meson-gx-mmc.c 34.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39
#include <linux/bitfield.h>
40 41 42 43

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
44 45 46
#define   CLK_DIV_MASK GENMASK(5, 0)
#define   CLK_SRC_MASK GENMASK(7, 6)
#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
47 48
#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
49 50 51
#define   CLK_TX_DELAY_MASK GENMASK(19, 16)
#define   CLK_RX_DELAY_MASK GENMASK(23, 20)
#define   CLK_DELAY_STEP_PS 200
52 53
#define   CLK_PHASE_STEP 30
#define   CLK_PHASE_POINT_NUM (360 / CLK_PHASE_STEP)
54 55
#define   CLK_ALWAYS_ON BIT(24)

56
#define SD_EMMC_DELAY 0x4
57 58 59 60 61
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
62
#define   START_DESC_ADDR_MASK GENMASK(31, 2)
63 64

#define SD_EMMC_CFG 0x44
65
#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
66 67 68 69
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
70 71 72
#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define   CFG_RC_CC_MASK GENMASK(15, 12)
73 74
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
75
#define   CFG_CHK_DS BIT(20)
76 77 78 79
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)
80
#define   STATUS_DATI GENMASK(23, 16)
81 82

#define SD_EMMC_IRQ_EN 0x4c
83
#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
84 85 86
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
87 88
#define   IRQ_CRC_ERR \
	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
89 90
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
91 92
#define   IRQ_TIMEOUTS \
	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
93 94 95
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)
96 97 98
#define   IRQ_EN_MASK \
	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
	 IRQ_SDIO)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
114 115
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
116
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
117 118 119 120 121
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE

#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)

122 123
#define MUX_CLK_NUM_PARENTS 2

124 125 126 127 128 129 130
struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};

131 132 133 134 135 136 137 138
struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	struct clk *core_clk;
139
	struct clk *mmc_clk;
140 141
	struct clk *rx_clk;
	struct clk *tx_clk;
142
	unsigned long req_rate;
143

144 145 146 147
	struct pinctrl *pinctrl;
	struct pinctrl_state *pins_default;
	struct pinctrl_state *pins_clk_gate;

148 149 150
	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;
151 152
	struct sd_emmc_desc *descs;
	dma_addr_t descs_dma_addr;
153 154 155 156

	bool vqmmc_enabled;
};

157
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
158 159 160
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
161
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
162 163 164 165 166 167 168 169
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
170
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
171 172 173
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

174
#define CMD_DATA_MASK GENMASK(31, 2)
175 176
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
177
#define CMD_RESP_MASK GENMASK(31, 1)
178 179
#define CMD_RESP_SRAM BIT(0)

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
struct meson_mmc_phase {
	struct clk_hw hw;
	void __iomem *reg;
	unsigned long phase_mask;
	unsigned long delay_mask;
	unsigned int delay_step_ps;
};

#define to_meson_mmc_phase(_hw) container_of(_hw, struct meson_mmc_phase, hw)

static int meson_mmc_clk_get_phase(struct clk_hw *hw)
{
	struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
	unsigned int phase_num = 1 <<  hweight_long(mmc->phase_mask);
	unsigned long period_ps, p, d;
		int degrees;
	u32 val;

	val = readl(mmc->reg);
199
	p = (val & mmc->phase_mask) >> __ffs(mmc->phase_mask);
200 201 202 203 204
	degrees = p * 360 / phase_num;

	if (mmc->delay_mask) {
		period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
					 clk_get_rate(hw->clk));
205
		d = (val & mmc->delay_mask) >> __ffs(mmc->delay_mask);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
		degrees += d * mmc->delay_step_ps * 360 / period_ps;
		degrees %= 360;
	}

	return degrees;
}

static void meson_mmc_apply_phase_delay(struct meson_mmc_phase *mmc,
					unsigned int phase,
					unsigned int delay)
{
	u32 val;

	val = readl(mmc->reg);
	val &= ~mmc->phase_mask;
221
	val |= phase << __ffs(mmc->phase_mask);
222 223 224

	if (mmc->delay_mask) {
		val &= ~mmc->delay_mask;
225
		val |= delay << __ffs(mmc->delay_mask);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	}

	writel(val, mmc->reg);
}

static int meson_mmc_clk_set_phase(struct clk_hw *hw, int degrees)
{
	struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
	unsigned int phase_num = 1 <<  hweight_long(mmc->phase_mask);
	unsigned long period_ps, d = 0, r;
	uint64_t p;

	p = degrees % 360;

	if (!mmc->delay_mask) {
		p = DIV_ROUND_CLOSEST_ULL(p, 360 / phase_num);
	} else {
		period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
					 clk_get_rate(hw->clk));

		/* First compute the phase index (p), the remainder (r) is the
		 * part we'll try to acheive using the delays (d).
		 */
		r = do_div(p, 360 / phase_num);
		d = DIV_ROUND_CLOSEST(r * period_ps,
				      360 * mmc->delay_step_ps);
252
		d = min(d, mmc->delay_mask >> __ffs(mmc->delay_mask));
253 254 255 256 257 258 259 260 261 262 263
	}

	meson_mmc_apply_phase_delay(mmc, p, d);
	return 0;
}

static const struct clk_ops meson_mmc_clk_phase_ops = {
	.get_phase = meson_mmc_clk_get_phase,
	.set_phase = meson_mmc_clk_set_phase,
};

264 265 266 267 268 269 270 271 272 273 274 275
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;

	if (!timeout)
		return SD_EMMC_CMD_TIMEOUT_DATA;

	timeout = roundup_pow_of_two(timeout);

	return min(timeout, 32768U); /* max. 2^15 ms */
}

H
Heiner Kallweit 已提交
276 277 278 279 280 281 282 283 284 285 286
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
		return cmd->mrq->cmd;
	else if (mmc_op_multi(cmd->opcode) &&
		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
		return cmd->mrq->stop;
	else
		return NULL;
}

287 288 289 290 291 292 293 294
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
					struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;
	struct scatterlist *sg;
	int i;
	bool use_desc_chain_mode = true;

295 296 297 298 299 300 301 302 303
	/*
	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
	 * reported. For some strange reason this occurs in descriptor
	 * chain mode only. So let's fall back to bounce buffer mode
	 * for command SD_IO_RW_EXTENDED.
	 */
	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
		return;

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	for_each_sg(data->sg, sg, data->sg_len, i)
		/* check for 8 byte alignment */
		if (sg->offset & 7) {
			WARN_ONCE(1, "unaligned scatterlist buffer\n");
			use_desc_chain_mode = false;
			break;
		}

	if (use_desc_chain_mode)
		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
	return data && data->flags & MMC_DATA_READ &&
	       !meson_mmc_desc_chain_mode(data);
}

static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data)
		return;

	meson_mmc_get_transfer_mode(mmc, mrq);
	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;

	if (!meson_mmc_desc_chain_mode(data))
		return;

	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
                                   mmc_get_dma_dir(data));
	if (!data->sg_count)
		dev_err(mmc_dev(mmc), "dma_map_sg failed");
}

static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
			       int err)
{
	struct mmc_data *data = mrq->data;

	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
}

356 357 358 359 360 361 362 363 364 365
static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
{
	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
	    ios->timing == MMC_TIMING_UHS_DDR50 ||
	    ios->timing == MMC_TIMING_MMC_HS400)
		return true;

	return false;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * Gating the clock on this controller is tricky.  It seems the mmc clock
 * is also used by the controller.  It may crash during some operation if the
 * clock is stopped.  The safest thing to do, whenever possible, is to keep
 * clock running at stop it at the pad using the pinmux.
 */
static void meson_mmc_clk_gate(struct meson_host *host)
{
	u32 cfg;

	if (host->pins_clk_gate) {
		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
	} else {
		/*
		 * If the pinmux is not provided - default to the classic and
		 * unsafe method
		 */
		cfg = readl(host->regs + SD_EMMC_CFG);
		cfg |= CFG_STOP_CLOCK;
		writel(cfg, host->regs + SD_EMMC_CFG);
	}
}

static void meson_mmc_clk_ungate(struct meson_host *host)
{
	u32 cfg;

	if (host->pins_clk_gate)
		pinctrl_select_state(host->pinctrl, host->pins_default);

	/* Make sure the clock is not stopped in the controller */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);
}

402
static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
403 404
{
	struct mmc_host *mmc = host->mmc;
405
	unsigned long rate = ios->clock;
406
	int ret;
407 408
	u32 cfg;

409 410 411 412
	/* DDR modes require higher module clock */
	if (meson_mmc_timing_is_ddr(ios))
		rate <<= 1;

413
	/* Same request - bail-out */
414
	if (host->req_rate == rate)
415 416 417
		return 0;

	/* stop clock */
418
	meson_mmc_clk_gate(host);
419
	host->req_rate = 0;
420

421
	if (!rate) {
422
		mmc->actual_clock = 0;
423
		/* return with clock being stopped */
424 425 426
		return 0;
	}

427 428 429 430 431
	/* Stop the clock during rate change to avoid glitches */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg |= CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

432
	ret = clk_set_rate(host->mmc_clk, rate);
433 434
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
435
			rate, ret);
436
		return ret;
437 438
	}

439
	host->req_rate = rate;
440
	mmc->actual_clock = clk_get_rate(host->mmc_clk);
441

442 443 444 445
	/* We should report the real output frequency of the controller */
	if (meson_mmc_timing_is_ddr(ios))
		mmc->actual_clock >>= 1;

446
	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
447 448
	if (ios->clock != mmc->actual_clock)
		dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
449 450

	/* (re)start clock */
451
	meson_mmc_clk_ungate(host);
452 453

	return 0;
454 455 456 457 458 459 460 461 462 463
}

/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
464 465
	struct clk_mux *mux;
	struct clk_divider *div;
466
	struct meson_mmc_phase *core, *tx, *rx;
467
	struct clk *clk;
468 469 470
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
471
	const char *clk_parent[1];
472
	u32 clk_reg;
473

474 475 476 477 478 479
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
	clk_reg |= CLK_ALWAYS_ON;
	clk_reg |= CLK_DIV_MASK;
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

480 481
	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
482
		struct clk *clk;
483 484 485
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
486 487 488
		clk = devm_clk_get(host->dev, name);
		if (IS_ERR(clk)) {
			if (clk != ERR_PTR(-EPROBE_DEFER))
489
				dev_err(host->dev, "Missing clock %s\n", name);
490
			return PTR_ERR(clk);
491 492
		}

493
		mux_parent_names[i] = __clk_get_name(clk);
494 495 496
	}

	/* create the mux */
497 498 499 500
	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
	if (!mux)
		return -ENOMEM;

501 502 503 504 505
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
506
	init.num_parents = MUX_CLK_NUM_PARENTS;
507

508
	mux->reg = host->regs + SD_EMMC_CLOCK;
509
	mux->shift = __ffs(CLK_SRC_MASK);
510 511 512 513 514 515
	mux->mask = CLK_SRC_MASK >> mux->shift;
	mux->hw.init = &init;

	clk = devm_clk_register(host->dev, &mux->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);
516 517

	/* create the divider */
518 519 520 521
	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return -ENOMEM;

522
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
523
	init.name = clk_name;
524 525
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
526 527 528 529 530
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	div->reg = host->regs + SD_EMMC_CLOCK;
531
	div->shift = __ffs(CLK_DIV_MASK);
532 533
	div->width = __builtin_popcountl(CLK_DIV_MASK);
	div->hw.init = &init;
534
	div->flags = CLK_DIVIDER_ONE_BASED;
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	clk = devm_clk_register(host->dev, &div->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);

	/* create the mmc core clock */
	core = devm_kzalloc(host->dev, sizeof(*core), GFP_KERNEL);
	if (!core)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#core", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = CLK_SET_RATE_PARENT;
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	core->reg = host->regs + SD_EMMC_CLOCK;
	core->phase_mask = CLK_CORE_PHASE_MASK;
	core->hw.init = &init;

	host->mmc_clk = devm_clk_register(host->dev, &core->hw);
558 559
	if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
		return PTR_ERR(host->mmc_clk);
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	/* create the mmc tx clock */
	tx = devm_kzalloc(host->dev, sizeof(*tx), GFP_KERNEL);
	if (!tx)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#tx", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = 0;
	clk_parent[0] = __clk_get_name(host->mmc_clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	tx->reg = host->regs + SD_EMMC_CLOCK;
	tx->phase_mask = CLK_TX_PHASE_MASK;
	tx->delay_mask = CLK_TX_DELAY_MASK;
	tx->delay_step_ps = CLK_DELAY_STEP_PS;
	tx->hw.init = &init;

	host->tx_clk = devm_clk_register(host->dev, &tx->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->tx_clk)))
		return PTR_ERR(host->tx_clk);

	/* create the mmc rx clock */
	rx = devm_kzalloc(host->dev, sizeof(*rx), GFP_KERNEL);
	if (!rx)
		return -ENOMEM;

	snprintf(clk_name, sizeof(clk_name), "%s#rx", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &meson_mmc_clk_phase_ops;
	init.flags = 0;
	clk_parent[0] = __clk_get_name(host->mmc_clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	rx->reg = host->regs + SD_EMMC_CLOCK;
	rx->phase_mask = CLK_RX_PHASE_MASK;
	rx->delay_mask = CLK_RX_DELAY_MASK;
	rx->delay_step_ps = CLK_DELAY_STEP_PS;
	rx->hw.init = &init;

	host->rx_clk = devm_clk_register(host->dev, &rx->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->rx_clk)))
		return PTR_ERR(host->rx_clk);

607 608 609
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
610
	if (ret)
611
		return ret;
612

613 614 615 616 617 618 619 620 621 622
	/*
	 * Set phases : These values are mostly the datasheet recommended ones
	 * except for the Tx phase. Datasheet recommends 180 but some cards
	 * fail at initialisation with it. 270 works just fine, it fixes these
	 * initialisation issues and enable eMMC DDR52 mode.
	 */
	clk_set_phase(host->mmc_clk, 180);
	clk_set_phase(host->tx_clk, 270);
	clk_set_phase(host->rx_clk, 0);

623
	return clk_prepare_enable(host->mmc_clk);
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
static void meson_mmc_shift_map(unsigned long *map, unsigned long shift)
{
	DECLARE_BITMAP(left, CLK_PHASE_POINT_NUM);
	DECLARE_BITMAP(right, CLK_PHASE_POINT_NUM);

	/*
	 * shift the bitmap right and reintroduce the dropped bits on the left
	 * of the bitmap
	 */
	bitmap_shift_right(right, map, shift, CLK_PHASE_POINT_NUM);
	bitmap_shift_left(left, map, CLK_PHASE_POINT_NUM - shift,
			  CLK_PHASE_POINT_NUM);
	bitmap_or(map, left, right, CLK_PHASE_POINT_NUM);
}

static void meson_mmc_find_next_region(unsigned long *map,
				       unsigned long *start,
				       unsigned long *stop)
{
	*start = find_next_bit(map, CLK_PHASE_POINT_NUM, *start);
	*stop = find_next_zero_bit(map, CLK_PHASE_POINT_NUM, *start);
}

static int meson_mmc_find_tuning_point(unsigned long *test)
{
	unsigned long shift, stop, offset = 0, start = 0, size = 0;

	/* Get the all good/all bad situation out the way */
	if (bitmap_full(test, CLK_PHASE_POINT_NUM))
		return 0; /* All points are good so point 0 will do */
	else if (bitmap_empty(test, CLK_PHASE_POINT_NUM))
		return -EIO; /* No successful tuning point */

	/*
	 * Now we know there is a least one region find. Make sure it does
	 * not wrap by the shifting the bitmap if necessary
	 */
	shift = find_first_zero_bit(test, CLK_PHASE_POINT_NUM);
	if (shift != 0)
		meson_mmc_shift_map(test, shift);

	while (start < CLK_PHASE_POINT_NUM) {
		meson_mmc_find_next_region(test, &start, &stop);

		if ((stop - start) > size) {
			offset = start;
			size = stop - start;
		}

		start = stop;
	}

	/* Get the center point of the region */
	offset += (size / 2);

	/* Shift the result back */
	offset = (offset + shift) % CLK_PHASE_POINT_NUM;

	return offset;
}

static int meson_mmc_clk_phase_tuning(struct mmc_host *mmc, u32 opcode,
				      struct clk *clk)
{
	int point, ret;
	DECLARE_BITMAP(test, CLK_PHASE_POINT_NUM);

	dev_dbg(mmc_dev(mmc), "%s phase/delay tunning...\n",
		__clk_get_name(clk));
	bitmap_zero(test, CLK_PHASE_POINT_NUM);

	/* Explore tuning points */
	for (point = 0; point < CLK_PHASE_POINT_NUM; point++) {
		clk_set_phase(clk, point * CLK_PHASE_STEP);
		ret = mmc_send_tuning(mmc, opcode, NULL);
		if (!ret)
			set_bit(point, test);
	}

	/* Find the optimal tuning point and apply it */
	point = meson_mmc_find_tuning_point(test);
	if (point < 0)
		return point; /* tuning failed */

	clk_set_phase(clk, point * CLK_PHASE_STEP);
	dev_dbg(mmc_dev(mmc), "success with phase: %d\n",
		clk_get_phase(clk));
	return 0;
}

static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct meson_host *host = mmc_priv(mmc);

	return meson_mmc_clk_phase_tuning(mmc, opcode, host->rx_clk);
}

723 724 725
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
726 727
	u32 bus_width, val;
	int err;
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
J
Jerome Brunet 已提交
748 749 750 751

		/* Reset rx phase */
		clk_set_phase(host->rx_clk, 0);

752 753 754 755 756 757 758
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
759
				dev_err(host->dev,
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
786 787
	val &= ~CFG_BUS_WIDTH_MASK;
	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
788

789
	val &= ~CFG_DDR;
790
	if (meson_mmc_timing_is_ddr(ios))
791 792 793 794 795 796
		val |= CFG_DDR;

	val &= ~CFG_CHK_DS;
	if (ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_CHK_DS;

797
	err = meson_mmc_clk_set(host, ios);
798 799 800 801 802
	if (err)
		dev_err(host->dev, "Failed to set clock: %d\n,", err);

	writel(val, host->regs + SD_EMMC_CFG);
	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
803 804
}

805 806
static void meson_mmc_request_done(struct mmc_host *mmc,
				   struct mmc_request *mrq)
807 808 809 810 811 812 813
{
	struct meson_host *host = mmc_priv(mmc);

	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 cfg, blksz_old;

	cfg = readl(host->regs + SD_EMMC_CFG);
	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);

	if (!is_power_of_2(blksz))
		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);

	blksz = ilog2(blksz);

	/* check if block-size matches, if not update */
	if (blksz == blksz_old)
		return;

	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
		blksz_old, blksz);

	cfg &= ~CFG_BLK_LEN_MASK;
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
	writel(cfg, host->regs + SD_EMMC_CFG);
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
			*cmd_cfg |= CMD_CFG_RESP_128;
		*cmd_cfg |= CMD_CFG_RESP_NUM;

		if (!(cmd->flags & MMC_RSP_CRC))
			*cmd_cfg |= CMD_CFG_RESP_NOCRC;

		if (cmd->flags & MMC_RSP_BUSY)
			*cmd_cfg |= CMD_CFG_R1B;
	} else {
		*cmd_cfg |= CMD_CFG_NO_RESP;
	}
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
	struct meson_host *host = mmc_priv(mmc);
	struct sd_emmc_desc *desc = host->descs;
	struct mmc_data *data = host->cmd->data;
	struct scatterlist *sg;
	u32 start;
	int i;

	if (data->flags & MMC_DATA_WRITE)
		cmd_cfg |= CMD_CFG_DATA_WR;

	if (data->blocks > 1) {
		cmd_cfg |= CMD_CFG_BLOCK_MODE;
		meson_mmc_set_blksz(mmc, data->blksz);
	}

	for_each_sg(data->sg, sg, data->sg_count, i) {
		unsigned int len = sg_dma_len(sg);

		if (data->blocks > 1)
			len /= data->blksz;

		desc[i].cmd_cfg = cmd_cfg;
		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
		if (i > 0)
			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
		desc[i].cmd_arg = host->cmd->arg;
		desc[i].cmd_resp = 0;
		desc[i].cmd_data = sg_dma_address(sg);
	}
	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;

	dma_wmb(); /* ensure descriptor is written before kicked */
	start = host->descs_dma_addr | START_DESC_BUSY;
	writel(start, host->regs + SD_EMMC_START);
}

894 895 896
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
897
	struct mmc_data *data = cmd->data;
898
	u32 cmd_cfg = 0, cmd_data = 0;
899 900 901 902 903
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();

904 905
	host->cmd = cmd;

906
	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
907
	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
908

909
	meson_mmc_set_response_bits(cmd, &cmd_cfg);
910 911

	/* data? */
912
	if (data) {
913
		data->bytes_xfered = 0;
914
		cmd_cfg |= CMD_CFG_DATA_IO;
915
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
916
				      ilog2(meson_mmc_get_timeout_msecs(data)));
917

918 919 920 921 922
		if (meson_mmc_desc_chain_mode(data)) {
			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
			return;
		}

923
		if (data->blocks > 1) {
924
			cmd_cfg |= CMD_CFG_BLOCK_MODE;
925 926
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
					      data->blocks);
927
			meson_mmc_set_blksz(mmc, data->blksz);
928
		} else {
929
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
930 931
		}

932 933
		xfer_bytes = data->blksz * data->blocks;
		if (data->flags & MMC_DATA_WRITE) {
934
			cmd_cfg |= CMD_CFG_DATA_WR;
935
			WARN_ON(xfer_bytes > host->bounce_buf_size);
936
			sg_copy_to_buffer(data->sg, data->sg_len,
937 938 939 940
					  host->bounce_buf, xfer_bytes);
			dma_wmb();
		}

941
		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
942
	} else {
943 944
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT));
945 946 947
	}

	/* Last descriptor */
948 949 950 951
	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(0, host->regs + SD_EMMC_CMD_RSP);
952
	wmb(); /* ensure descriptor is written before kicked */
953
	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
954 955 956 957 958
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);
959 960 961 962 963 964 965 966 967 968 969
	bool needs_pre_post_req = mrq->data &&
			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);

	if (needs_pre_post_req) {
		meson_mmc_get_transfer_mode(mmc, mrq);
		if (!meson_mmc_desc_chain_mode(mrq->data))
			needs_pre_post_req = false;
	}

	if (needs_pre_post_req)
		meson_mmc_pre_req(mmc, mrq);
970 971 972 973

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

974 975 976 977
	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);

	if (needs_pre_post_req)
		meson_mmc_post_req(mmc, mrq, 0);
978 979
}

980
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
997
	struct mmc_command *cmd;
998
	struct mmc_data *data;
999
	u32 irq_en, status, raw_status;
1000
	irqreturn_t ret = IRQ_NONE;
1001

1002
	if (WARN_ON(!host) || WARN_ON(!host->cmd))
1003 1004
		return IRQ_NONE;

1005
	spin_lock(&host->lock);
1006

1007
	cmd = host->cmd;
1008
	data = cmd->data;
1009 1010 1011 1012 1013
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	cmd->error = 0;
1014 1015
	if (status & IRQ_CRC_ERR) {
		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
1016
		cmd->error = -EILSEQ;
1017 1018
		ret = IRQ_HANDLED;
		goto out;
1019
	}
1020 1021 1022

	if (status & IRQ_TIMEOUTS) {
		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
1023
		cmd->error = -ETIMEDOUT;
1024 1025
		ret = IRQ_HANDLED;
		goto out;
1026
	}
1027 1028 1029 1030 1031 1032

	meson_mmc_read_resp(host->mmc, cmd);

	if (status & IRQ_SDIO) {
		dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
		ret = IRQ_HANDLED;
1033 1034
	}

1035 1036 1037
	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
		if (data && !cmd->error)
			data->bytes_xfered = data->blksz * data->blocks;
1038 1039 1040
		if (meson_mmc_bounce_buf_read(data) ||
		    meson_mmc_get_next_command(cmd))
			ret = IRQ_WAKE_THREAD;
1041 1042
		else
			ret = IRQ_HANDLED;
1043 1044 1045
	}

out:
1046 1047
	/* ack all enabled interrupts */
	writel(irq_en, host->regs + SD_EMMC_STATUS);
1048

1049
	if (ret == IRQ_HANDLED)
1050
		meson_mmc_request_done(host->mmc, cmd->mrq);
1051 1052 1053 1054
	else if (ret == IRQ_NONE)
		dev_warn(host->dev,
			 "Unexpected IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
1055 1056 1057 1058 1059 1060 1061 1062

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
H
Heiner Kallweit 已提交
1063
	struct mmc_command *next_cmd, *cmd = host->cmd;
1064 1065 1066 1067
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!cmd))
1068
		return IRQ_NONE;
1069 1070

	data = cmd->data;
1071
	if (meson_mmc_bounce_buf_read(data)) {
1072
		xfer_bytes = data->blksz * data->blocks;
1073 1074 1075
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
1076 1077
	}

H
Heiner Kallweit 已提交
1078 1079 1080
	next_cmd = meson_mmc_get_next_command(cmd);
	if (next_cmd)
		meson_mmc_start_cmd(host->mmc, next_cmd);
1081
	else
H
Heiner Kallweit 已提交
1082
		meson_mmc_request_done(host->mmc, cmd->mrq);
1083

1084
	return IRQ_HANDLED;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

1101 1102 1103 1104
static void meson_mmc_cfg_init(struct meson_host *host)
{
	u32 cfg = 0;

1105 1106 1107 1108
	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1109 1110 1111 1112

	writel(cfg, host->regs + SD_EMMC_CFG);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static int meson_mmc_card_busy(struct mmc_host *mmc)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 regval;

	regval = readl(host->regs + SD_EMMC_STATUS);

	/* We are only interrested in lines 0 to 3, so mask the other ones */
	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
	/* vqmmc regulator is available */
	if (!IS_ERR(mmc->supply.vqmmc)) {
		/*
		 * The usual amlogic setup uses a GPIO to switch from one
		 * regulator to the other. While the voltage ramp up is
		 * pretty fast, care must be taken when switching from 3.3v
		 * to 1.8v. Please make sure the regulator framework is aware
		 * of your own regulator constraints
		 */
		return mmc_regulator_set_vqmmc(mmc, ios);
	}

	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
		return 0;

	return -EINVAL;
}

1145 1146 1147 1148
static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
1149 1150
	.pre_req	= meson_mmc_pre_req,
	.post_req	= meson_mmc_post_req,
1151
	.execute_tuning = meson_mmc_execute_tuning,
1152
	.card_busy	= meson_mmc_card_busy,
1153
	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1154 1155 1156 1157 1158 1159 1160
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
1161
	int ret, irq;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
	if (ret == -EPROBE_DEFER)
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
1181 1182
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

1193 1194
	irq = platform_get_irq(pdev, 0);
	if (!irq) {
1195 1196 1197 1198 1199
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	host->pinctrl = devm_pinctrl_get(&pdev->dev);
	if (IS_ERR(host->pinctrl)) {
		ret = PTR_ERR(host->pinctrl);
		goto free_host;
	}

	host->pins_default = pinctrl_lookup_state(host->pinctrl,
						  PINCTRL_STATE_DEFAULT);
	if (IS_ERR(host->pins_default)) {
		ret = PTR_ERR(host->pins_default);
		goto free_host;
	}

	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
						   "clk-gate");
	if (IS_ERR(host->pins_clk_gate)) {
		dev_warn(&pdev->dev,
			 "can't get clk-gate pinctrl, using clk_stop bit\n");
		host->pins_clk_gate = NULL;
	}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

	ret = meson_mmc_clk_init(host);
	if (ret)
1233
		goto err_core_clk;
1234

1235 1236 1237
	/* set config to sane default */
	meson_mmc_cfg_init(host);

1238 1239 1240
	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

1241
	/* clear, ack and enable interrupts */
1242
	writel(0, host->regs + SD_EMMC_IRQ_EN);
1243 1244 1245 1246
	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
	       host->regs + SD_EMMC_STATUS);
	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
	       host->regs + SD_EMMC_IRQ_EN);
1247

1248 1249
	ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
					meson_mmc_irq_thread, IRQF_SHARED,
1250
					NULL, host);
1251
	if (ret)
1252
		goto err_init_clk;
1253

H
Heiner Kallweit 已提交
1254
	mmc->caps |= MMC_CAP_CMD23;
1255 1256
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1257 1258
	mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
	mmc->max_seg_size = mmc->max_req_size;
1259

1260
	/* data bounce buffer */
1261
	host->bounce_buf_size = mmc->max_req_size;
1262 1263 1264 1265 1266 1267
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
1268
		goto err_init_clk;
1269 1270
	}

1271 1272 1273 1274 1275 1276 1277 1278
	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
		      &host->descs_dma_addr, GFP_KERNEL);
	if (!host->descs) {
		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
		ret = -ENOMEM;
		goto err_bounce_buf;
	}

1279 1280 1281 1282 1283
	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

1284 1285 1286
err_bounce_buf:
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1287 1288
err_init_clk:
	clk_disable_unprepare(host->mmc_clk);
1289
err_core_clk:
1290
	clk_disable_unprepare(host->core_clk);
1291
free_host:
1292 1293 1294 1295 1296 1297 1298 1299
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

1300 1301
	mmc_remove_host(host->mmc);

1302 1303 1304
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

1305 1306
	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
			  host->descs, host->descs_dma_addr);
1307 1308
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1309

1310
	clk_disable_unprepare(host->mmc_clk);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");