 299 300 301 302 303 304
	clk_reg &= ~CLK_ALWAYS_ON;
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

	/* Ensure clock starts in "auto" mode, not "always on" */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_CLK_ALWAYS_ON;
	cfg |= CFG_AUTO_CLK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	ret = clk_prepare_enable(host->cfg_div_clk);
305 306 307 308 309
	if (ret)
		return ret;

	/* Get the nearest minimum clock to 400KHz */
	host->mmc->f_min = clk_round_rate(host->cfg_div_clk, 400000);
310

311
	ret = meson_mmc_clk_set(host, host->mmc->f_min);
312
	if (ret)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
		clk_disable_unprepare(host->cfg_div_clk);

	return ret;
}

static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 bus_width;
	u32 val, orig;

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
				dev_err(mmc_dev(mmc),
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}


	meson_mmc_clk_set(host, ios->clock);

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
	orig = val;

382 383
	val &= ~CFG_BUS_WIDTH_MASK;
	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
384

385 386 387 388 389 390 391 392 393 394
	val &= ~CFG_DDR;
	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
	    ios->timing == MMC_TIMING_MMC_DDR52 ||
	    ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_DDR;

	val &= ~CFG_CHK_DS;
	if (ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_CHK_DS;

395 396
	if (val != orig) {
		writel(val, host->regs + SD_EMMC_CFG);
397 398
		dev_dbg(host->dev, "%s: SD_EMMC_CFG: 0x%08x -> 0x%08x\n",
			__func__, orig, val);
399
	}
400 401
}

402 403
static void meson_mmc_request_done(struct mmc_host *mmc,
				   struct mmc_request *mrq)
404 405 406 407 408 409 410 411 412 413
{
	struct meson_host *host = mmc_priv(mmc);

	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);
}

static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
414
	struct mmc_data *data = cmd->data;
415
	u32 cfg, cmd_cfg = 0, cmd_data = 0;
416
	u8 blk_len;
417 418 419 420 421
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();

422
	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
423
	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
424 425 426 427

	/* Response */
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
428 429
			cmd_cfg |= CMD_CFG_RESP_128;
		cmd_cfg |= CMD_CFG_RESP_NUM;
430 431

		if (!(cmd->flags & MMC_RSP_CRC))
432
			cmd_cfg |= CMD_CFG_RESP_NOCRC;
433 434

		if (cmd->flags & MMC_RSP_BUSY)
435
			cmd_cfg |= CMD_CFG_R1B;
436
	} else {
437
		cmd_cfg |= CMD_CFG_NO_RESP;
438 439 440
	}

	/* data? */
441
	if (data) {
442
		cmd_cfg |= CMD_CFG_DATA_IO;
443 444
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT_DATA));
445

446
		if (data->blocks > 1) {
447
			cmd_cfg |= CMD_CFG_BLOCK_MODE;
448 449
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
					      data->blocks);
450 451 452

			/* check if block-size matches, if not update */
			cfg = readl(host->regs + SD_EMMC_CFG);
453
			blk_len = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
454
			if (blk_len != ilog2(data->blksz)) {
455
				dev_dbg(host->dev, "%s: update blk_len %d -> %d\n",
456
					__func__, blk_len,
457 458
					ilog2(data->blksz));
				blk_len = ilog2(data->blksz);
459 460
				cfg &= ~CFG_BLK_LEN_MASK;
				cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blk_len);
461 462 463
				writel(cfg, host->regs + SD_EMMC_CFG);
			}
		} else {
464
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
465 466
		}

467 468 469
		data->bytes_xfered = 0;
		xfer_bytes = data->blksz * data->blocks;
		if (data->flags & MMC_DATA_WRITE) {
470
			cmd_cfg |= CMD_CFG_DATA_WR;
471
			WARN_ON(xfer_bytes > host->bounce_buf_size);
472
			sg_copy_to_buffer(data->sg, data->sg_len,
473 474 475 476
					  host->bounce_buf, xfer_bytes);
			dma_wmb();
		}

477
		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
478
	} else {
479 480
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT));
481 482 483 484 485
	}

	host->cmd = cmd;

	/* Last descriptor */
486 487 488 489
	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(0, host->regs + SD_EMMC_CMD_RSP);
490
	wmb(); /* ensure descriptor is written before kicked */
491
	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

	if (mrq->sbc)
		meson_mmc_start_cmd(mmc, mrq->sbc);
	else
		meson_mmc_start_cmd(mmc, mrq->cmd);
}

507
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
524
	struct mmc_command *cmd;
525
	struct mmc_data *data;
526 527 528 529 530 531
	u32 irq_en, status, raw_status;
	irqreturn_t ret = IRQ_HANDLED;

	if (WARN_ON(!host))
		return IRQ_NONE;

532 533
	cmd = host->cmd;

534 535 536
	if (WARN_ON(!cmd))
		return IRQ_NONE;

537 538
	data = cmd->data;

539 540 541 542 543 544 545 546 547 548 549 550
	spin_lock(&host->lock);
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	if (!status) {
		dev_warn(host->dev, "Spurious IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
		ret = IRQ_NONE;
		goto out;
	}

551 552
	meson_mmc_read_resp(host->mmc, cmd);

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	cmd->error = 0;
	if (status & IRQ_RXD_ERR_MASK) {
		dev_dbg(host->dev, "Unhandled IRQ: RXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_TXD_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: TXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_DESC_ERR)
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor error\n");
	if (status & IRQ_RESP_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: Response error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_RESP_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Response timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_DESC_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_SDIO)
		dev_dbg(host->dev, "Unhandled IRQ: SDIO.\n");

579 580 581
	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
		if (data && !cmd->error)
			data->bytes_xfered = data->blksz * data->blocks;
582
		ret = IRQ_WAKE_THREAD;
583
	} else {
584 585
		dev_warn(host->dev, "Unknown IRQ! status=0x%04x: MMC CMD%u arg=0x%08x flags=0x%08x stop=%d\n",
			 status, cmd->opcode, cmd->arg,
586
			 cmd->flags, cmd->mrq->stop ? 1 : 0);
587 588 589 590 591 592 593 594 595 596 597 598 599 600
		if (cmd->data) {
			struct mmc_data *data = cmd->data;

			dev_warn(host->dev, "\tblksz %u blocks %u flags 0x%08x (%s%s)",
				 data->blksz, data->blocks, data->flags,
				 data->flags & MMC_DATA_WRITE ? "write" : "",
				 data->flags & MMC_DATA_READ ? "read" : "");
		}
	}

out:
	/* ack all (enabled) interrupts */
	writel(status, host->regs + SD_EMMC_STATUS);

601
	if (ret == IRQ_HANDLED)
602 603 604 605 606 607 608 609 610 611 612 613 614 615
		meson_mmc_request_done(host->mmc, cmd->mrq);

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
	struct mmc_command *cmd = host->cmd;
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!cmd))
616
		return IRQ_NONE;
617 618

	data = cmd->data;
619
	if (data && data->flags & MMC_DATA_READ) {
620
		xfer_bytes = data->blksz * data->blocks;
621 622 623
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
624 625
	}

626 627
	if (!data || !data->stop || cmd->mrq->sbc)
		meson_mmc_request_done(host->mmc, cmd->mrq);
628 629 630
	else
		meson_mmc_start_cmd(host->mmc, data->stop);

631
	return IRQ_HANDLED;
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
}

/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

648 649 650 651
static void meson_mmc_cfg_init(struct meson_host *host)
{
	u32 cfg = 0;

652 653 654 655
	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
656 657 658 659

	writel(cfg, host->regs + SD_EMMC_CFG);
}

660 661 662 663 664 665 666 667 668 669 670
static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
671
	int ret, irq;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
	if (ret == -EPROBE_DEFER)
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
691 692
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
693 694 695 696 697 698 699 700 701 702
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

703 704
	irq = platform_get_irq(pdev, 0);
	if (!irq) {
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

	ret = meson_mmc_clk_init(host);
	if (ret)
722
		goto err_core_clk;
723 724 725 726 727 728 729

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

	/* clear, ack, enable all interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
730
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
731

732 733 734
	/* set config to sane default */
	meson_mmc_cfg_init(host);

735 736
	ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
					meson_mmc_irq_thread, IRQF_SHARED,
737
					NULL, host);
738
	if (ret)
739
		goto err_div_clk;
740

741 742 743
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;

744
	/* data bounce buffer */
745
	host->bounce_buf_size = mmc->max_req_size;
746 747 748 749 750 751
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
752
		goto err_div_clk;
753 754 755 756 757 758 759
	}

	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

760
err_div_clk:
761
	clk_disable_unprepare(host->cfg_div_clk);
762
err_core_clk:
763
	clk_disable_unprepare(host->core_clk);
764
free_host:
765 766 767 768 769 770 771 772
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

773 774
	mmc_remove_host(host->mmc);

775 776 777
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

778 779
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	clk_disable_unprepare(host->cfg_div_clk);
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");