mmu.c 135.7 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/uaccess.h>
40
#include <linux/hash.h>
41
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
42

A
Avi Kivity 已提交
43 44
#include <asm/page.h>
#include <asm/cmpxchg.h>
45
#include <asm/io.h>
46
#include <asm/vmx.h>
47
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
48

49 50 51 52 53 54 55
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
56
bool tdp_enabled = false;
57

58 59 60 61
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
62 63 64
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
65
};
66

67
#undef MMU_DEBUG
68 69

#ifdef MMU_DEBUG
70 71
static bool dbg = 0;
module_param(dbg, bool, 0644);
72 73 74

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
75
#define MMU_WARN_ON(x) WARN_ON(x)
76 77 78
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
79
#define MMU_WARN_ON(x) do { } while (0)
80
#endif
A
Avi Kivity 已提交
81

82 83
#define PTE_PREFETCH_NUM		8

84
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
85 86 87 88 89
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
90
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
91 92 93 94 95 96 97 98

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
100

101 102 103
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
104 105 106 107 108

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


109
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
110 111
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
112 113 114 115 116 117
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
118 119 120 121

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
122 123 124
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
125

126 127
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
128

129 130 131 132 133
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

134 135 136 137
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

138 139
#include <trace/events/kvm.h>

140 141 142
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

143 144
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
145

146 147
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

148 149 150
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

151 152 153
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
154 155
};

156 157 158 159
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
160
	int level;
161 162 163 164 165 166 167 168
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

169 170 171 172 173 174
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

175
static struct kmem_cache *pte_list_desc_cache;
176
static struct kmem_cache *mmu_page_header_cache;
177
static struct percpu_counter kvm_total_used_mmu_pages;
178

S
Sheng Yang 已提交
179 180 181 182 183
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
184
static u64 __read_mostly shadow_mmio_mask;
185
static u64 __read_mostly shadow_present_mask;
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * The mask/value to distinguish a PTE that has been marked not-present for
 * access tracking purposes.
 * The mask would be either 0 if access tracking is disabled, or
 * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

206
static void mmu_spte_set(u64 *sptep, u64 spte);
207
static void mmu_free_roots(struct kvm_vcpu *vcpu);
208 209 210

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
211
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
212 213 214
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

215 216 217 218 219 220
static inline bool is_access_track_spte(u64 spte)
{
	/* Always false if shadow_acc_track_mask is zero.  */
	return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
}

221
/*
222 223 224 225 226 227 228
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
229
 */
230
#define MMIO_SPTE_GEN_LOW_SHIFT		2
231 232
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

233 234 235
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
236
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
237 238 239 240 241

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
242
	WARN_ON(gen & ~MMIO_GEN_MASK);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

260
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
261
{
262
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
263 264
}

265
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
266
			   unsigned access)
267
{
268
	unsigned int gen = kvm_current_mmio_generation(vcpu);
269
	u64 mask = generation_mmio_spte_mask(gen);
270

271
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
272 273
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

274
	trace_mark_mmio_spte(sptep, gfn, access, gen);
275
	mmu_spte_set(sptep, mask);
276 277 278 279 280 281 282 283 284
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
285
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
286
	return (spte & ~mask) >> PAGE_SHIFT;
287 288 289 290
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
291
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
292
	return (spte & ~mask) & ~PAGE_MASK;
293 294
}

295
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
296
			  kvm_pfn_t pfn, unsigned access)
297 298
{
	if (unlikely(is_noslot_pfn(pfn))) {
299
		mark_mmio_spte(vcpu, sptep, gfn, access);
300 301 302 303 304
		return true;
	}

	return false;
}
305

306
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307
{
308 309
	unsigned int kvm_gen, spte_gen;

310
	kvm_gen = kvm_current_mmio_generation(vcpu);
311 312 313 314
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
315 316
}

S
Sheng Yang 已提交
317
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
318 319
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
		u64 acc_track_mask)
S
Sheng Yang 已提交
320
{
321 322 323
	if (acc_track_mask != 0)
		acc_track_mask |= SPTE_SPECIAL_MASK;

S
Sheng Yang 已提交
324 325 326 327 328
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
329
	shadow_present_mask = p_mask;
330 331
	shadow_acc_track_mask = acc_track_mask;
	WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
S
Sheng Yang 已提交
332 333 334
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

335 336 337 338 339 340 341 342 343 344 345 346
void kvm_mmu_clear_all_pte_masks(void)
{
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
}

A
Avi Kivity 已提交
347 348 349 350 351
static int is_cpuid_PSE36(void)
{
	return 1;
}

352 353
static int is_nx(struct kvm_vcpu *vcpu)
{
354
	return vcpu->arch.efer & EFER_NX;
355 356
}

357 358
static int is_shadow_present_pte(u64 pte)
{
359
	return (pte != 0) && !is_mmio_spte(pte);
360 361
}

M
Marcelo Tosatti 已提交
362 363 364 365 366
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

367 368 369 370
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
371
	if (is_large_pte(pte))
372 373 374 375
		return 1;
	return 0;
}

376 377 378 379 380
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
381
static kvm_pfn_t spte_to_pfn(u64 pte)
382
{
383
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
384 385
}

386 387 388 389 390 391 392
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

393
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
394
static void __set_spte(u64 *sptep, u64 spte)
395
{
396
	WRITE_ONCE(*sptep, spte);
397 398
}

399
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400
{
401
	WRITE_ONCE(*sptep, spte);
402 403 404 405 406 407
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
408 409 410 411 412

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
413
#else
414 415 416 417 418 419 420
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
421

422 423 424 425 426 427 428 429 430 431 432 433
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

434 435 436
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
437

438 439 440 441 442 443 444 445 446 447 448 449
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

450
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
451 452
}

453 454 455 456 457 458 459
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

460
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
461 462 463 464 465 466 467 468

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
469
	count_spte_clear(sptep, spte);
470 471 472 473 474 475 476 477 478 479 480
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
481 482
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
483
	count_spte_clear(sptep, spte);
484 485 486

	return orig.spte;
}
487 488 489 490

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
491 492 493 494 495 496 497 498 499 500 501 502 503 504
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
528 529
#endif

530
static bool spte_can_locklessly_be_made_writable(u64 spte)
531
{
532 533
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
534 535
}

536 537
static bool spte_has_volatile_bits(u64 spte)
{
538 539 540
	if (!is_shadow_present_pte(spte))
		return false;

541
	/*
542
	 * Always atomically update spte if it can be updated
543 544 545 546
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
547 548
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
549 550
		return true;

551 552 553 554 555
	if (shadow_accessed_mask) {
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
556

557
	return false;
558 559
}

560
static bool is_accessed_spte(u64 spte)
561
{
562
	return shadow_accessed_mask ? spte & shadow_accessed_mask
563
				    : !is_access_track_spte(spte);
564 565
}

566
static bool is_dirty_spte(u64 spte)
567
{
568 569
	return shadow_dirty_mask ? spte & shadow_dirty_mask
				 : spte & PT_WRITABLE_MASK;
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

584 585 586
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
587
 */
588
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
589
{
590
	u64 old_spte = *sptep;
591

592
	WARN_ON(!is_shadow_present_pte(new_spte));
593

594 595
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
596
		return old_spte;
597
	}
598

599
	if (!spte_has_volatile_bits(old_spte))
600
		__update_clear_spte_fast(sptep, new_spte);
601
	else
602
		old_spte = __update_clear_spte_slow(sptep, new_spte);
603

604 605
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

628 629
	/*
	 * For the spte updated out of mmu-lock is safe, since
630
	 * we always atomically update it, see the comments in
631 632
	 * spte_has_volatile_bits().
	 */
633
	if (spte_can_locklessly_be_made_writable(old_spte) &&
634
	      !is_writable_pte(new_spte))
635
		flush = true;
636

637
	/*
638
	 * Flush TLB when accessed/dirty states are changed in the page tables,
639 640 641
	 * to guarantee consistency between TLB and page tables.
	 */

642 643
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
644
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
645 646 647 648
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
649
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
650
	}
651

652
	return flush;
653 654
}

655 656 657 658
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
659
 * Returns non-zero if the PTE was previously valid.
660 661 662
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
663
	kvm_pfn_t pfn;
664 665 666
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
667
		__update_clear_spte_fast(sptep, 0ull);
668
	else
669
		old_spte = __update_clear_spte_slow(sptep, 0ull);
670

671
	if (!is_shadow_present_pte(old_spte))
672 673 674
		return 0;

	pfn = spte_to_pfn(old_spte);
675 676 677 678 679 680

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
681
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
682

683
	if (is_accessed_spte(old_spte))
684
		kvm_set_pfn_accessed(pfn);
685 686

	if (is_dirty_spte(old_spte))
687
		kvm_set_pfn_dirty(pfn);
688

689 690 691 692 693 694 695 696 697 698
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
699
	__update_clear_spte_fast(sptep, 0ull);
700 701
}

702 703 704 705 706
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

707 708 709 710 711 712 713 714 715
static u64 mark_spte_for_access_track(u64 spte)
{
	if (shadow_accessed_mask != 0)
		return spte & ~shadow_accessed_mask;

	if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
		return spte;

	/*
716 717 718
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;
	spte |= shadow_acc_track_value;

	return spte;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

	if (shadow_accessed_mask) {
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

779 780
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
781 782 783 784 785
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
786

787 788 789 790
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
791
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
792 793 794 795
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
796 797 798 799 800
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
801
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
802
	local_irq_enable();
803 804
}

805
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
806
				  struct kmem_cache *base_cache, int min)
807 808 809 810
{
	void *obj;

	if (cache->nobjs >= min)
811
		return 0;
812
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
813
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
814
		if (!obj)
815
			return -ENOMEM;
816 817
		cache->objects[cache->nobjs++] = obj;
	}
818
	return 0;
819 820
}

821 822 823 824 825
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

826 827
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
828 829
{
	while (mc->nobjs)
830
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
831 832
}

A
Avi Kivity 已提交
833
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
834
				       int min)
A
Avi Kivity 已提交
835
{
836
	void *page;
A
Avi Kivity 已提交
837 838 839 840

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
841
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
842 843
		if (!page)
			return -ENOMEM;
844
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
845 846 847 848 849 850 851
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
852
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
853 854
}

855
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
856
{
857 858
	int r;

859
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
860
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
861 862
	if (r)
		goto out;
863
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
864 865
	if (r)
		goto out;
866
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
867
				   mmu_page_header_cache, 4);
868 869
out:
	return r;
870 871 872 873
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
874 875
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
876
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
877 878
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
879 880
}

881
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
882 883 884 885 886 887 888 889
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

890
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
891
{
892
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
893 894
}

895
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
896
{
897
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
898 899
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
916
/*
917 918
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
919
 */
920 921 922
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
923 924 925
{
	unsigned long idx;

926
	idx = gfn_to_index(gfn, slot->base_gfn, level);
927
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
928 929
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

953
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
954
{
955
	struct kvm_memslots *slots;
956
	struct kvm_memory_slot *slot;
957
	gfn_t gfn;
M
Marcelo Tosatti 已提交
958

959
	kvm->arch.indirect_shadow_pages++;
960
	gfn = sp->gfn;
961 962
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
963 964 965 966 967 968

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

969
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
970 971
}

972
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
973
{
974
	struct kvm_memslots *slots;
975
	struct kvm_memory_slot *slot;
976
	gfn_t gfn;
M
Marcelo Tosatti 已提交
977

978
	kvm->arch.indirect_shadow_pages--;
979
	gfn = sp->gfn;
980 981
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
982 983 984 985
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

986
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
987 988
}

989 990
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
991
{
992
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
993 994

	if (slot) {
995
		linfo = lpage_info_slot(gfn, slot, level);
996
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
997 998
	}

999
	return true;
M
Marcelo Tosatti 已提交
1000 1001
}

1002 1003
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1004 1005 1006 1007
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1008
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1009 1010
}

1011
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1012
{
J
Joerg Roedel 已提交
1013
	unsigned long page_size;
1014
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1015

J
Joerg Roedel 已提交
1016
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1017

1018
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1019 1020 1021 1022 1023 1024
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1025
	return ret;
M
Marcelo Tosatti 已提交
1026 1027
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1039 1040 1041
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1042 1043
{
	struct kvm_memory_slot *slot;
1044

1045
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1046
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1047 1048 1049 1050 1051
		slot = NULL;

	return slot;
}

1052 1053
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1054 1055
{
	int host_level, level, max_level;
1056 1057
	struct kvm_memory_slot *slot;

1058 1059
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1060

1061 1062
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1063 1064 1065
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1066 1067 1068 1069 1070
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1071
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1072 1073

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1074
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1075 1076 1077
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1078 1079
}

1080
/*
1081
 * About rmap_head encoding:
1082
 *
1083 1084
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1085
 * pte_list_desc containing more mappings.
1086 1087 1088 1089
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1090
 */
1091
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1092
			struct kvm_rmap_head *rmap_head)
1093
{
1094
	struct pte_list_desc *desc;
1095
	int i, count = 0;
1096

1097
	if (!rmap_head->val) {
1098
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1099 1100
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1101 1102
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1103
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1104
		desc->sptes[1] = spte;
1105
		rmap_head->val = (unsigned long)desc | 1;
1106
		++count;
1107
	} else {
1108
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1109
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1110
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1111
			desc = desc->more;
1112
			count += PTE_LIST_EXT;
1113
		}
1114 1115
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1116 1117
			desc = desc->more;
		}
A
Avi Kivity 已提交
1118
		for (i = 0; desc->sptes[i]; ++i)
1119
			++count;
A
Avi Kivity 已提交
1120
		desc->sptes[i] = spte;
1121
	}
1122
	return count;
1123 1124
}

1125
static void
1126 1127 1128
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1129 1130 1131
{
	int j;

1132
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1133
		;
A
Avi Kivity 已提交
1134 1135
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1136 1137 1138
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1139
		rmap_head->val = (unsigned long)desc->sptes[0];
1140 1141 1142 1143
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1144
			rmap_head->val = (unsigned long)desc->more | 1;
1145
	mmu_free_pte_list_desc(desc);
1146 1147
}

1148
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1149
{
1150 1151
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1152 1153
	int i;

1154
	if (!rmap_head->val) {
1155
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1156
		BUG();
1157
	} else if (!(rmap_head->val & 1)) {
1158
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1159
		if ((u64 *)rmap_head->val != spte) {
1160
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1161 1162
			BUG();
		}
1163
		rmap_head->val = 0;
1164
	} else {
1165
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1166
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1167 1168
		prev_desc = NULL;
		while (desc) {
1169
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1170
				if (desc->sptes[i] == spte) {
1171 1172
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1173 1174
					return;
				}
1175
			}
1176 1177 1178
			prev_desc = desc;
			desc = desc->more;
		}
1179
		pr_err("pte_list_remove: %p many->many\n", spte);
1180 1181 1182 1183
		BUG();
	}
}

1184 1185
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1186
{
1187
	unsigned long idx;
1188

1189
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1190
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1191 1192
}

1193 1194
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1195
{
1196
	struct kvm_memslots *slots;
1197 1198
	struct kvm_memory_slot *slot;

1199 1200
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1201
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1212 1213 1214
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1215
	struct kvm_rmap_head *rmap_head;
1216 1217 1218

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1219 1220
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1221 1222 1223 1224 1225 1226
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1227
	struct kvm_rmap_head *rmap_head;
1228 1229 1230

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1231 1232
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1233 1234
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1252 1253
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1254
{
1255 1256
	u64 *sptep;

1257
	if (!rmap_head->val)
1258 1259
		return NULL;

1260
	if (!(rmap_head->val & 1)) {
1261
		iter->desc = NULL;
1262 1263
		sptep = (u64 *)rmap_head->val;
		goto out;
1264 1265
	}

1266
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1267
	iter->pos = 0;
1268 1269 1270 1271
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1272 1273 1274 1275 1276 1277 1278 1279 1280
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1281 1282
	u64 *sptep;

1283 1284 1285 1286 1287
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1288
				goto out;
1289 1290 1291 1292 1293 1294 1295
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1296 1297
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1298 1299 1300 1301
		}
	}

	return NULL;
1302 1303 1304
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1305 1306
}

1307 1308
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1309
	     _spte_; _spte_ = rmap_get_next(_iter_))
1310

1311
static void drop_spte(struct kvm *kvm, u64 *sptep)
1312
{
1313
	if (mmu_spte_clear_track_bits(sptep))
1314
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1338
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1339
 * spte write-protection is caused by protecting shadow page table.
1340
 *
T
Tiejun Chen 已提交
1341
 * Note: write protection is difference between dirty logging and spte
1342 1343 1344 1345 1346
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1347
 *
1348
 * Return true if tlb need be flushed.
1349
 */
1350
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1351 1352 1353
{
	u64 spte = *sptep;

1354
	if (!is_writable_pte(spte) &&
1355
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1356 1357 1358 1359
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1360 1361
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1362
	spte = spte & ~PT_WRITABLE_MASK;
1363

1364
	return mmu_spte_update(sptep, spte);
1365 1366
}

1367 1368
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1369
				 bool pt_protect)
1370
{
1371 1372
	u64 *sptep;
	struct rmap_iterator iter;
1373
	bool flush = false;
1374

1375
	for_each_rmap_spte(rmap_head, &iter, sptep)
1376
		flush |= spte_write_protect(sptep, pt_protect);
1377

1378
	return flush;
1379 1380
}

1381
static bool spte_clear_dirty(u64 *sptep)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1392
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1393 1394 1395 1396 1397
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1398
	for_each_rmap_spte(rmap_head, &iter, sptep)
1399
		flush |= spte_clear_dirty(sptep);
1400 1401 1402 1403

	return flush;
}

1404
static bool spte_set_dirty(u64 *sptep)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1415
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1416 1417 1418 1419 1420
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1421
	for_each_rmap_spte(rmap_head, &iter, sptep)
1422
		flush |= spte_set_dirty(sptep);
1423 1424 1425 1426

	return flush;
}

1427
/**
1428
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1429 1430 1431 1432 1433 1434 1435 1436
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1437
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1438 1439
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1440
{
1441
	struct kvm_rmap_head *rmap_head;
1442

1443
	while (mask) {
1444 1445 1446
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1447

1448 1449 1450
		/* clear the first set bit */
		mask &= mask - 1;
	}
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1466
	struct kvm_rmap_head *rmap_head;
1467 1468

	while (mask) {
1469 1470 1471
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1472 1473 1474 1475 1476 1477 1478

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1493 1494 1495 1496 1497
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1498 1499
}

1500 1501
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1502
{
1503
	struct kvm_rmap_head *rmap_head;
1504
	int i;
1505
	bool write_protected = false;
1506

1507
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1508
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1509
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1510 1511 1512
	}

	return write_protected;
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1523
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1524
{
1525 1526
	u64 *sptep;
	struct rmap_iterator iter;
1527
	bool flush = false;
1528

1529
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1530
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1531 1532

		drop_spte(kvm, sptep);
1533
		flush = true;
1534
	}
1535

1536 1537 1538
	return flush;
}

1539
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1540 1541 1542
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1543
	return kvm_zap_rmapp(kvm, rmap_head);
1544 1545
}

1546
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1547 1548
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1549
{
1550 1551
	u64 *sptep;
	struct rmap_iterator iter;
1552
	int need_flush = 0;
1553
	u64 new_spte;
1554
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1555
	kvm_pfn_t new_pfn;
1556 1557 1558

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1559

1560
restart:
1561
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1562
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1563
			    sptep, *sptep, gfn, level);
1564

1565
		need_flush = 1;
1566

1567
		if (pte_write(*ptep)) {
1568
			drop_spte(kvm, sptep);
1569
			goto restart;
1570
		} else {
1571
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1572 1573 1574 1575
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1576 1577

			new_spte = mark_spte_for_access_track(new_spte);
1578 1579 1580

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1581 1582
		}
	}
1583

1584 1585 1586 1587 1588 1589
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1600
	struct kvm_rmap_head *rmap;
1601 1602 1603
	int level;

	/* private field. */
1604
	struct kvm_rmap_head *end_rmap;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1658 1659 1660 1661 1662
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1663
					       struct kvm_rmap_head *rmap_head,
1664
					       struct kvm_memory_slot *slot,
1665 1666
					       gfn_t gfn,
					       int level,
1667
					       unsigned long data))
1668
{
1669
	struct kvm_memslots *slots;
1670
	struct kvm_memory_slot *memslot;
1671 1672
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1673
	int i;
1674

1675 1676 1677 1678 1679
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1700 1701
	}

1702
	return ret;
1703 1704
}

1705 1706
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1707 1708
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1709
					 struct kvm_memory_slot *slot,
1710
					 gfn_t gfn, int level,
1711 1712 1713
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1714 1715 1716 1717
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1718 1719 1720
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1721 1722 1723 1724 1725
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1726 1727
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1728
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1729 1730
}

1731
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1732 1733
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1734
{
1735
	u64 *sptep;
1736
	struct rmap_iterator uninitialized_var(iter);
1737 1738
	int young = 0;

1739 1740
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1741

1742
	trace_kvm_age_page(gfn, level, slot, young);
1743 1744 1745
	return young;
}

1746
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1747 1748
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1749
{
1750 1751
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1752 1753

	/*
1754 1755 1756
	 * If there's no access bit in the secondary pte set by the hardware and
	 * fast access tracking is also not enabled, it's up to gup-fast/gup to
	 * set the access bit in the primary pte or in the page structure.
A
Andrea Arcangeli 已提交
1757
	 */
1758
	if (!shadow_accessed_mask && !shadow_acc_track_mask)
A
Andrea Arcangeli 已提交
1759 1760
		goto out;

1761 1762 1763
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
A
Andrea Arcangeli 已提交
1764
out:
1765
	return 0;
A
Andrea Arcangeli 已提交
1766 1767
}

1768 1769
#define RMAP_RECYCLE_THRESHOLD 1000

1770
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1771
{
1772
	struct kvm_rmap_head *rmap_head;
1773 1774 1775
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1776

1777
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1778

1779
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1780 1781 1782
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1783
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1784
{
A
Andres Lagar-Cavilla 已提交
1785 1786 1787 1788 1789 1790 1791 1792
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1793
	if (!shadow_accessed_mask && !shadow_acc_track_mask)
A
Andres Lagar-Cavilla 已提交
1794 1795 1796 1797
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1798 1799
}

A
Andrea Arcangeli 已提交
1800 1801 1802 1803 1804
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1805
#ifdef MMU_DEBUG
1806
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1807
{
1808 1809 1810
	u64 *pos;
	u64 *end;

1811
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1812
		if (is_shadow_present_pte(*pos)) {
1813
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1814
			       pos, *pos);
A
Avi Kivity 已提交
1815
			return 0;
1816
		}
A
Avi Kivity 已提交
1817 1818
	return 1;
}
1819
#endif
A
Avi Kivity 已提交
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1833
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1834
{
1835
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1836
	hlist_del(&sp->hash_link);
1837 1838
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1839 1840
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1841
	kmem_cache_free(mmu_page_header_cache, sp);
1842 1843
}

1844 1845
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1846
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1847 1848
}

1849
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1850
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1851 1852 1853 1854
{
	if (!parent_pte)
		return;

1855
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1856 1857
}

1858
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1859 1860
				       u64 *parent_pte)
{
1861
	pte_list_remove(parent_pte, &sp->parent_ptes);
1862 1863
}

1864 1865 1866 1867
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1868
	mmu_spte_clear_no_track(parent_pte);
1869 1870
}

1871
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1872
{
1873
	struct kvm_mmu_page *sp;
1874

1875 1876
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1877
	if (!direct)
1878
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1879
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1880 1881 1882 1883 1884 1885

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1886 1887 1888
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1889 1890
}

1891
static void mark_unsync(u64 *spte);
1892
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1893
{
1894 1895 1896 1897 1898 1899
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1900 1901
}

1902
static void mark_unsync(u64 *spte)
1903
{
1904
	struct kvm_mmu_page *sp;
1905
	unsigned int index;
1906

1907
	sp = page_header(__pa(spte));
1908 1909
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1910
		return;
1911
	if (sp->unsync_children++)
1912
		return;
1913
	kvm_mmu_mark_parents_unsync(sp);
1914 1915
}

1916
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1917
			       struct kvm_mmu_page *sp)
1918
{
1919
	return 0;
1920 1921
}

M
Marcelo Tosatti 已提交
1922 1923 1924 1925
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1926 1927
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1928
				 const void *pte)
1929 1930 1931 1932
{
	WARN_ON(1);
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1943 1944
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1945
{
1946
	int i;
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1959 1960 1961 1962 1963 1964 1965
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1966 1967 1968 1969
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1970

1971
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1972
		struct kvm_mmu_page *child;
1973 1974
		u64 ent = sp->spt[i];

1975 1976 1977 1978
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1979 1980 1981 1982 1983 1984 1985 1986

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1987 1988 1989 1990
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1991
				nr_unsync_leaf += ret;
1992
			} else
1993 1994 1995 1996 1997 1998
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1999
			clear_unsync_child_bit(sp, i);
2000 2001
	}

2002 2003 2004
	return nr_unsync_leaf;
}

2005 2006
#define INVALID_INDEX (-1)

2007 2008 2009
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2010
	pvec->nr = 0;
2011 2012 2013
	if (!sp->unsync_children)
		return 0;

2014
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2015
	return __mmu_unsync_walk(sp, pvec);
2016 2017 2018 2019 2020
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2021
	trace_kvm_mmu_sync_page(sp);
2022 2023 2024 2025
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2026 2027 2028 2029
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2030

2031 2032 2033 2034 2035 2036
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2037
 * for_each_valid_sp() has skipped that kind of pages.
2038
 */
2039
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2040 2041
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2042 2043
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2044 2045

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2046 2047
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2048

2049
/* @sp->gfn should be write-protected at the call site */
2050 2051
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2052
{
2053
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2054
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2055
		return false;
2056 2057
	}

2058
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2059
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2060
		return false;
2061 2062
	}

2063
	return true;
2064 2065
}

2066 2067 2068
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2069
{
2070 2071 2072 2073
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2074

2075 2076 2077 2078
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2079 2080
}

2081 2082 2083 2084 2085 2086 2087
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2088 2089 2090 2091 2092
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2093
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2094
			 struct list_head *invalid_list)
2095
{
2096 2097
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2098 2099
}

2100
/* @gfn should be write-protected at the call site */
2101 2102
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2103 2104
{
	struct kvm_mmu_page *s;
2105
	bool ret = false;
2106

2107
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2108
		if (!s->unsync)
2109 2110 2111
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2112
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2113 2114
	}

2115
	return ret;
2116 2117
}

2118
struct mmu_page_path {
P
Paolo Bonzini 已提交
2119 2120
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
2121 2122
};

2123
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2124
		for (i = mmu_pages_first(&pvec, &parents);	\
2125 2126 2127
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2128 2129 2130
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2131 2132 2133 2134 2135
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2136 2137
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2138

P
Paolo Bonzini 已提交
2139 2140 2141
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2142

P
Paolo Bonzini 已提交
2143
		parents->parent[level-2] = sp;
2144 2145 2146 2147 2148
	}

	return n;
}

P
Paolo Bonzini 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2158 2159
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2173
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2174
{
2175 2176 2177 2178 2179 2180 2181 2182 2183
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2184
		WARN_ON(idx == INVALID_INDEX);
2185
		clear_unsync_child_bit(sp, idx);
2186
		level++;
P
Paolo Bonzini 已提交
2187
	} while (!sp->unsync_children);
2188
}
2189

2190 2191 2192 2193 2194 2195 2196
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2197
	LIST_HEAD(invalid_list);
2198
	bool flush = false;
2199 2200

	while (mmu_unsync_walk(parent, &pages)) {
2201
		bool protected = false;
2202 2203

		for_each_sp(pages, sp, parents, i)
2204
			protected |= rmap_write_protect(vcpu, sp->gfn);
2205

2206
		if (protected) {
2207
			kvm_flush_remote_tlbs(vcpu->kvm);
2208 2209
			flush = false;
		}
2210

2211
		for_each_sp(pages, sp, parents, i) {
2212
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2213 2214
			mmu_pages_clear_parents(&parents);
		}
2215 2216 2217 2218 2219
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2220
	}
2221 2222

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2223 2224
}

2225 2226
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2227
	atomic_set(&sp->write_flooding_count,  0);
2228 2229 2230 2231 2232 2233 2234 2235 2236
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2237 2238 2239 2240
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2241
					     int direct,
2242
					     unsigned access)
2243 2244 2245
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2246 2247
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2248
	bool flush = false;
2249
	int collisions = 0;
2250
	LIST_HEAD(invalid_list);
2251

2252
	role = vcpu->arch.mmu.base_role;
2253
	role.level = level;
2254
	role.direct = direct;
2255
	if (role.direct)
2256
		role.cr4_pae = 0;
2257
	role.access = access;
2258 2259
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2260 2261 2262 2263
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2264 2265 2266 2267 2268 2269
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2270 2271
		if (!need_sync && sp->unsync)
			need_sync = true;
2272

2273 2274
		if (sp->role.word != role.word)
			continue;
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2286

2287
		if (sp->unsync_children)
2288
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2289

2290
		__clear_sp_write_flooding_count(sp);
2291
		trace_kvm_mmu_get_page(sp, false);
2292
		goto out;
2293
	}
2294

A
Avi Kivity 已提交
2295
	++vcpu->kvm->stat.mmu_cache_miss;
2296 2297 2298

	sp = kvm_mmu_alloc_page(vcpu, direct);

2299 2300
	sp->gfn = gfn;
	sp->role = role;
2301 2302
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2303
	if (!direct) {
2304 2305 2306 2307 2308 2309 2310 2311
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2312
			kvm_flush_remote_tlbs(vcpu->kvm);
2313 2314

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2315
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2316
	}
2317
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2318
	clear_page(sp->spt);
A
Avi Kivity 已提交
2319
	trace_kvm_mmu_get_page(sp, true);
2320 2321

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2322 2323 2324
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2325
	return sp;
2326 2327
}

2328 2329 2330 2331 2332 2333
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2334 2335 2336 2337 2338 2339

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2354

2355 2356 2357 2358 2359
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2360 2361
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2362
{
2363
	if (is_last_spte(spte, iterator->level)) {
2364 2365 2366 2367
		iterator->level = 0;
		return;
	}

2368
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2369 2370 2371
	--iterator->level;
}

2372 2373 2374 2375 2376
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2377 2378
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2379 2380 2381
{
	u64 spte;

2382
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2383

2384
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2385
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2386

2387
	mmu_spte_set(sptep, spte);
2388 2389 2390 2391 2392

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2412
		drop_parent_pte(child, sptep);
2413 2414 2415 2416
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2417
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2418 2419 2420 2421 2422 2423 2424
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2425
		if (is_last_spte(pte, sp->role.level)) {
2426
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2427 2428 2429
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2430
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2431
			drop_parent_pte(child, spte);
2432
		}
X
Xiao Guangrong 已提交
2433 2434 2435 2436
		return true;
	}

	if (is_mmio_spte(pte))
2437
		mmu_spte_clear_no_track(spte);
2438

X
Xiao Guangrong 已提交
2439
	return false;
2440 2441
}

2442
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2443
					 struct kvm_mmu_page *sp)
2444
{
2445 2446
	unsigned i;

2447 2448
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2449 2450
}

2451
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2452
{
2453 2454
	u64 *sptep;
	struct rmap_iterator iter;
2455

2456
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2457
		drop_parent_pte(sp, sptep);
2458 2459
}

2460
static int mmu_zap_unsync_children(struct kvm *kvm,
2461 2462
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2463
{
2464 2465 2466
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2467

2468
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2469
		return 0;
2470 2471 2472 2473 2474

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2475
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2476
			mmu_pages_clear_parents(&parents);
2477
			zapped++;
2478 2479 2480 2481
		}
	}

	return zapped;
2482 2483
}

2484 2485
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2486
{
2487
	int ret;
A
Avi Kivity 已提交
2488

2489
	trace_kvm_mmu_prepare_zap_page(sp);
2490
	++kvm->stat.mmu_shadow_zapped;
2491
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2492
	kvm_mmu_page_unlink_children(kvm, sp);
2493
	kvm_mmu_unlink_parents(kvm, sp);
2494

2495
	if (!sp->role.invalid && !sp->role.direct)
2496
		unaccount_shadowed(kvm, sp);
2497

2498 2499
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2500
	if (!sp->root_count) {
2501 2502
		/* Count self */
		ret++;
2503
		list_move(&sp->link, invalid_list);
2504
		kvm_mod_used_mmu_pages(kvm, -1);
2505
	} else {
A
Avi Kivity 已提交
2506
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2507 2508 2509 2510 2511 2512 2513

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2514
	}
2515 2516

	sp->role.invalid = 1;
2517
	return ret;
2518 2519
}

2520 2521 2522
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2523
	struct kvm_mmu_page *sp, *nsp;
2524 2525 2526 2527

	if (list_empty(invalid_list))
		return;

2528
	/*
2529 2530 2531 2532 2533 2534 2535
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2536 2537
	 */
	kvm_flush_remote_tlbs(kvm);
2538

2539
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2540
		WARN_ON(!sp->role.invalid || sp->root_count);
2541
		kvm_mmu_free_page(sp);
2542
	}
2543 2544
}

2545 2546 2547 2548 2549 2550 2551 2552
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2553 2554
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2555 2556 2557 2558 2559
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2560 2561
/*
 * Changing the number of mmu pages allocated to the vm
2562
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2563
 */
2564
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2565
{
2566
	LIST_HEAD(invalid_list);
2567

2568 2569
	spin_lock(&kvm->mmu_lock);

2570
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2571 2572 2573 2574
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2575

2576
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2577
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2578 2579
	}

2580
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2581 2582

	spin_unlock(&kvm->mmu_lock);
2583 2584
}

2585
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2586
{
2587
	struct kvm_mmu_page *sp;
2588
	LIST_HEAD(invalid_list);
2589 2590
	int r;

2591
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2592
	r = 0;
2593
	spin_lock(&kvm->mmu_lock);
2594
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2595
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2596 2597
			 sp->role.word);
		r = 1;
2598
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2599
	}
2600
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2601 2602
	spin_unlock(&kvm->mmu_lock);

2603
	return r;
2604
}
2605
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2606

2607
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2608 2609 2610 2611 2612 2613 2614 2615
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2616 2617
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2618
{
2619
	struct kvm_mmu_page *sp;
2620

2621 2622
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2623

2624
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2625
		if (!can_unsync)
2626
			return true;
2627

2628 2629
		if (sp->unsync)
			continue;
2630

2631 2632
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2633
	}
2634 2635

	return false;
2636 2637
}

D
Dan Williams 已提交
2638
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2639 2640 2641 2642 2643 2644 2645
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2646
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2647
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2648
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2649
		    bool can_unsync, bool host_writable)
2650
{
2651
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2652
	int ret = 0;
S
Sheng Yang 已提交
2653

2654
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2655 2656
		return 0;

2657 2658 2659 2660 2661 2662
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2663
	spte |= shadow_present_mask;
2664
	if (!speculative)
2665
		spte |= shadow_accessed_mask;
2666

S
Sheng Yang 已提交
2667 2668 2669 2670
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2671

2672
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2673
		spte |= shadow_user_mask;
2674

2675
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2676
		spte |= PT_PAGE_SIZE_MASK;
2677
	if (tdp_enabled)
2678
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2679
			kvm_is_mmio_pfn(pfn));
2680

2681
	if (host_writable)
2682
		spte |= SPTE_HOST_WRITEABLE;
2683 2684
	else
		pte_access &= ~ACC_WRITE_MASK;
2685

2686
	spte |= (u64)pfn << PAGE_SHIFT;
2687

2688
	if (pte_access & ACC_WRITE_MASK) {
2689

X
Xiao Guangrong 已提交
2690
		/*
2691 2692 2693 2694
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2695
		 */
2696
		if (level > PT_PAGE_TABLE_LEVEL &&
2697
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2698
			goto done;
2699

2700
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2701

2702 2703 2704 2705 2706 2707
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2708
		if (!can_unsync && is_writable_pte(*sptep))
2709 2710
			goto set_pte;

2711
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2712
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2713
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2714
			ret = 1;
2715
			pte_access &= ~ACC_WRITE_MASK;
2716
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2717 2718 2719
		}
	}

2720
	if (pte_access & ACC_WRITE_MASK) {
2721
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2722 2723
		spte |= shadow_dirty_mask;
	}
2724

2725 2726 2727
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2728
set_pte:
2729
	if (mmu_spte_update(sptep, spte))
2730
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2731
done:
M
Marcelo Tosatti 已提交
2732 2733 2734
	return ret;
}

2735
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2736
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2737
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2738 2739
{
	int was_rmapped = 0;
2740
	int rmap_count;
2741
	bool emulate = false;
M
Marcelo Tosatti 已提交
2742

2743 2744
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2745

2746
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2747 2748 2749 2750
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2751 2752
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2753
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2754
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2755 2756

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2757
			drop_parent_pte(child, sptep);
2758
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2759
		} else if (pfn != spte_to_pfn(*sptep)) {
2760
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2761
				 spte_to_pfn(*sptep), pfn);
2762
			drop_spte(vcpu->kvm, sptep);
2763
			kvm_flush_remote_tlbs(vcpu->kvm);
2764 2765
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2766
	}
2767

2768 2769
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2770
		if (write_fault)
2771
			emulate = true;
2772
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2773
	}
M
Marcelo Tosatti 已提交
2774

2775 2776
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2777

A
Avi Kivity 已提交
2778
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2779
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2780
		 is_large_pte(*sptep)? "2MB" : "4kB",
2781
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2782
		 *sptep, sptep);
A
Avi Kivity 已提交
2783
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2784 2785
		++vcpu->kvm->stat.lpages;

2786 2787 2788 2789 2790 2791
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2792
	}
2793

X
Xiao Guangrong 已提交
2794
	kvm_release_pfn_clean(pfn);
2795 2796

	return emulate;
2797 2798
}

D
Dan Williams 已提交
2799
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2800 2801 2802 2803
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2804
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2805
	if (!slot)
2806
		return KVM_PFN_ERR_FAULT;
2807

2808
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2809 2810 2811 2812 2813 2814 2815
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2816
	struct kvm_memory_slot *slot;
2817 2818 2819 2820 2821
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2822 2823
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2824 2825
		return -1;

2826
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2827 2828 2829 2830
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2831 2832
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2849
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2880
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2881
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2882
{
2883
	struct kvm_shadow_walk_iterator iterator;
2884
	struct kvm_mmu_page *sp;
2885
	int emulate = 0;
2886
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2887

2888 2889 2890
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2891
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2892
		if (iterator.level == level) {
2893 2894 2895
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2896
			direct_pte_prefetch(vcpu, iterator.sptep);
2897 2898
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2899 2900
		}

2901
		drop_large_spte(vcpu, iterator.sptep);
2902
		if (!is_shadow_present_pte(*iterator.sptep)) {
2903 2904 2905 2906
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2907
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2908
					      iterator.level - 1, 1, ACC_ALL);
2909

2910
			link_shadow_page(vcpu, iterator.sptep, sp);
2911 2912
		}
	}
2913
	return emulate;
A
Avi Kivity 已提交
2914 2915
}

H
Huang Ying 已提交
2916
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2917
{
H
Huang Ying 已提交
2918 2919 2920 2921 2922 2923 2924
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2925

H
Huang Ying 已提交
2926
	send_sig_info(SIGBUS, &info, tsk);
2927 2928
}

D
Dan Williams 已提交
2929
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2930
{
X
Xiao Guangrong 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2940
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2941
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2942
		return 0;
2943
	}
2944

2945
	return -EFAULT;
2946 2947
}

2948
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2949 2950
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2951
{
D
Dan Williams 已提交
2952
	kvm_pfn_t pfn = *pfnp;
2953 2954 2955 2956 2957 2958 2959 2960 2961
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2962
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2963
	    level == PT_PAGE_TABLE_LEVEL &&
2964
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
2965
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2984
			kvm_get_pfn(pfn);
2985 2986 2987 2988 2989
			*pfnp = pfn;
		}
	}
}

2990
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2991
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2992 2993
{
	/* The pfn is invalid, report the error! */
2994
	if (unlikely(is_error_pfn(pfn))) {
2995
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2996
		return true;
2997 2998
	}

2999
	if (unlikely(is_noslot_pfn(pfn)))
3000 3001
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

3002
	return false;
3003 3004
}

3005
static bool page_fault_can_be_fast(u32 error_code)
3006
{
3007 3008 3009 3010 3011 3012 3013
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3014 3015 3016 3017 3018
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3019
	/*
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3031 3032
	 */

3033 3034 3035
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3036 3037
}

3038 3039 3040 3041
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3042
static bool
3043
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3044
			u64 *sptep, u64 old_spte, u64 new_spte)
3045 3046 3047 3048 3049
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3062
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3063 3064
		return false;

3065
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3066 3067 3068 3069 3070 3071 3072
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3073 3074 3075 3076

	return true;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3089 3090 3091 3092 3093 3094 3095 3096 3097
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3098
	struct kvm_mmu_page *sp;
3099
	bool fault_handled = false;
3100
	u64 spte = 0ull;
3101
	uint retry_count = 0;
3102

3103 3104 3105
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3106
	if (!page_fault_can_be_fast(error_code))
3107 3108 3109 3110
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3111
	do {
3112
		u64 new_spte;
3113

3114 3115 3116 3117 3118
		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3119 3120 3121
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3122

3123
		/*
3124 3125 3126 3127 3128
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3129 3130 3131 3132
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3133 3134 3135 3136
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3137

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3152 3153

			/*
3154 3155 3156 3157 3158 3159 3160 3161 3162
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3163
			 */
3164
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3165
				break;
3166
		}
3167

3168
		/* Verify that the fault can be handled in the fast path */
3169 3170
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3171 3172 3173 3174 3175 3176 3177 3178
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3179
							iterator.sptep, spte,
3180
							new_spte);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3191

X
Xiao Guangrong 已提交
3192
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3193
			      spte, fault_handled);
3194 3195
	walk_shadow_page_lockless_end(vcpu);

3196
	return fault_handled;
3197 3198
}

3199
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3200
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3201
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3202

3203 3204
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3205 3206
{
	int r;
3207
	int level;
3208
	bool force_pt_level = false;
D
Dan Williams 已提交
3209
	kvm_pfn_t pfn;
3210
	unsigned long mmu_seq;
3211
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3212

3213
	level = mapping_level(vcpu, gfn, &force_pt_level);
3214 3215 3216 3217 3218 3219 3220 3221
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3222

3223
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3224
	}
M
Marcelo Tosatti 已提交
3225

3226 3227 3228
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3229
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3230
	smp_rmb();
3231

3232
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3233
		return 0;
3234

3235 3236
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3237

3238
	spin_lock(&vcpu->kvm->mmu_lock);
3239
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3240
		goto out_unlock;
3241
	make_mmu_pages_available(vcpu);
3242 3243
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3244
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3245 3246
	spin_unlock(&vcpu->kvm->mmu_lock);

3247
	return r;
3248 3249 3250 3251 3252

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3253 3254 3255
}


3256 3257 3258
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3259
	struct kvm_mmu_page *sp;
3260
	LIST_HEAD(invalid_list);
3261

3262
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3263
		return;
3264

3265 3266 3267
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3268
		hpa_t root = vcpu->arch.mmu.root_hpa;
3269

3270
		spin_lock(&vcpu->kvm->mmu_lock);
3271 3272
		sp = page_header(root);
		--sp->root_count;
3273 3274 3275 3276
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3277
		spin_unlock(&vcpu->kvm->mmu_lock);
3278
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3279 3280
		return;
	}
3281 3282

	spin_lock(&vcpu->kvm->mmu_lock);
3283
	for (i = 0; i < 4; ++i) {
3284
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3285

A
Avi Kivity 已提交
3286 3287
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3288 3289
			sp = page_header(root);
			--sp->root_count;
3290
			if (!sp->root_count && sp->role.invalid)
3291 3292
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3293
		}
3294
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3295
	}
3296
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3297
	spin_unlock(&vcpu->kvm->mmu_lock);
3298
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3299 3300
}

3301 3302 3303 3304 3305
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3306
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3307 3308 3309 3310 3311 3312
		ret = 1;
	}

	return ret;
}

3313 3314 3315
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3316
	unsigned i;
3317 3318 3319

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3320
		make_mmu_pages_available(vcpu);
3321
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3322 3323 3324 3325 3326 3327 3328
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3329
			MMU_WARN_ON(VALID_PAGE(root));
3330
			spin_lock(&vcpu->kvm->mmu_lock);
3331
			make_mmu_pages_available(vcpu);
3332
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3333
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3334 3335 3336 3337 3338
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3339
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3340 3341 3342 3343 3344 3345 3346
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3347
{
3348
	struct kvm_mmu_page *sp;
3349 3350 3351
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3352

3353
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3354

3355 3356 3357 3358 3359 3360 3361 3362
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3363
		hpa_t root = vcpu->arch.mmu.root_hpa;
3364

3365
		MMU_WARN_ON(VALID_PAGE(root));
3366

3367
		spin_lock(&vcpu->kvm->mmu_lock);
3368
		make_mmu_pages_available(vcpu);
3369
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3370
				      0, ACC_ALL);
3371 3372
		root = __pa(sp->spt);
		++sp->root_count;
3373
		spin_unlock(&vcpu->kvm->mmu_lock);
3374
		vcpu->arch.mmu.root_hpa = root;
3375
		return 0;
3376
	}
3377

3378 3379
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3380 3381
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3382
	 */
3383 3384 3385 3386
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3387
	for (i = 0; i < 4; ++i) {
3388
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3389

3390
		MMU_WARN_ON(VALID_PAGE(root));
3391
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3392
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3393
			if (!(pdptr & PT_PRESENT_MASK)) {
3394
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3395 3396
				continue;
			}
A
Avi Kivity 已提交
3397
			root_gfn = pdptr >> PAGE_SHIFT;
3398 3399
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3400
		}
3401
		spin_lock(&vcpu->kvm->mmu_lock);
3402
		make_mmu_pages_available(vcpu);
3403 3404
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3405 3406
		root = __pa(sp->spt);
		++sp->root_count;
3407 3408
		spin_unlock(&vcpu->kvm->mmu_lock);

3409
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3410
	}
3411
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3438
	return 0;
3439 3440
}

3441 3442 3443 3444 3445 3446 3447 3448
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3449 3450 3451 3452 3453
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3454 3455 3456
	if (vcpu->arch.mmu.direct_map)
		return;

3457 3458
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3459

3460
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3461
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3462
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3463 3464 3465
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3466
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3467 3468 3469 3470 3471
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3472
		if (root && VALID_PAGE(root)) {
3473 3474 3475 3476 3477
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3478
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3479 3480 3481 3482 3483 3484
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3485
	spin_unlock(&vcpu->kvm->mmu_lock);
3486
}
N
Nadav Har'El 已提交
3487
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3488

3489
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3490
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3491
{
3492 3493
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3494 3495 3496
	return vaddr;
}

3497
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3498 3499
					 u32 access,
					 struct x86_exception *exception)
3500
{
3501 3502
	if (exception)
		exception->error_code = 0;
3503
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3504 3505
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3525
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3526 3527 3528 3529 3530 3531 3532
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3533 3534 3535
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3536 3537
{
	struct kvm_shadow_walk_iterator iterator;
3538 3539 3540
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3541

3542
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3543
		goto exit;
3544

3545
	walk_shadow_page_lockless_begin(vcpu);
3546

3547 3548
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3549 3550 3551 3552 3553
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3554
		leaf--;
3555

3556 3557
		if (!is_shadow_present_pte(spte))
			break;
3558 3559

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3560
						    iterator.level);
3561 3562
	}

3563 3564
	walk_shadow_page_lockless_end(vcpu);

3565 3566 3567
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3568
		while (root > leaf) {
3569 3570 3571 3572 3573 3574 3575 3576
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3577 3578
}

3579
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3580 3581
{
	u64 spte;
3582
	bool reserved;
3583

3584
	if (mmio_info_in_cache(vcpu, addr, direct))
3585
		return RET_MMIO_PF_EMULATE;
3586

3587
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3588
	if (WARN_ON(reserved))
3589
		return RET_MMIO_PF_BUG;
3590 3591 3592 3593 3594

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3595
		if (!check_mmio_spte(vcpu, spte))
3596 3597
			return RET_MMIO_PF_INVALID;

3598 3599
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3600 3601

		trace_handle_mmio_page_fault(addr, gfn, access);
3602
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3603
		return RET_MMIO_PF_EMULATE;
3604 3605 3606 3607 3608 3609
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3610
	return RET_MMIO_PF_RETRY;
3611
}
3612
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3613

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3651
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3652
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3653
{
3654
	gfn_t gfn = gva >> PAGE_SHIFT;
3655
	int r;
A
Avi Kivity 已提交
3656

3657
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3658

3659 3660
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3661

3662 3663 3664
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3665

3666
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3667 3668


3669
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3670
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3671 3672
}

3673
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3674 3675
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3676

3677
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3678
	arch.gfn = gfn;
3679
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3680
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3681

3682
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3683 3684 3685 3686
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3687
	if (unlikely(!lapic_in_kernel(vcpu) ||
3688 3689 3690 3691 3692 3693
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3694
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3695
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3696
{
3697
	struct kvm_memory_slot *slot;
3698 3699
	bool async;

3700
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3701 3702
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3703 3704 3705
	if (!async)
		return false; /* *pfn has correct page already */

3706
	if (!prefault && can_do_async_pf(vcpu)) {
3707
		trace_kvm_try_async_get_page(gva, gfn);
3708 3709 3710 3711 3712 3713 3714 3715
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3716
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3717 3718 3719
	return false;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3730
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3731
			  bool prefault)
3732
{
D
Dan Williams 已提交
3733
	kvm_pfn_t pfn;
3734
	int r;
3735
	int level;
3736
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3737
	gfn_t gfn = gpa >> PAGE_SHIFT;
3738
	unsigned long mmu_seq;
3739 3740
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3741

3742
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3743

3744 3745
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3746

3747 3748 3749 3750
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3751 3752 3753
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3754
	if (likely(!force_pt_level)) {
3755 3756 3757
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3758
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3759
	}
3760

3761 3762 3763
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3764
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3765
	smp_rmb();
3766

3767
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3768 3769
		return 0;

3770 3771 3772
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3773
	spin_lock(&vcpu->kvm->mmu_lock);
3774
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3775
		goto out_unlock;
3776
	make_mmu_pages_available(vcpu);
3777 3778
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3779
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3780 3781 3782
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3783 3784 3785 3786 3787

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3788 3789
}

3790 3791
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3792 3793 3794
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3795
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3796
	context->invlpg = nonpaging_invlpg;
3797
	context->update_pte = nonpaging_update_pte;
3798
	context->root_level = 0;
A
Avi Kivity 已提交
3799
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3800
	context->root_hpa = INVALID_PAGE;
3801
	context->direct_map = true;
3802
	context->nx = false;
A
Avi Kivity 已提交
3803 3804
}

3805
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3806
{
3807
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3808 3809
}

3810 3811
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3812
	return kvm_read_cr3(vcpu);
3813 3814
}

3815 3816
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3817
{
3818
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3819 3820
}

3821
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3822
			   unsigned access, int *nr_present)
3823 3824 3825 3826 3827 3828 3829 3830
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3831
		mark_mmio_spte(vcpu, sptep, gfn, access);
3832 3833 3834 3835 3836 3837
		return true;
	}

	return false;
}

3838 3839
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3840
{
3841 3842 3843 3844 3845 3846
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
A
Avi Kivity 已提交
3847

3848 3849 3850 3851 3852 3853 3854 3855
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3856 3857
}

3858 3859 3860 3861 3862
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3863 3864 3865 3866 3867 3868 3869 3870
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3871 3872 3873 3874
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3875
			bool pse, bool amd)
3876 3877
{
	u64 exb_bit_rsvd = 0;
3878
	u64 gbpages_bit_rsvd = 0;
3879
	u64 nonleaf_bit8_rsvd = 0;
3880

3881
	rsvd_check->bad_mt_xwr = 0;
3882

3883
	if (!nx)
3884
		exb_bit_rsvd = rsvd_bits(63, 63);
3885
	if (!gbpages)
3886
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3887 3888 3889 3890 3891

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3892
	if (amd)
3893 3894
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3895
	switch (level) {
3896 3897
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3898 3899 3900 3901
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3902

3903
		if (!pse) {
3904
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3905 3906 3907
			break;
		}

3908 3909
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3910
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3911 3912
		else
			/* 32 bits PSE 4MB page */
3913
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3914 3915
		break;
	case PT32E_ROOT_LEVEL:
3916
		rsvd_check->rsvd_bits_mask[0][2] =
3917
			rsvd_bits(maxphyaddr, 63) |
3918
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3919
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3920
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3921
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3922
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3923
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3924 3925
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3926 3927
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3928 3929
		break;
	case PT64_ROOT_LEVEL:
3930 3931
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3932
			rsvd_bits(maxphyaddr, 51);
3933 3934
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3935
			rsvd_bits(maxphyaddr, 51);
3936 3937 3938 3939 3940 3941 3942
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3943
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3944
			rsvd_bits(13, 29);
3945
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3946 3947
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3948 3949
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3950 3951 3952 3953
		break;
	}
}

3954 3955 3956 3957 3958 3959
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3960
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3961 3962
}

3963 3964 3965
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3966
{
3967
	u64 bad_mt_xwr;
3968

3969
	rsvd_check->rsvd_bits_mask[0][3] =
3970
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3971
	rsvd_check->rsvd_bits_mask[0][2] =
3972
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3973
	rsvd_check->rsvd_bits_mask[0][1] =
3974
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3975
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3976 3977

	/* large page */
3978 3979
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3980
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3981
	rsvd_check->rsvd_bits_mask[1][1] =
3982
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3983
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3984

3985 3986 3987 3988 3989 3990 3991 3992
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3993
	}
3994
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3995 3996
}

3997 3998 3999 4000 4001 4002 4003
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4004 4005 4006 4007 4008 4009 4010 4011
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4012 4013
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;

4014 4015 4016 4017
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4018 4019
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
4020
				context->shadow_root_level, uses_nx,
4021 4022
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
4023 4024 4025
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4026 4027 4028 4029 4030 4031
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4032 4033 4034 4035 4036 4037 4038 4039
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4040
	if (boot_cpu_is_amd())
4041 4042 4043
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4044 4045
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4065 4066
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4067 4068 4069
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
4070
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4071

F
Feng Wu 已提交
4072
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
4073
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4074 4075 4076 4077 4078 4079
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
4080 4081 4082 4083 4084 4085
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
4086 4087 4088 4089 4090
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

4091 4092 4093 4094 4095 4096
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
4097
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
4118
			}
4119

F
Feng Wu 已提交
4120 4121
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
4122 4123 4124 4125 4126 4127
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4203
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4204
{
4205 4206 4207 4208 4209
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4210 4211
}

4212 4213 4214
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4215
{
4216
	context->nx = is_nx(vcpu);
4217
	context->root_level = level;
4218

4219
	reset_rsvds_bits_mask(vcpu, context);
4220
	update_permission_bitmask(vcpu, context, false);
4221
	update_pkru_bitmask(vcpu, context, false);
4222
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4223

4224
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4225 4226
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4227
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4228
	context->invlpg = paging64_invlpg;
4229
	context->update_pte = paging64_update_pte;
4230
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4231
	context->root_hpa = INVALID_PAGE;
4232
	context->direct_map = false;
A
Avi Kivity 已提交
4233 4234
}

4235 4236
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4237
{
4238
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4239 4240
}

4241 4242
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4243
{
4244
	context->nx = false;
4245
	context->root_level = PT32_ROOT_LEVEL;
4246

4247
	reset_rsvds_bits_mask(vcpu, context);
4248
	update_permission_bitmask(vcpu, context, false);
4249
	update_pkru_bitmask(vcpu, context, false);
4250
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4251 4252 4253

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4254
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4255
	context->invlpg = paging32_invlpg;
4256
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4257
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4258
	context->root_hpa = INVALID_PAGE;
4259
	context->direct_map = false;
A
Avi Kivity 已提交
4260 4261
}

4262 4263
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4264
{
4265
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4266 4267
}

4268
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4269
{
4270
	struct kvm_mmu *context = &vcpu->arch.mmu;
4271

4272
	context->base_role.word = 0;
4273
	context->base_role.smm = is_smm(vcpu);
4274
	context->page_fault = tdp_page_fault;
4275
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4276
	context->invlpg = nonpaging_invlpg;
4277
	context->update_pte = nonpaging_update_pte;
4278
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4279
	context->root_hpa = INVALID_PAGE;
4280
	context->direct_map = true;
4281
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4282
	context->get_cr3 = get_cr3;
4283
	context->get_pdptr = kvm_pdptr_read;
4284
	context->inject_page_fault = kvm_inject_page_fault;
4285 4286

	if (!is_paging(vcpu)) {
4287
		context->nx = false;
4288 4289 4290
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4291
		context->nx = is_nx(vcpu);
4292
		context->root_level = PT64_ROOT_LEVEL;
4293 4294
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4295
	} else if (is_pae(vcpu)) {
4296
		context->nx = is_nx(vcpu);
4297
		context->root_level = PT32E_ROOT_LEVEL;
4298 4299
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4300
	} else {
4301
		context->nx = false;
4302
		context->root_level = PT32_ROOT_LEVEL;
4303 4304
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4305 4306
	}

4307
	update_permission_bitmask(vcpu, context, false);
4308
	update_pkru_bitmask(vcpu, context, false);
4309
	update_last_nonleaf_level(vcpu, context);
4310
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4311 4312
}

4313
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4314
{
4315
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4316
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4317 4318
	struct kvm_mmu *context = &vcpu->arch.mmu;

4319
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4320 4321

	if (!is_paging(vcpu))
4322
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4323
	else if (is_long_mode(vcpu))
4324
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4325
	else if (is_pae(vcpu))
4326
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4327
	else
4328
		paging32_init_context(vcpu, context);
4329

4330 4331 4332 4333
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4334
		= smep && !is_write_protection(vcpu);
4335 4336
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4337
	context->base_role.smm = is_smm(vcpu);
4338
	reset_shadow_zero_bits_mask(vcpu, context);
4339 4340 4341
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4342
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4343
{
4344 4345
	struct kvm_mmu *context = &vcpu->arch.mmu;

4346
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
4361
	update_pkru_bitmask(vcpu, context, true);
N
Nadav Har'El 已提交
4362
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4363
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4364 4365 4366
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4367
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4368
{
4369 4370 4371 4372 4373 4374 4375
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4376 4377
}

4378
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4379 4380 4381 4382
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4383
	g_context->get_pdptr         = kvm_pdptr_read;
4384 4385 4386
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4387 4388 4389 4390 4391 4392
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4393 4394
	 */
	if (!is_paging(vcpu)) {
4395
		g_context->nx = false;
4396 4397 4398
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4399
		g_context->nx = is_nx(vcpu);
4400
		g_context->root_level = PT64_ROOT_LEVEL;
4401
		reset_rsvds_bits_mask(vcpu, g_context);
4402 4403
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4404
		g_context->nx = is_nx(vcpu);
4405
		g_context->root_level = PT32E_ROOT_LEVEL;
4406
		reset_rsvds_bits_mask(vcpu, g_context);
4407 4408
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4409
		g_context->nx = false;
4410
		g_context->root_level = PT32_ROOT_LEVEL;
4411
		reset_rsvds_bits_mask(vcpu, g_context);
4412 4413 4414
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4415
	update_permission_bitmask(vcpu, g_context, false);
4416
	update_pkru_bitmask(vcpu, g_context, false);
4417
	update_last_nonleaf_level(vcpu, g_context);
4418 4419
}

4420
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4421
{
4422
	if (mmu_is_nested(vcpu))
4423
		init_kvm_nested_mmu(vcpu);
4424
	else if (tdp_enabled)
4425
		init_kvm_tdp_mmu(vcpu);
4426
	else
4427
		init_kvm_softmmu(vcpu);
4428 4429
}

4430
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4431
{
4432
	kvm_mmu_unload(vcpu);
4433
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4434
}
4435
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4436 4437

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4438
{
4439 4440
	int r;

4441
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4442 4443
	if (r)
		goto out;
4444
	r = mmu_alloc_roots(vcpu);
4445
	kvm_mmu_sync_roots(vcpu);
4446 4447
	if (r)
		goto out;
4448
	/* set_cr3() should ensure TLB has been flushed */
4449
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4450 4451
out:
	return r;
A
Avi Kivity 已提交
4452
}
A
Avi Kivity 已提交
4453 4454 4455 4456 4457
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4458
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4459
}
4460
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4461

4462
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4463 4464
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4465
{
4466
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4467 4468
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4469
        }
4470

A
Avi Kivity 已提交
4471
	++vcpu->kvm->stat.mmu_pte_updated;
4472
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4473 4474
}

4475 4476 4477 4478 4479 4480 4481 4482
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4483 4484
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4485 4486 4487
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4488 4489
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4490
{
4491 4492
	u64 gentry;
	int r;
4493 4494 4495

	/*
	 * Assume that the pte write on a page table of the same type
4496 4497
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4498
	 */
4499
	if (is_pae(vcpu) && *bytes == 4) {
4500
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4501 4502
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4503
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4504 4505
		if (r)
			gentry = 0;
4506 4507 4508
		new = (const u8 *)&gentry;
	}

4509
	switch (*bytes) {
4510 4511 4512 4513 4514 4515 4516 4517 4518
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4519 4520
	}

4521 4522 4523 4524 4525 4526 4527
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4528
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4529
{
4530 4531 4532 4533
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4534
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4535
		return false;
4536

4537 4538
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4555 4556 4557 4558 4559 4560 4561 4562

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4600
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4601 4602
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4603 4604 4605 4606 4607 4608
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4609
	bool remote_flush, local_flush;
4610 4611 4612 4613 4614 4615 4616
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4617
	mask.smm = 1;
4618 4619 4620 4621 4622 4623 4624 4625

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4626
	remote_flush = local_flush = false;
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4641
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4642

4643
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4644
		if (detect_write_misaligned(sp, gpa, bytes) ||
4645
		      detect_write_flooding(sp)) {
4646
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4647
			++vcpu->kvm->stat.mmu_flooded;
4648 4649
			continue;
		}
4650 4651 4652 4653 4654

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4655
		local_flush = true;
4656
		while (npte--) {
4657
			entry = *spte;
4658
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4659 4660
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4661
			      & mask.word) && rmap_can_add(vcpu))
4662
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4663
			if (need_remote_flush(entry, *spte))
4664
				remote_flush = true;
4665
			++spte;
4666 4667
		}
	}
4668
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4669
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4670
	spin_unlock(&vcpu->kvm->mmu_lock);
4671 4672
}

4673 4674
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4675 4676
	gpa_t gpa;
	int r;
4677

4678
	if (vcpu->arch.mmu.direct_map)
4679 4680
		return 0;

4681
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4682 4683

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4684

4685
	return r;
4686
}
4687
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4688

4689
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4690
{
4691
	LIST_HEAD(invalid_list);
4692

4693 4694 4695
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4696 4697 4698
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4699

A
Avi Kivity 已提交
4700
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4701
	}
4702
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4703 4704
}

4705
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4706
		       void *insn, int insn_len)
4707
{
4708
	int r, emulation_type = EMULTYPE_RETRY;
4709
	enum emulation_result er;
4710
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4711

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}
4723

4724 4725
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
				      false);
4726
	if (r < 0)
4727 4728 4729
		return r;
	if (!r)
		return 1;
4730

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 *
	 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
	 *       in PFERR_NEXT_GUEST_PAGE)
	 */
	if (error_code == PFERR_NESTED_GUEST_PAGE) {
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

4746
	if (mmio_info_in_cache(vcpu, cr2, direct))
4747
		emulation_type = 0;
4748
emulate:
4749
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4750 4751 4752 4753

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4754
	case EMULATE_USER_EXIT:
4755
		++vcpu->stat.mmio_exits;
4756
		/* fall through */
4757
	case EMULATE_FAIL:
4758
		return 0;
4759 4760 4761 4762 4763 4764
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4765 4766 4767
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4768
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4769 4770 4771 4772
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4773 4774 4775 4776 4777 4778
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4779 4780 4781 4782 4783 4784
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4785 4786
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4787
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4788 4789
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4790 4791 4792 4793
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4794
	struct page *page;
A
Avi Kivity 已提交
4795 4796
	int i;

4797 4798 4799 4800 4801 4802 4803
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4804 4805
		return -ENOMEM;

4806
	vcpu->arch.mmu.pae_root = page_address(page);
4807
	for (i = 0; i < 4; ++i)
4808
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4809

A
Avi Kivity 已提交
4810 4811 4812
	return 0;
}

4813
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4814
{
4815 4816 4817 4818
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4819

4820 4821
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4822

4823
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4824
{
4825
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4826

4827
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4828 4829
}

4830
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4831 4832
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
4833 4834 4835 4836
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

4837 4838 4839 4840 4841
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
4842
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4853
/* The return value indicates if tlb flush on all vcpus is needed. */
4854
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4922 4923 4924 4925
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4926
	int i;
X
Xiao Guangrong 已提交
4927 4928

	spin_lock(&kvm->mmu_lock);
4929 4930 4931 4932 4933 4934 4935 4936 4937
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4938

4939 4940 4941 4942
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4943 4944 4945 4946 4947
	}

	spin_unlock(&kvm->mmu_lock);
}

4948 4949
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4950
{
4951
	return __rmap_write_protect(kvm, rmap_head, false);
4952 4953
}

4954 4955
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4956
{
4957
	bool flush;
A
Avi Kivity 已提交
4958

4959
	spin_lock(&kvm->mmu_lock);
4960 4961
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4962
	spin_unlock(&kvm->mmu_lock);
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4982 4983
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4984
}
4985

4986
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4987
					 struct kvm_rmap_head *rmap_head)
4988 4989 4990 4991
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4992
	kvm_pfn_t pfn;
4993 4994
	struct kvm_mmu_page *sp;

4995
restart:
4996
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4997 4998 4999 5000
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5001 5002 5003 5004 5005
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5006 5007 5008
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
5009
			PageTransCompoundMap(pfn_to_page(pfn))) {
5010 5011
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5012 5013
			goto restart;
		}
5014 5015 5016 5017 5018 5019
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5020
				   const struct kvm_memory_slot *memslot)
5021
{
5022
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5023
	spin_lock(&kvm->mmu_lock);
5024 5025
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5026 5027 5028
	spin_unlock(&kvm->mmu_lock);
}

5029 5030 5031
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5032
	bool flush;
5033 5034

	spin_lock(&kvm->mmu_lock);
5035
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5054
	bool flush;
5055 5056

	spin_lock(&kvm->mmu_lock);
5057 5058
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5072
	bool flush;
5073 5074

	spin_lock(&kvm->mmu_lock);
5075
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5086
#define BATCH_ZAP_PAGES	10
5087 5088 5089
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5090
	int batch = 0;
5091 5092 5093 5094

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5095 5096
		int ret;

5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5112 5113 5114 5115
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5116
		if (batch >= BATCH_ZAP_PAGES &&
5117
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5118
			batch = 0;
5119 5120 5121
			goto restart;
		}

5122 5123
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5124 5125 5126
		batch += ret;

		if (ret)
5127 5128 5129
			goto restart;
	}

5130 5131 5132 5133
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5134
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5149
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5150 5151
	kvm->arch.mmu_valid_gen++;

5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5163 5164 5165 5166
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5167 5168 5169 5170 5171
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5172
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5173 5174 5175 5176 5177
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
5178
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5179
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5180
		kvm_mmu_invalidate_zap_all_pages(kvm);
5181
	}
5182 5183
}

5184 5185
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5186 5187
{
	struct kvm *kvm;
5188
	int nr_to_scan = sc->nr_to_scan;
5189
	unsigned long freed = 0;
5190

5191
	spin_lock(&kvm_lock);
5192 5193

	list_for_each_entry(kvm, &vm_list, vm_list) {
5194
		int idx;
5195
		LIST_HEAD(invalid_list);
5196

5197 5198 5199 5200 5201 5202 5203 5204
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5205 5206 5207 5208 5209 5210
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5211 5212
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5213 5214
			continue;

5215
		idx = srcu_read_lock(&kvm->srcu);
5216 5217
		spin_lock(&kvm->mmu_lock);

5218 5219 5220 5221 5222 5223
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5224 5225
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5226
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5227

5228
unlock:
5229
		spin_unlock(&kvm->mmu_lock);
5230
		srcu_read_unlock(&kvm->srcu, idx);
5231

5232 5233 5234 5235 5236
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5237 5238
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5239 5240
	}

5241
	spin_unlock(&kvm_lock);
5242 5243 5244 5245 5246 5247
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5248
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5249 5250 5251
}

static struct shrinker mmu_shrinker = {
5252 5253
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5254 5255 5256
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5257
static void mmu_destroy_caches(void)
5258
{
5259 5260
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5261 5262
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5263 5264 5265 5266
}

int kvm_mmu_module_init(void)
{
5267 5268
	kvm_mmu_clear_all_pte_masks();

5269 5270
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5271
					    0, 0, NULL);
5272
	if (!pte_list_desc_cache)
5273 5274
		goto nomem;

5275 5276
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5277
						  0, 0, NULL);
5278 5279 5280
	if (!mmu_page_header_cache)
		goto nomem;

5281
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5282 5283
		goto nomem;

5284 5285
	register_shrinker(&mmu_shrinker);

5286 5287 5288
	return 0;

nomem:
5289
	mmu_destroy_caches();
5290 5291 5292
	return -ENOMEM;
}

5293 5294 5295 5296 5297 5298 5299
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5300
	struct kvm_memslots *slots;
5301
	struct kvm_memory_slot *memslot;
5302
	int i;
5303

5304 5305
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5306

5307 5308 5309
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5310 5311 5312

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5313
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5314 5315 5316 5317

	return nr_mmu_pages;
}

5318 5319
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5320
	kvm_mmu_unload(vcpu);
5321 5322
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5323 5324 5325 5326 5327 5328 5329
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5330 5331
	mmu_audit_disable();
}