mmu.c 129.3 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/uaccess.h>
A
Avi Kivity 已提交
40

A
Avi Kivity 已提交
41 42
#include <asm/page.h>
#include <asm/cmpxchg.h>
43
#include <asm/io.h>
44
#include <asm/vmx.h>
45
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
46

47 48 49 50 51 52 53
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
54
bool tdp_enabled = false;
55

56 57 58 59
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
60 61 62
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
63
};
64

65
#undef MMU_DEBUG
66 67

#ifdef MMU_DEBUG
68 69
static bool dbg = 0;
module_param(dbg, bool, 0644);
70 71 72

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
73
#define MMU_WARN_ON(x) WARN_ON(x)
74 75 76
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
77
#define MMU_WARN_ON(x) do { } while (0)
78
#endif
A
Avi Kivity 已提交
79

80 81
#define PTE_PREFETCH_NUM		8

82
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
83 84 85 86 87
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
88
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
89 90 91 92 93 94 95 96

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
97
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
98

99 100 101
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
102 103 104 105 106

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


107
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
108 109
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
110 111 112 113 114 115
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
116 117 118 119

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
120 121 122
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123

124 125
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
126

127 128 129 130 131
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

132 133
#include <trace/events/kvm.h>

134 135 136
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

137 138
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
139

140 141
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

142 143 144
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

145 146 147
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
148 149
};

150 151 152 153
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
154
	int level;
155 156 157 158 159 160 161 162
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

163 164 165 166 167 168
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

169
static struct kmem_cache *pte_list_desc_cache;
170
static struct kmem_cache *mmu_page_header_cache;
171
static struct percpu_counter kvm_total_used_mmu_pages;
172

S
Sheng Yang 已提交
173 174 175 176 177
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
178
static u64 __read_mostly shadow_mmio_mask;
179
static u64 __read_mostly shadow_present_mask;
180 181

static void mmu_spte_set(u64 *sptep, u64 spte);
182
static void mmu_free_roots(struct kvm_vcpu *vcpu);
183 184 185 186 187 188 189

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

190
/*
191 192 193 194 195 196 197
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
198
 */
199
#define MMIO_SPTE_GEN_LOW_SHIFT		2
200 201
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

202 203 204
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
205
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
206 207 208 209 210

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
211
	WARN_ON(gen & ~MMIO_GEN_MASK);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

229
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
230
{
231
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
232 233
}

234
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
235
			   unsigned access)
236
{
237
	unsigned int gen = kvm_current_mmio_generation(vcpu);
238
	u64 mask = generation_mmio_spte_mask(gen);
239

240
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
241 242
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

243
	trace_mark_mmio_spte(sptep, gfn, access, gen);
244
	mmu_spte_set(sptep, mask);
245 246 247 248 249 250 251 252 253
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
254
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
255
	return (spte & ~mask) >> PAGE_SHIFT;
256 257 258 259
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
260
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
261
	return (spte & ~mask) & ~PAGE_MASK;
262 263
}

264
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
265
			  kvm_pfn_t pfn, unsigned access)
266 267
{
	if (unlikely(is_noslot_pfn(pfn))) {
268
		mark_mmio_spte(vcpu, sptep, gfn, access);
269 270 271 272 273
		return true;
	}

	return false;
}
274

275
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
276
{
277 278
	unsigned int kvm_gen, spte_gen;

279
	kvm_gen = kvm_current_mmio_generation(vcpu);
280 281 282 283
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
284 285
}

S
Sheng Yang 已提交
286
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
287
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
S
Sheng Yang 已提交
288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
294
	shadow_present_mask = p_mask;
S
Sheng Yang 已提交
295 296 297
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
298 299 300 301 302
static int is_cpuid_PSE36(void)
{
	return 1;
}

303 304
static int is_nx(struct kvm_vcpu *vcpu)
{
305
	return vcpu->arch.efer & EFER_NX;
306 307
}

308 309
static int is_shadow_present_pte(u64 pte)
{
310
	return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
311 312
}

M
Marcelo Tosatti 已提交
313 314 315 316 317
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

318 319 320 321
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
322
	if (is_large_pte(pte))
323 324 325 326
		return 1;
	return 0;
}

D
Dan Williams 已提交
327
static kvm_pfn_t spte_to_pfn(u64 pte)
328
{
329
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
330 331
}

332 333 334 335 336 337 338
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

339
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
340
static void __set_spte(u64 *sptep, u64 spte)
341
{
342
	WRITE_ONCE(*sptep, spte);
343 344
}

345
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
346
{
347
	WRITE_ONCE(*sptep, spte);
348 349 350 351 352 353
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
354 355 356 357 358

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
359
#else
360 361 362 363 364 365 366
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
367

368 369 370 371 372 373 374 375 376 377 378 379
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

380 381 382
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
383

384 385 386 387 388 389 390 391 392 393 394 395
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

396
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 398
}

399 400 401 402 403 404 405
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

406
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 408 409 410 411 412 413 414

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
415
	count_spte_clear(sptep, spte);
416 417 418 419 420 421 422 423 424 425 426
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 428
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
429
	count_spte_clear(sptep, spte);
430 431 432

	return orig.spte;
}
433 434 435 436

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
437 438 439 440 441 442 443 444 445 446 447 448 449 450
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
474 475
#endif

476 477
static bool spte_is_locklessly_modifiable(u64 spte)
{
478 479
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
480 481
}

482 483
static bool spte_has_volatile_bits(u64 spte)
{
484
	/*
485
	 * Always atomically update spte if it can be updated
486 487 488 489 490 491 492
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

493 494 495 496 497 498
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

499 500
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
501 502 503 504 505
		return false;

	return true;
}

506 507 508 509 510
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

511 512 513 514 515
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

516 517 518 519 520 521 522 523 524 525 526 527 528
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
A
Andrea Gelmini 已提交
529
 * Update the state bits, it means the mapped pfn is not changed.
530 531 532 533 534 535
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
536
 */
537
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
538
{
539
	u64 old_spte = *sptep;
540
	bool ret = false;
541

542
	WARN_ON(!is_shadow_present_pte(new_spte));
543

544 545 546 547
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
548

549
	if (!spte_has_volatile_bits(old_spte))
550
		__update_clear_spte_fast(sptep, new_spte);
551
	else
552
		old_spte = __update_clear_spte_slow(sptep, new_spte);
553

554 555
	/*
	 * For the spte updated out of mmu-lock is safe, since
556
	 * we always atomically update it, see the comments in
557 558
	 * spte_has_volatile_bits().
	 */
559 560
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
561 562
		ret = true;

563 564 565 566 567 568 569
	if (!shadow_accessed_mask) {
		/*
		 * We don't set page dirty when dropping non-writable spte.
		 * So do it now if the new spte is becoming non-writable.
		 */
		if (ret)
			kvm_set_pfn_dirty(spte_to_pfn(old_spte));
570
		return ret;
571
	}
572

573 574 575 576 577 578 579 580
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

581 582 583 584
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
585 586

	return ret;
587 588
}

589 590 591 592 593 594 595
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
596
	kvm_pfn_t pfn;
597 598 599
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
600
		__update_clear_spte_fast(sptep, 0ull);
601
	else
602
		old_spte = __update_clear_spte_slow(sptep, 0ull);
603

604
	if (!is_shadow_present_pte(old_spte))
605 606 607
		return 0;

	pfn = spte_to_pfn(old_spte);
608 609 610 611 612 613

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
614
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
615

616 617
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
618 619
	if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
					    PT_WRITABLE_MASK))
620 621 622 623 624 625 626 627 628 629 630
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
631
	__update_clear_spte_fast(sptep, 0ull);
632 633
}

634 635 636 637 638 639 640
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
641 642 643 644 645
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
646

647 648 649 650
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
651
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
652 653 654 655
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
656 657 658 659 660
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
661
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
662
	local_irq_enable();
663 664
}

665
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
666
				  struct kmem_cache *base_cache, int min)
667 668 669 670
{
	void *obj;

	if (cache->nobjs >= min)
671
		return 0;
672
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
673
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
674
		if (!obj)
675
			return -ENOMEM;
676 677
		cache->objects[cache->nobjs++] = obj;
	}
678
	return 0;
679 680
}

681 682 683 684 685
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

686 687
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
688 689
{
	while (mc->nobjs)
690
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
691 692
}

A
Avi Kivity 已提交
693
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
694
				       int min)
A
Avi Kivity 已提交
695
{
696
	void *page;
A
Avi Kivity 已提交
697 698 699 700

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
701
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
702 703
		if (!page)
			return -ENOMEM;
704
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
705 706 707 708 709 710 711
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
712
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
713 714
}

715
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
716
{
717 718
	int r;

719
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
720
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
721 722
	if (r)
		goto out;
723
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
724 725
	if (r)
		goto out;
726
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
727
				   mmu_page_header_cache, 4);
728 729
out:
	return r;
730 731 732 733
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
734 735
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
736
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
737 738
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
739 740
}

741
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
742 743 744 745 746 747 748 749
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

750
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
751
{
752
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
753 754
}

755
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
756
{
757
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
758 759
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
776
/*
777 778
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
779
 */
780 781 782
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
783 784 785
{
	unsigned long idx;

786
	idx = gfn_to_index(gfn, slot->base_gfn, level);
787
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

813
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
814
{
815
	struct kvm_memslots *slots;
816
	struct kvm_memory_slot *slot;
817
	gfn_t gfn;
M
Marcelo Tosatti 已提交
818

819
	kvm->arch.indirect_shadow_pages++;
820
	gfn = sp->gfn;
821 822
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
823 824 825 826 827 828

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

829
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
830 831
}

832
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
833
{
834
	struct kvm_memslots *slots;
835
	struct kvm_memory_slot *slot;
836
	gfn_t gfn;
M
Marcelo Tosatti 已提交
837

838
	kvm->arch.indirect_shadow_pages--;
839
	gfn = sp->gfn;
840 841
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
842 843 844 845
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

846
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
847 848
}

849 850
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
851
{
852
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
853 854

	if (slot) {
855
		linfo = lpage_info_slot(gfn, slot, level);
856
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
857 858
	}

859
	return true;
M
Marcelo Tosatti 已提交
860 861
}

862 863
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
864 865 866 867
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
868
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
869 870
}

871
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
872
{
J
Joerg Roedel 已提交
873
	unsigned long page_size;
874
	int i, ret = 0;
M
Marcelo Tosatti 已提交
875

J
Joerg Roedel 已提交
876
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
877

878
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
879 880 881 882 883 884
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

885
	return ret;
M
Marcelo Tosatti 已提交
886 887
}

888 889 890 891 892 893 894 895 896 897 898
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

899 900 901
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
902 903
{
	struct kvm_memory_slot *slot;
904

905
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
906
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
907 908 909 910 911
		slot = NULL;

	return slot;
}

912 913
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
914 915
{
	int host_level, level, max_level;
916 917
	struct kvm_memory_slot *slot;

918 919
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
920

921 922
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
923 924 925
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

926 927 928 929 930
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
931
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
932 933

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
934
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
935 936 937
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
938 939
}

940
/*
941
 * About rmap_head encoding:
942
 *
943 944
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
945
 * pte_list_desc containing more mappings.
946 947 948 949
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
950
 */
951
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
952
			struct kvm_rmap_head *rmap_head)
953
{
954
	struct pte_list_desc *desc;
955
	int i, count = 0;
956

957
	if (!rmap_head->val) {
958
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
959 960
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
961 962
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
963
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
964
		desc->sptes[1] = spte;
965
		rmap_head->val = (unsigned long)desc | 1;
966
		++count;
967
	} else {
968
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
969
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
971
			desc = desc->more;
972
			count += PTE_LIST_EXT;
973
		}
974 975
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
976 977
			desc = desc->more;
		}
A
Avi Kivity 已提交
978
		for (i = 0; desc->sptes[i]; ++i)
979
			++count;
A
Avi Kivity 已提交
980
		desc->sptes[i] = spte;
981
	}
982
	return count;
983 984
}

985
static void
986 987 988
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
989 990 991
{
	int j;

992
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
993
		;
A
Avi Kivity 已提交
994 995
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
996 997 998
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
999
		rmap_head->val = (unsigned long)desc->sptes[0];
1000 1001 1002 1003
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1004
			rmap_head->val = (unsigned long)desc->more | 1;
1005
	mmu_free_pte_list_desc(desc);
1006 1007
}

1008
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1009
{
1010 1011
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1012 1013
	int i;

1014
	if (!rmap_head->val) {
1015
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1016
		BUG();
1017
	} else if (!(rmap_head->val & 1)) {
1018
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1019
		if ((u64 *)rmap_head->val != spte) {
1020
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1021 1022
			BUG();
		}
1023
		rmap_head->val = 0;
1024
	} else {
1025
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1026
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1027 1028
		prev_desc = NULL;
		while (desc) {
1029
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1030
				if (desc->sptes[i] == spte) {
1031 1032
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1033 1034
					return;
				}
1035
			}
1036 1037 1038
			prev_desc = desc;
			desc = desc->more;
		}
1039
		pr_err("pte_list_remove: %p many->many\n", spte);
1040 1041 1042 1043
		BUG();
	}
}

1044 1045
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1046
{
1047
	unsigned long idx;
1048

1049
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1050
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 1052
}

1053 1054
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1055
{
1056
	struct kvm_memslots *slots;
1057 1058
	struct kvm_memory_slot *slot;

1059 1060
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1061
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1072 1073 1074
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1075
	struct kvm_rmap_head *rmap_head;
1076 1077 1078

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1079 1080
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1081 1082 1083 1084 1085 1086
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1087
	struct kvm_rmap_head *rmap_head;
1088 1089 1090

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1091 1092
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1112 1113
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1114
{
1115 1116
	u64 *sptep;

1117
	if (!rmap_head->val)
1118 1119
		return NULL;

1120
	if (!(rmap_head->val & 1)) {
1121
		iter->desc = NULL;
1122 1123
		sptep = (u64 *)rmap_head->val;
		goto out;
1124 1125
	}

1126
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1127
	iter->pos = 0;
1128 1129 1130 1131
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1132 1133 1134 1135 1136 1137 1138 1139 1140
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1141 1142
	u64 *sptep;

1143 1144 1145 1146 1147
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1148
				goto out;
1149 1150 1151 1152 1153 1154 1155
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1156 1157
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1158 1159 1160 1161
		}
	}

	return NULL;
1162 1163 1164
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1165 1166
}

1167 1168
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1169
	     _spte_; _spte_ = rmap_get_next(_iter_))
1170

1171
static void drop_spte(struct kvm *kvm, u64 *sptep)
1172
{
1173
	if (mmu_spte_clear_track_bits(sptep))
1174
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1175 1176
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1198
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1199
 * spte write-protection is caused by protecting shadow page table.
1200
 *
T
Tiejun Chen 已提交
1201
 * Note: write protection is difference between dirty logging and spte
1202 1203 1204 1205 1206
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1207
 *
1208
 * Return true if tlb need be flushed.
1209
 */
1210
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1211 1212 1213
{
	u64 spte = *sptep;

1214 1215
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1216 1217 1218 1219
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1220 1221
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1222
	spte = spte & ~PT_WRITABLE_MASK;
1223

1224
	return mmu_spte_update(sptep, spte);
1225 1226
}

1227 1228
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1229
				 bool pt_protect)
1230
{
1231 1232
	u64 *sptep;
	struct rmap_iterator iter;
1233
	bool flush = false;
1234

1235
	for_each_rmap_spte(rmap_head, &iter, sptep)
1236
		flush |= spte_write_protect(sptep, pt_protect);
1237

1238
	return flush;
1239 1240
}

1241
static bool spte_clear_dirty(u64 *sptep)
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1252
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1253 1254 1255 1256 1257
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1258
	for_each_rmap_spte(rmap_head, &iter, sptep)
1259
		flush |= spte_clear_dirty(sptep);
1260 1261 1262 1263

	return flush;
}

1264
static bool spte_set_dirty(u64 *sptep)
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1275
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1276 1277 1278 1279 1280
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1281
	for_each_rmap_spte(rmap_head, &iter, sptep)
1282
		flush |= spte_set_dirty(sptep);
1283 1284 1285 1286

	return flush;
}

1287
/**
1288
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1289 1290 1291 1292 1293 1294 1295 1296
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1297
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1298 1299
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1300
{
1301
	struct kvm_rmap_head *rmap_head;
1302

1303
	while (mask) {
1304 1305 1306
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1307

1308 1309 1310
		/* clear the first set bit */
		mask &= mask - 1;
	}
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1326
	struct kvm_rmap_head *rmap_head;
1327 1328

	while (mask) {
1329 1330 1331
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1332 1333 1334 1335 1336 1337 1338

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1353 1354 1355 1356 1357
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1358 1359
}

1360 1361
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1362
{
1363
	struct kvm_rmap_head *rmap_head;
1364
	int i;
1365
	bool write_protected = false;
1366

1367
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1368
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1369
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1370 1371 1372
	}

	return write_protected;
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1383
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1384
{
1385 1386
	u64 *sptep;
	struct rmap_iterator iter;
1387
	bool flush = false;
1388

1389
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1390
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1391 1392

		drop_spte(kvm, sptep);
1393
		flush = true;
1394
	}
1395

1396 1397 1398
	return flush;
}

1399
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1400 1401 1402
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1403
	return kvm_zap_rmapp(kvm, rmap_head);
1404 1405
}

1406
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1407 1408
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1409
{
1410 1411
	u64 *sptep;
	struct rmap_iterator iter;
1412
	int need_flush = 0;
1413
	u64 new_spte;
1414
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1415
	kvm_pfn_t new_pfn;
1416 1417 1418

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1419

1420
restart:
1421
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1422 1423
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1424

1425
		need_flush = 1;
1426

1427
		if (pte_write(*ptep)) {
1428
			drop_spte(kvm, sptep);
1429
			goto restart;
1430
		} else {
1431
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1432 1433 1434 1435
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1436
			new_spte &= ~shadow_accessed_mask;
1437 1438 1439

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1440 1441
		}
	}
1442

1443 1444 1445 1446 1447 1448
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1459
	struct kvm_rmap_head *rmap;
1460 1461 1462
	int level;

	/* private field. */
1463
	struct kvm_rmap_head *end_rmap;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1517 1518 1519 1520 1521
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1522
					       struct kvm_rmap_head *rmap_head,
1523
					       struct kvm_memory_slot *slot,
1524 1525
					       gfn_t gfn,
					       int level,
1526
					       unsigned long data))
1527
{
1528
	struct kvm_memslots *slots;
1529
	struct kvm_memory_slot *memslot;
1530 1531
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1532
	int i;
1533

1534 1535 1536 1537 1538
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1559 1560
	}

1561
	return ret;
1562 1563
}

1564 1565
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1566 1567
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1568
					 struct kvm_memory_slot *slot,
1569
					 gfn_t gfn, int level,
1570 1571 1572
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1573 1574 1575 1576
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1577 1578 1579
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1580 1581 1582 1583 1584
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1585 1586
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1587
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1588 1589
}

1590
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1591 1592
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1593
{
1594
	u64 *sptep;
1595
	struct rmap_iterator uninitialized_var(iter);
1596 1597
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1598
	BUG_ON(!shadow_accessed_mask);
1599

1600
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1601
		if (*sptep & shadow_accessed_mask) {
1602
			young = 1;
1603 1604
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1605
		}
1606
	}
1607

1608
	trace_kvm_age_page(gfn, level, slot, young);
1609 1610 1611
	return young;
}

1612
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1613 1614
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1615
{
1616 1617
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1628
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1629
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1630 1631 1632
			young = 1;
			break;
		}
1633
	}
A
Andrea Arcangeli 已提交
1634 1635 1636 1637
out:
	return young;
}

1638 1639
#define RMAP_RECYCLE_THRESHOLD 1000

1640
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1641
{
1642
	struct kvm_rmap_head *rmap_head;
1643 1644 1645
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1646

1647
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1648

1649
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1650 1651 1652
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1653
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1654
{
A
Andres Lagar-Cavilla 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1676 1677
}

A
Andrea Arcangeli 已提交
1678 1679 1680 1681 1682
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1683
#ifdef MMU_DEBUG
1684
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1685
{
1686 1687 1688
	u64 *pos;
	u64 *end;

1689
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1690
		if (is_shadow_present_pte(*pos)) {
1691
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1692
			       pos, *pos);
A
Avi Kivity 已提交
1693
			return 0;
1694
		}
A
Avi Kivity 已提交
1695 1696
	return 1;
}
1697
#endif
A
Avi Kivity 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1711
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1712
{
1713
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1714
	hlist_del(&sp->hash_link);
1715 1716
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1717 1718
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1719
	kmem_cache_free(mmu_page_header_cache, sp);
1720 1721
}

1722 1723
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1724
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1725 1726
}

1727
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1728
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1729 1730 1731 1732
{
	if (!parent_pte)
		return;

1733
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1734 1735
}

1736
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1737 1738
				       u64 *parent_pte)
{
1739
	pte_list_remove(parent_pte, &sp->parent_ptes);
1740 1741
}

1742 1743 1744 1745
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1746
	mmu_spte_clear_no_track(parent_pte);
1747 1748
}

1749
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1750
{
1751
	struct kvm_mmu_page *sp;
1752

1753 1754
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1755
	if (!direct)
1756
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1757
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1758 1759 1760 1761 1762 1763

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1764 1765 1766
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1767 1768
}

1769
static void mark_unsync(u64 *spte);
1770
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1771
{
1772 1773 1774 1775 1776 1777
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1778 1779
}

1780
static void mark_unsync(u64 *spte)
1781
{
1782
	struct kvm_mmu_page *sp;
1783
	unsigned int index;
1784

1785
	sp = page_header(__pa(spte));
1786 1787
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1788
		return;
1789
	if (sp->unsync_children++)
1790
		return;
1791
	kvm_mmu_mark_parents_unsync(sp);
1792 1793
}

1794
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1795
			       struct kvm_mmu_page *sp)
1796
{
1797
	return 0;
1798 1799
}

M
Marcelo Tosatti 已提交
1800 1801 1802 1803
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1804 1805
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1806
				 const void *pte)
1807 1808 1809 1810
{
	WARN_ON(1);
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1821 1822
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1823
{
1824
	int i;
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1837 1838 1839 1840 1841 1842 1843
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1844 1845 1846 1847
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1848

1849
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1850
		struct kvm_mmu_page *child;
1851 1852
		u64 ent = sp->spt[i];

1853 1854 1855 1856
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1857 1858 1859 1860 1861 1862 1863 1864

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1865 1866 1867 1868
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1869
				nr_unsync_leaf += ret;
1870
			} else
1871 1872 1873 1874 1875 1876
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1877
			clear_unsync_child_bit(sp, i);
1878 1879
	}

1880 1881 1882
	return nr_unsync_leaf;
}

1883 1884
#define INVALID_INDEX (-1)

1885 1886 1887
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1888
	pvec->nr = 0;
1889 1890 1891
	if (!sp->unsync_children)
		return 0;

1892
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1893
	return __mmu_unsync_walk(sp, pvec);
1894 1895 1896 1897 1898
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1899
	trace_kvm_mmu_sync_page(sp);
1900 1901 1902 1903
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1904 1905 1906 1907
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1908

1909 1910 1911 1912 1913 1914
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
1915
 * for_each_gfn_valid_sp() has skipped that kind of pages.
1916
 */
1917
#define for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
1918 1919
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1920 1921
		if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
			|| (_sp)->role.invalid) {} else
1922 1923

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1924 1925
	for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct) {} else
1926

1927
/* @sp->gfn should be write-protected at the call site */
1928 1929
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1930
{
1931
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1932
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1933
		return false;
1934 1935
	}

1936
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1937
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1938
		return false;
1939 1940
	}

1941
	return true;
1942 1943
}

1944 1945 1946
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1947
{
1948 1949 1950 1951
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
1952

1953 1954 1955 1956
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1957 1958
}

1959 1960 1961 1962 1963 1964 1965
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1966 1967 1968 1969 1970
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1971
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1972
			 struct list_head *invalid_list)
1973
{
1974 1975
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1976 1977
}

1978
/* @gfn should be write-protected at the call site */
1979 1980
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1981 1982
{
	struct kvm_mmu_page *s;
1983
	bool ret = false;
1984

1985
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1986
		if (!s->unsync)
1987 1988 1989
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1990
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1991 1992
	}

1993
	return ret;
1994 1995
}

1996
struct mmu_page_path {
P
Paolo Bonzini 已提交
1997 1998
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
1999 2000
};

2001
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2002
		for (i = mmu_pages_first(&pvec, &parents);	\
2003 2004 2005
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2006 2007 2008
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2009 2010 2011 2012 2013
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2014 2015
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2016

P
Paolo Bonzini 已提交
2017 2018 2019
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2020

P
Paolo Bonzini 已提交
2021
		parents->parent[level-2] = sp;
2022 2023 2024 2025 2026
	}

	return n;
}

P
Paolo Bonzini 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2036 2037
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2051
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2052
{
2053 2054 2055 2056 2057 2058 2059 2060 2061
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2062
		WARN_ON(idx == INVALID_INDEX);
2063
		clear_unsync_child_bit(sp, idx);
2064
		level++;
P
Paolo Bonzini 已提交
2065
	} while (!sp->unsync_children);
2066
}
2067

2068 2069 2070 2071 2072 2073 2074
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2075
	LIST_HEAD(invalid_list);
2076
	bool flush = false;
2077 2078

	while (mmu_unsync_walk(parent, &pages)) {
2079
		bool protected = false;
2080 2081

		for_each_sp(pages, sp, parents, i)
2082
			protected |= rmap_write_protect(vcpu, sp->gfn);
2083

2084
		if (protected) {
2085
			kvm_flush_remote_tlbs(vcpu->kvm);
2086 2087
			flush = false;
		}
2088

2089
		for_each_sp(pages, sp, parents, i) {
2090
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2091 2092
			mmu_pages_clear_parents(&parents);
		}
2093 2094 2095 2096 2097
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2098
	}
2099 2100

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2101 2102
}

2103 2104
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2105
	atomic_set(&sp->write_flooding_count,  0);
2106 2107 2108 2109 2110 2111 2112 2113 2114
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2115 2116 2117 2118
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2119
					     int direct,
2120
					     unsigned access)
2121 2122 2123
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2124 2125
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2126 2127
	bool flush = false;
	LIST_HEAD(invalid_list);
2128

2129
	role = vcpu->arch.mmu.base_role;
2130
	role.level = level;
2131
	role.direct = direct;
2132
	if (role.direct)
2133
		role.cr4_pae = 0;
2134
	role.access = access;
2135 2136
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2137 2138 2139 2140
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2141
	for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2142 2143
		if (!need_sync && sp->unsync)
			need_sync = true;
2144

2145 2146
		if (sp->role.word != role.word)
			continue;
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2158

2159
		if (sp->unsync_children)
2160
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2161

2162
		__clear_sp_write_flooding_count(sp);
2163 2164 2165
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
2166

A
Avi Kivity 已提交
2167
	++vcpu->kvm->stat.mmu_cache_miss;
2168 2169 2170

	sp = kvm_mmu_alloc_page(vcpu, direct);

2171 2172
	sp->gfn = gfn;
	sp->role = role;
2173 2174
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2175
	if (!direct) {
2176 2177 2178 2179 2180 2181 2182 2183
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2184
			kvm_flush_remote_tlbs(vcpu->kvm);
2185 2186

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2187
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2188
	}
2189
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2190
	clear_page(sp->spt);
A
Avi Kivity 已提交
2191
	trace_kvm_mmu_get_page(sp, true);
2192 2193

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2194
	return sp;
2195 2196
}

2197 2198 2199 2200 2201 2202
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2203 2204 2205 2206 2207 2208

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2223

2224 2225 2226 2227 2228
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2229 2230
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2231
{
2232
	if (is_last_spte(spte, iterator->level)) {
2233 2234 2235 2236
		iterator->level = 0;
		return;
	}

2237
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2238 2239 2240
	--iterator->level;
}

2241 2242 2243 2244 2245
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2246 2247
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2248 2249 2250
{
	u64 spte;

2251
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2252

2253
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2254
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2255

2256
	mmu_spte_set(sptep, spte);
2257 2258 2259 2260 2261

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2281
		drop_parent_pte(child, sptep);
2282 2283 2284 2285
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2286
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2287 2288 2289 2290 2291 2292 2293
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2294
		if (is_last_spte(pte, sp->role.level)) {
2295
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2296 2297 2298
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2299
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2300
			drop_parent_pte(child, spte);
2301
		}
X
Xiao Guangrong 已提交
2302 2303 2304 2305
		return true;
	}

	if (is_mmio_spte(pte))
2306
		mmu_spte_clear_no_track(spte);
2307

X
Xiao Guangrong 已提交
2308
	return false;
2309 2310
}

2311
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2312
					 struct kvm_mmu_page *sp)
2313
{
2314 2315
	unsigned i;

2316 2317
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2318 2319
}

2320
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2321
{
2322 2323
	u64 *sptep;
	struct rmap_iterator iter;
2324

2325
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2326
		drop_parent_pte(sp, sptep);
2327 2328
}

2329
static int mmu_zap_unsync_children(struct kvm *kvm,
2330 2331
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2332
{
2333 2334 2335
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2336

2337
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2338
		return 0;
2339 2340 2341 2342 2343

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2344
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2345
			mmu_pages_clear_parents(&parents);
2346
			zapped++;
2347 2348 2349 2350
		}
	}

	return zapped;
2351 2352
}

2353 2354
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2355
{
2356
	int ret;
A
Avi Kivity 已提交
2357

2358
	trace_kvm_mmu_prepare_zap_page(sp);
2359
	++kvm->stat.mmu_shadow_zapped;
2360
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2361
	kvm_mmu_page_unlink_children(kvm, sp);
2362
	kvm_mmu_unlink_parents(kvm, sp);
2363

2364
	if (!sp->role.invalid && !sp->role.direct)
2365
		unaccount_shadowed(kvm, sp);
2366

2367 2368
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2369
	if (!sp->root_count) {
2370 2371
		/* Count self */
		ret++;
2372
		list_move(&sp->link, invalid_list);
2373
		kvm_mod_used_mmu_pages(kvm, -1);
2374
	} else {
A
Avi Kivity 已提交
2375
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2376 2377 2378 2379 2380 2381 2382

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2383
	}
2384 2385

	sp->role.invalid = 1;
2386
	return ret;
2387 2388
}

2389 2390 2391
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2392
	struct kvm_mmu_page *sp, *nsp;
2393 2394 2395 2396

	if (list_empty(invalid_list))
		return;

2397
	/*
2398 2399 2400 2401 2402 2403 2404
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2405 2406
	 */
	kvm_flush_remote_tlbs(kvm);
2407

2408
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2409
		WARN_ON(!sp->role.invalid || sp->root_count);
2410
		kvm_mmu_free_page(sp);
2411
	}
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2422 2423
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2424 2425 2426 2427 2428
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2429 2430
/*
 * Changing the number of mmu pages allocated to the vm
2431
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2432
 */
2433
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2434
{
2435
	LIST_HEAD(invalid_list);
2436

2437 2438
	spin_lock(&kvm->mmu_lock);

2439
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2440 2441 2442 2443
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2444

2445
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2446
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2447 2448
	}

2449
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2450 2451

	spin_unlock(&kvm->mmu_lock);
2452 2453
}

2454
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2455
{
2456
	struct kvm_mmu_page *sp;
2457
	LIST_HEAD(invalid_list);
2458 2459
	int r;

2460
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2461
	r = 0;
2462
	spin_lock(&kvm->mmu_lock);
2463
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2464
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2465 2466
			 sp->role.word);
		r = 1;
2467
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2468
	}
2469
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2470 2471
	spin_unlock(&kvm->mmu_lock);

2472
	return r;
2473
}
2474
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2475

2476
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2477 2478 2479 2480 2481 2482 2483 2484
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2485 2486
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2487
{
2488
	struct kvm_mmu_page *sp;
2489

2490 2491
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2492

2493
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2494
		if (!can_unsync)
2495
			return true;
2496

2497 2498
		if (sp->unsync)
			continue;
2499

2500 2501
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2502
	}
2503 2504

	return false;
2505 2506
}

D
Dan Williams 已提交
2507
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2508 2509 2510 2511 2512 2513 2514
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2515
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2516
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2517
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2518
		    bool can_unsync, bool host_writable)
2519
{
2520
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2521
	int ret = 0;
S
Sheng Yang 已提交
2522

2523
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2524 2525
		return 0;

2526 2527 2528 2529 2530 2531
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2532
	spte |= shadow_present_mask;
2533
	if (!speculative)
2534
		spte |= shadow_accessed_mask;
2535

S
Sheng Yang 已提交
2536 2537 2538 2539
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2540

2541
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2542
		spte |= shadow_user_mask;
2543

2544
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2545
		spte |= PT_PAGE_SIZE_MASK;
2546
	if (tdp_enabled)
2547
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2548
			kvm_is_mmio_pfn(pfn));
2549

2550
	if (host_writable)
2551
		spte |= SPTE_HOST_WRITEABLE;
2552 2553
	else
		pte_access &= ~ACC_WRITE_MASK;
2554

2555
	spte |= (u64)pfn << PAGE_SHIFT;
2556

2557
	if (pte_access & ACC_WRITE_MASK) {
2558

X
Xiao Guangrong 已提交
2559
		/*
2560 2561 2562 2563
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2564
		 */
2565
		if (level > PT_PAGE_TABLE_LEVEL &&
2566
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2567
			goto done;
2568

2569
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2570

2571 2572 2573 2574 2575 2576
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2577
		if (!can_unsync && is_writable_pte(*sptep))
2578 2579
			goto set_pte;

2580
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2581
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2582
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2583
			ret = 1;
2584
			pte_access &= ~ACC_WRITE_MASK;
2585
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2586 2587 2588
		}
	}

2589
	if (pte_access & ACC_WRITE_MASK) {
2590
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2591 2592
		spte |= shadow_dirty_mask;
	}
2593

2594
set_pte:
2595
	if (mmu_spte_update(sptep, spte))
2596
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2597
done:
M
Marcelo Tosatti 已提交
2598 2599 2600
	return ret;
}

2601
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2602
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2603
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2604 2605
{
	int was_rmapped = 0;
2606
	int rmap_count;
2607
	bool emulate = false;
M
Marcelo Tosatti 已提交
2608

2609 2610
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2611

2612
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2613 2614 2615 2616
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2617 2618
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2619
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2620
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2621 2622

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2623
			drop_parent_pte(child, sptep);
2624
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2625
		} else if (pfn != spte_to_pfn(*sptep)) {
2626
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2627
				 spte_to_pfn(*sptep), pfn);
2628
			drop_spte(vcpu->kvm, sptep);
2629
			kvm_flush_remote_tlbs(vcpu->kvm);
2630 2631
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2632
	}
2633

2634 2635
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2636
		if (write_fault)
2637
			emulate = true;
2638
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2639
	}
M
Marcelo Tosatti 已提交
2640

2641 2642
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2643

A
Avi Kivity 已提交
2644
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2645
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2646
		 is_large_pte(*sptep)? "2MB" : "4kB",
2647 2648
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2649
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2650 2651
		++vcpu->kvm->stat.lpages;

2652 2653 2654 2655 2656 2657
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2658
	}
2659

X
Xiao Guangrong 已提交
2660
	kvm_release_pfn_clean(pfn);
2661 2662

	return emulate;
2663 2664
}

D
Dan Williams 已提交
2665
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2666 2667 2668 2669
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2670
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2671
	if (!slot)
2672
		return KVM_PFN_ERR_FAULT;
2673

2674
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2675 2676 2677 2678 2679 2680 2681
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2682
	struct kvm_memory_slot *slot;
2683 2684 2685 2686 2687
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2688 2689
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2690 2691
		return -1;

2692
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2693 2694 2695 2696
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2697 2698
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2715
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2746
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2747
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2748
{
2749
	struct kvm_shadow_walk_iterator iterator;
2750
	struct kvm_mmu_page *sp;
2751
	int emulate = 0;
2752
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2753

2754 2755 2756
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2757
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2758
		if (iterator.level == level) {
2759 2760 2761
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2762
			direct_pte_prefetch(vcpu, iterator.sptep);
2763 2764
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2765 2766
		}

2767
		drop_large_spte(vcpu, iterator.sptep);
2768
		if (!is_shadow_present_pte(*iterator.sptep)) {
2769 2770 2771 2772
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2773
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2774
					      iterator.level - 1, 1, ACC_ALL);
2775

2776
			link_shadow_page(vcpu, iterator.sptep, sp);
2777 2778
		}
	}
2779
	return emulate;
A
Avi Kivity 已提交
2780 2781
}

H
Huang Ying 已提交
2782
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2783
{
H
Huang Ying 已提交
2784 2785 2786 2787 2788 2789 2790
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2791

H
Huang Ying 已提交
2792
	send_sig_info(SIGBUS, &info, tsk);
2793 2794
}

D
Dan Williams 已提交
2795
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2796
{
X
Xiao Guangrong 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2806
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2807
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2808
		return 0;
2809
	}
2810

2811
	return -EFAULT;
2812 2813
}

2814
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2815 2816
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2817
{
D
Dan Williams 已提交
2818
	kvm_pfn_t pfn = *pfnp;
2819 2820 2821 2822 2823 2824 2825 2826 2827
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2828
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2829
	    level == PT_PAGE_TABLE_LEVEL &&
2830
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
2831
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2850
			kvm_get_pfn(pfn);
2851 2852 2853 2854 2855
			*pfnp = pfn;
		}
	}
}

2856
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2857
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2858 2859
{
	/* The pfn is invalid, report the error! */
2860
	if (unlikely(is_error_pfn(pfn))) {
2861
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2862
		return true;
2863 2864
	}

2865
	if (unlikely(is_noslot_pfn(pfn)))
2866 2867
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

2868
	return false;
2869 2870
}

2871
static bool page_fault_can_be_fast(u32 error_code)
2872
{
2873 2874 2875 2876 2877 2878 2879
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2893 2894
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2918
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2919
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2933
	struct kvm_mmu_page *sp;
2934 2935 2936
	bool ret = false;
	u64 spte = 0ull;

2937 2938 2939
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2940
	if (!page_fault_can_be_fast(error_code))
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
2952
	if (!is_shadow_present_pte(spte)) {
2953 2954 2955 2956
		ret = true;
		goto exit;
	}

2957 2958
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2992 2993 2994 2995 2996
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2997
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2998
exit:
X
Xiao Guangrong 已提交
2999 3000
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
3001 3002 3003 3004 3005
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

3006
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3007
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3008
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3009

3010 3011
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3012 3013
{
	int r;
3014
	int level;
3015
	bool force_pt_level = false;
D
Dan Williams 已提交
3016
	kvm_pfn_t pfn;
3017
	unsigned long mmu_seq;
3018
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3019

3020
	level = mapping_level(vcpu, gfn, &force_pt_level);
3021 3022 3023 3024 3025 3026 3027 3028
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3029

3030
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3031
	}
M
Marcelo Tosatti 已提交
3032

3033 3034 3035
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3036
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3037
	smp_rmb();
3038

3039
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3040
		return 0;
3041

3042 3043
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3044

3045
	spin_lock(&vcpu->kvm->mmu_lock);
3046
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3047
		goto out_unlock;
3048
	make_mmu_pages_available(vcpu);
3049 3050
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3051
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3052 3053
	spin_unlock(&vcpu->kvm->mmu_lock);

3054
	return r;
3055 3056 3057 3058 3059

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3060 3061 3062
}


3063 3064 3065
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3066
	struct kvm_mmu_page *sp;
3067
	LIST_HEAD(invalid_list);
3068

3069
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3070
		return;
3071

3072 3073 3074
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3075
		hpa_t root = vcpu->arch.mmu.root_hpa;
3076

3077
		spin_lock(&vcpu->kvm->mmu_lock);
3078 3079
		sp = page_header(root);
		--sp->root_count;
3080 3081 3082 3083
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3084
		spin_unlock(&vcpu->kvm->mmu_lock);
3085
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3086 3087
		return;
	}
3088 3089

	spin_lock(&vcpu->kvm->mmu_lock);
3090
	for (i = 0; i < 4; ++i) {
3091
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3092

A
Avi Kivity 已提交
3093 3094
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3095 3096
			sp = page_header(root);
			--sp->root_count;
3097
			if (!sp->root_count && sp->role.invalid)
3098 3099
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3100
		}
3101
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3102
	}
3103
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3104
	spin_unlock(&vcpu->kvm->mmu_lock);
3105
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3106 3107
}

3108 3109 3110 3111 3112
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3113
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3114 3115 3116 3117 3118 3119
		ret = 1;
	}

	return ret;
}

3120 3121 3122
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3123
	unsigned i;
3124 3125 3126

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3127
		make_mmu_pages_available(vcpu);
3128
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3129 3130 3131 3132 3133 3134 3135
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3136
			MMU_WARN_ON(VALID_PAGE(root));
3137
			spin_lock(&vcpu->kvm->mmu_lock);
3138
			make_mmu_pages_available(vcpu);
3139
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3140
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3141 3142 3143 3144 3145
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3146
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3147 3148 3149 3150 3151 3152 3153
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3154
{
3155
	struct kvm_mmu_page *sp;
3156 3157 3158
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3159

3160
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3161

3162 3163 3164 3165 3166 3167 3168 3169
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3170
		hpa_t root = vcpu->arch.mmu.root_hpa;
3171

3172
		MMU_WARN_ON(VALID_PAGE(root));
3173

3174
		spin_lock(&vcpu->kvm->mmu_lock);
3175
		make_mmu_pages_available(vcpu);
3176
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3177
				      0, ACC_ALL);
3178 3179
		root = __pa(sp->spt);
		++sp->root_count;
3180
		spin_unlock(&vcpu->kvm->mmu_lock);
3181
		vcpu->arch.mmu.root_hpa = root;
3182
		return 0;
3183
	}
3184

3185 3186
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3187 3188
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3189
	 */
3190 3191 3192 3193
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3194
	for (i = 0; i < 4; ++i) {
3195
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3196

3197
		MMU_WARN_ON(VALID_PAGE(root));
3198
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3199
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3200
			if (!(pdptr & PT_PRESENT_MASK)) {
3201
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3202 3203
				continue;
			}
A
Avi Kivity 已提交
3204
			root_gfn = pdptr >> PAGE_SHIFT;
3205 3206
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3207
		}
3208
		spin_lock(&vcpu->kvm->mmu_lock);
3209
		make_mmu_pages_available(vcpu);
3210 3211
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3212 3213
		root = __pa(sp->spt);
		++sp->root_count;
3214 3215
		spin_unlock(&vcpu->kvm->mmu_lock);

3216
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3217
	}
3218
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3245
	return 0;
3246 3247
}

3248 3249 3250 3251 3252 3253 3254 3255
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3256 3257 3258 3259 3260
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3261 3262 3263
	if (vcpu->arch.mmu.direct_map)
		return;

3264 3265
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3266

3267
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3268
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3269
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3270 3271 3272
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3273
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3274 3275 3276 3277 3278
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3279
		if (root && VALID_PAGE(root)) {
3280 3281 3282 3283 3284
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3285
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3286 3287 3288 3289 3290 3291
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3292
	spin_unlock(&vcpu->kvm->mmu_lock);
3293
}
N
Nadav Har'El 已提交
3294
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3295

3296
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3297
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3298
{
3299 3300
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3301 3302 3303
	return vaddr;
}

3304
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3305 3306
					 u32 access,
					 struct x86_exception *exception)
3307
{
3308 3309
	if (exception)
		exception->error_code = 0;
3310
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3311 3312
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3332
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3333 3334 3335 3336 3337 3338 3339
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3340 3341 3342
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3343 3344
{
	struct kvm_shadow_walk_iterator iterator;
3345 3346 3347
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3348

3349
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3350
		goto exit;
3351

3352
	walk_shadow_page_lockless_begin(vcpu);
3353

3354 3355
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3356 3357 3358 3359 3360
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3361
		leaf--;
3362

3363 3364
		if (!is_shadow_present_pte(spte))
			break;
3365 3366

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3367
						    iterator.level);
3368 3369
	}

3370 3371
	walk_shadow_page_lockless_end(vcpu);

3372 3373 3374
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3375
		while (root > leaf) {
3376 3377 3378 3379 3380 3381 3382 3383
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3384 3385
}

3386
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3387 3388
{
	u64 spte;
3389
	bool reserved;
3390

3391
	if (mmio_info_in_cache(vcpu, addr, direct))
3392
		return RET_MMIO_PF_EMULATE;
3393

3394
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3395
	if (WARN_ON(reserved))
3396
		return RET_MMIO_PF_BUG;
3397 3398 3399 3400 3401

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3402
		if (!check_mmio_spte(vcpu, spte))
3403 3404
			return RET_MMIO_PF_INVALID;

3405 3406
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3407 3408

		trace_handle_mmio_page_fault(addr, gfn, access);
3409
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3410
		return RET_MMIO_PF_EMULATE;
3411 3412 3413 3414 3415 3416
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3417
	return RET_MMIO_PF_RETRY;
3418
}
3419
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3420

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3458
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3459
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3460
{
3461
	gfn_t gfn = gva >> PAGE_SHIFT;
3462
	int r;
A
Avi Kivity 已提交
3463

3464
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3465

3466 3467
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3468

3469 3470 3471
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3472

3473
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3474 3475


3476
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3477
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3478 3479
}

3480
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3481 3482
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3483

3484
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3485
	arch.gfn = gfn;
3486
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3487
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3488

3489
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3490 3491 3492 3493
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3494
	if (unlikely(!lapic_in_kernel(vcpu) ||
3495 3496 3497 3498 3499 3500
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3501
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3502
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3503
{
3504
	struct kvm_memory_slot *slot;
3505 3506
	bool async;

3507
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3508 3509
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3510 3511 3512
	if (!async)
		return false; /* *pfn has correct page already */

3513
	if (!prefault && can_do_async_pf(vcpu)) {
3514
		trace_kvm_try_async_get_page(gva, gfn);
3515 3516 3517 3518 3519 3520 3521 3522
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3523
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3524 3525 3526
	return false;
}

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3537
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3538
			  bool prefault)
3539
{
D
Dan Williams 已提交
3540
	kvm_pfn_t pfn;
3541
	int r;
3542
	int level;
3543
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3544
	gfn_t gfn = gpa >> PAGE_SHIFT;
3545
	unsigned long mmu_seq;
3546 3547
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3548

3549
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3550

3551 3552
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3553

3554 3555 3556 3557
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3558 3559 3560
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3561
	if (likely(!force_pt_level)) {
3562 3563 3564
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3565
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3566
	}
3567

3568 3569 3570
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3571
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3572
	smp_rmb();
3573

3574
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3575 3576
		return 0;

3577 3578 3579
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3580
	spin_lock(&vcpu->kvm->mmu_lock);
3581
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3582
		goto out_unlock;
3583
	make_mmu_pages_available(vcpu);
3584 3585
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3586
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3587 3588 3589
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3590 3591 3592 3593 3594

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3595 3596
}

3597 3598
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3599 3600 3601
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3602
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3603
	context->invlpg = nonpaging_invlpg;
3604
	context->update_pte = nonpaging_update_pte;
3605
	context->root_level = 0;
A
Avi Kivity 已提交
3606
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3607
	context->root_hpa = INVALID_PAGE;
3608
	context->direct_map = true;
3609
	context->nx = false;
A
Avi Kivity 已提交
3610 3611
}

3612
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3613
{
3614
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3615 3616
}

3617 3618
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3619
	return kvm_read_cr3(vcpu);
3620 3621
}

3622 3623
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3624
{
3625
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3626 3627
}

3628
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3629
			   unsigned access, int *nr_present)
3630 3631 3632 3633 3634 3635 3636 3637
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3638
		mark_mmio_spte(vcpu, sptep, gfn, access);
3639 3640 3641 3642 3643 3644
		return true;
	}

	return false;
}

3645 3646
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3647
{
3648 3649 3650 3651 3652 3653
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
A
Avi Kivity 已提交
3654

3655 3656 3657 3658 3659 3660 3661 3662
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3663 3664
}

3665 3666 3667 3668 3669
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3670 3671 3672 3673 3674 3675 3676 3677
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3678 3679 3680 3681
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3682
			bool pse, bool amd)
3683 3684
{
	u64 exb_bit_rsvd = 0;
3685
	u64 gbpages_bit_rsvd = 0;
3686
	u64 nonleaf_bit8_rsvd = 0;
3687

3688
	rsvd_check->bad_mt_xwr = 0;
3689

3690
	if (!nx)
3691
		exb_bit_rsvd = rsvd_bits(63, 63);
3692
	if (!gbpages)
3693
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3694 3695 3696 3697 3698

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3699
	if (amd)
3700 3701
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3702
	switch (level) {
3703 3704
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3705 3706 3707 3708
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3709

3710
		if (!pse) {
3711
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3712 3713 3714
			break;
		}

3715 3716
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3717
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3718 3719
		else
			/* 32 bits PSE 4MB page */
3720
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3721 3722
		break;
	case PT32E_ROOT_LEVEL:
3723
		rsvd_check->rsvd_bits_mask[0][2] =
3724
			rsvd_bits(maxphyaddr, 63) |
3725
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3726
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3727
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3728
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3729
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3730
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3731 3732
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3733 3734
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3735 3736
		break;
	case PT64_ROOT_LEVEL:
3737 3738
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3739
			rsvd_bits(maxphyaddr, 51);
3740 3741
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3742
			rsvd_bits(maxphyaddr, 51);
3743 3744 3745 3746 3747 3748 3749
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3750
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3751
			rsvd_bits(13, 29);
3752
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3753 3754
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3755 3756
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3757 3758 3759 3760
		break;
	}
}

3761 3762 3763 3764 3765 3766
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3767
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3768 3769
}

3770 3771 3772
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3773
{
3774
	u64 bad_mt_xwr;
3775

3776
	rsvd_check->rsvd_bits_mask[0][3] =
3777
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3778
	rsvd_check->rsvd_bits_mask[0][2] =
3779
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3780
	rsvd_check->rsvd_bits_mask[0][1] =
3781
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3782
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3783 3784

	/* large page */
3785 3786
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3787
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3788
	rsvd_check->rsvd_bits_mask[1][1] =
3789
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3790
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3791

3792 3793 3794 3795 3796 3797 3798 3799
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3800
	}
3801
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3802 3803
}

3804 3805 3806 3807 3808 3809 3810
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3811 3812 3813 3814 3815 3816 3817 3818
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3819 3820
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;

3821 3822 3823 3824
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3825 3826
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
3827
				context->shadow_root_level, uses_nx,
3828 3829
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3830 3831 3832
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3833 3834 3835 3836 3837 3838
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3839 3840 3841 3842 3843 3844 3845 3846
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3847
	if (boot_cpu_is_amd())
3848 3849 3850
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3851 3852
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3872 3873
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3874 3875 3876
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3877
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3878

F
Feng Wu 已提交
3879
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3880
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3881 3882 3883 3884 3885 3886
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3887 3888 3889 3890 3891 3892
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3893 3894 3895 3896 3897
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3898 3899 3900 3901 3902 3903
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3904
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3925
			}
3926

F
Feng Wu 已提交
3927 3928
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3929 3930 3931 3932 3933 3934
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4010
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4011
{
4012 4013 4014 4015 4016
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4017 4018
}

4019 4020 4021
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4022
{
4023
	context->nx = is_nx(vcpu);
4024
	context->root_level = level;
4025

4026
	reset_rsvds_bits_mask(vcpu, context);
4027
	update_permission_bitmask(vcpu, context, false);
4028
	update_pkru_bitmask(vcpu, context, false);
4029
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4030

4031
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4032 4033
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4034
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4035
	context->invlpg = paging64_invlpg;
4036
	context->update_pte = paging64_update_pte;
4037
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4038
	context->root_hpa = INVALID_PAGE;
4039
	context->direct_map = false;
A
Avi Kivity 已提交
4040 4041
}

4042 4043
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4044
{
4045
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4046 4047
}

4048 4049
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4050
{
4051
	context->nx = false;
4052
	context->root_level = PT32_ROOT_LEVEL;
4053

4054
	reset_rsvds_bits_mask(vcpu, context);
4055
	update_permission_bitmask(vcpu, context, false);
4056
	update_pkru_bitmask(vcpu, context, false);
4057
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4058 4059 4060

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4061
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4062
	context->invlpg = paging32_invlpg;
4063
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4064
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4065
	context->root_hpa = INVALID_PAGE;
4066
	context->direct_map = false;
A
Avi Kivity 已提交
4067 4068
}

4069 4070
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4071
{
4072
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4073 4074
}

4075
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4076
{
4077
	struct kvm_mmu *context = &vcpu->arch.mmu;
4078

4079
	context->base_role.word = 0;
4080
	context->base_role.smm = is_smm(vcpu);
4081
	context->page_fault = tdp_page_fault;
4082
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4083
	context->invlpg = nonpaging_invlpg;
4084
	context->update_pte = nonpaging_update_pte;
4085
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4086
	context->root_hpa = INVALID_PAGE;
4087
	context->direct_map = true;
4088
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4089
	context->get_cr3 = get_cr3;
4090
	context->get_pdptr = kvm_pdptr_read;
4091
	context->inject_page_fault = kvm_inject_page_fault;
4092 4093

	if (!is_paging(vcpu)) {
4094
		context->nx = false;
4095 4096 4097
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4098
		context->nx = is_nx(vcpu);
4099
		context->root_level = PT64_ROOT_LEVEL;
4100 4101
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4102
	} else if (is_pae(vcpu)) {
4103
		context->nx = is_nx(vcpu);
4104
		context->root_level = PT32E_ROOT_LEVEL;
4105 4106
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4107
	} else {
4108
		context->nx = false;
4109
		context->root_level = PT32_ROOT_LEVEL;
4110 4111
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4112 4113
	}

4114
	update_permission_bitmask(vcpu, context, false);
4115
	update_pkru_bitmask(vcpu, context, false);
4116
	update_last_nonleaf_level(vcpu, context);
4117
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4118 4119
}

4120
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4121
{
4122
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4123
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4124 4125
	struct kvm_mmu *context = &vcpu->arch.mmu;

4126
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4127 4128

	if (!is_paging(vcpu))
4129
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4130
	else if (is_long_mode(vcpu))
4131
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4132
	else if (is_pae(vcpu))
4133
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4134
	else
4135
		paging32_init_context(vcpu, context);
4136

4137 4138 4139 4140
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4141
		= smep && !is_write_protection(vcpu);
4142 4143
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4144
	context->base_role.smm = is_smm(vcpu);
4145
	reset_shadow_zero_bits_mask(vcpu, context);
4146 4147 4148
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4149
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4150
{
4151 4152
	struct kvm_mmu *context = &vcpu->arch.mmu;

4153
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
4168
	update_pkru_bitmask(vcpu, context, true);
N
Nadav Har'El 已提交
4169
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4170
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4171 4172 4173
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4174
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4175
{
4176 4177 4178 4179 4180 4181 4182
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4183 4184
}

4185
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4186 4187 4188 4189
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4190
	g_context->get_pdptr         = kvm_pdptr_read;
4191 4192 4193
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4194 4195 4196 4197 4198 4199
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4200 4201
	 */
	if (!is_paging(vcpu)) {
4202
		g_context->nx = false;
4203 4204 4205
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4206
		g_context->nx = is_nx(vcpu);
4207
		g_context->root_level = PT64_ROOT_LEVEL;
4208
		reset_rsvds_bits_mask(vcpu, g_context);
4209 4210
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4211
		g_context->nx = is_nx(vcpu);
4212
		g_context->root_level = PT32E_ROOT_LEVEL;
4213
		reset_rsvds_bits_mask(vcpu, g_context);
4214 4215
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4216
		g_context->nx = false;
4217
		g_context->root_level = PT32_ROOT_LEVEL;
4218
		reset_rsvds_bits_mask(vcpu, g_context);
4219 4220 4221
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4222
	update_permission_bitmask(vcpu, g_context, false);
4223
	update_pkru_bitmask(vcpu, g_context, false);
4224
	update_last_nonleaf_level(vcpu, g_context);
4225 4226
}

4227
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4228
{
4229
	if (mmu_is_nested(vcpu))
4230
		init_kvm_nested_mmu(vcpu);
4231
	else if (tdp_enabled)
4232
		init_kvm_tdp_mmu(vcpu);
4233
	else
4234
		init_kvm_softmmu(vcpu);
4235 4236
}

4237
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4238
{
4239
	kvm_mmu_unload(vcpu);
4240
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4241
}
4242
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4243 4244

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4245
{
4246 4247
	int r;

4248
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4249 4250
	if (r)
		goto out;
4251
	r = mmu_alloc_roots(vcpu);
4252
	kvm_mmu_sync_roots(vcpu);
4253 4254
	if (r)
		goto out;
4255
	/* set_cr3() should ensure TLB has been flushed */
4256
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4257 4258
out:
	return r;
A
Avi Kivity 已提交
4259
}
A
Avi Kivity 已提交
4260 4261 4262 4263 4264
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4265
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4266
}
4267
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4268

4269
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4270 4271
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4272
{
4273
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4274 4275
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4276
        }
4277

A
Avi Kivity 已提交
4278
	++vcpu->kvm->stat.mmu_pte_updated;
4279
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4280 4281
}

4282 4283 4284 4285 4286 4287 4288 4289
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4290 4291
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4292 4293 4294
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4295 4296
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4297
{
4298 4299
	u64 gentry;
	int r;
4300 4301 4302

	/*
	 * Assume that the pte write on a page table of the same type
4303 4304
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4305
	 */
4306
	if (is_pae(vcpu) && *bytes == 4) {
4307
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4308 4309
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4310
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4311 4312
		if (r)
			gentry = 0;
4313 4314 4315
		new = (const u8 *)&gentry;
	}

4316
	switch (*bytes) {
4317 4318 4319 4320 4321 4322 4323 4324 4325
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4326 4327
	}

4328 4329 4330 4331 4332 4333 4334
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4335
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4336
{
4337 4338 4339 4340
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4341
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4342
		return false;
4343

4344 4345
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4362 4363 4364 4365 4366 4367 4368 4369

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4407 4408
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
			      const u8 *new, int bytes)
4409 4410 4411 4412 4413 4414
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4415
	bool remote_flush, local_flush;
4416 4417 4418 4419 4420 4421 4422
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4423
	mask.smm = 1;
4424 4425 4426 4427 4428 4429 4430 4431

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4432
	remote_flush = local_flush = false;
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4447
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4448

4449
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4450
		if (detect_write_misaligned(sp, gpa, bytes) ||
4451
		      detect_write_flooding(sp)) {
4452
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4453
			++vcpu->kvm->stat.mmu_flooded;
4454 4455
			continue;
		}
4456 4457 4458 4459 4460

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4461
		local_flush = true;
4462
		while (npte--) {
4463
			entry = *spte;
4464
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4465 4466
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4467
			      & mask.word) && rmap_can_add(vcpu))
4468
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4469
			if (need_remote_flush(entry, *spte))
4470
				remote_flush = true;
4471
			++spte;
4472 4473
		}
	}
4474
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4475
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4476
	spin_unlock(&vcpu->kvm->mmu_lock);
4477 4478
}

4479 4480
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4481 4482
	gpa_t gpa;
	int r;
4483

4484
	if (vcpu->arch.mmu.direct_map)
4485 4486
		return 0;

4487
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4488 4489

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4490

4491
	return r;
4492
}
4493
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4494

4495
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4496
{
4497
	LIST_HEAD(invalid_list);
4498

4499 4500 4501
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4502 4503 4504
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4505

A
Avi Kivity 已提交
4506
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4507
	}
4508
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4509 4510
}

4511 4512
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4513
{
4514
	int r, emulation_type = EMULTYPE_RETRY;
4515
	enum emulation_result er;
4516
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4517

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}
4529

G
Gleb Natapov 已提交
4530
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4531
	if (r < 0)
4532 4533 4534
		return r;
	if (!r)
		return 1;
4535

4536
	if (mmio_info_in_cache(vcpu, cr2, direct))
4537
		emulation_type = 0;
4538
emulate:
4539
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4540 4541 4542 4543

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4544
	case EMULATE_USER_EXIT:
4545
		++vcpu->stat.mmio_exits;
4546
		/* fall through */
4547
	case EMULATE_FAIL:
4548
		return 0;
4549 4550 4551 4552 4553 4554
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4555 4556 4557
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4558
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4559 4560 4561 4562
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4563 4564 4565 4566 4567 4568
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4569 4570 4571 4572 4573 4574
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4575 4576
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4577
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4578 4579
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4580 4581 4582 4583
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4584
	struct page *page;
A
Avi Kivity 已提交
4585 4586
	int i;

4587 4588 4589 4590 4591 4592 4593
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4594 4595
		return -ENOMEM;

4596
	vcpu->arch.mmu.pae_root = page_address(page);
4597
	for (i = 0; i < 4; ++i)
4598
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4599

A
Avi Kivity 已提交
4600 4601 4602
	return 0;
}

4603
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4604
{
4605 4606 4607 4608
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4609

4610 4611
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4612

4613
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4614
{
4615
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4616

4617
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4618 4619
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4635
/* The return value indicates if tlb flush on all vcpus is needed. */
4636
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4704 4705 4706 4707
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4708
	int i;
X
Xiao Guangrong 已提交
4709 4710

	spin_lock(&kvm->mmu_lock);
4711 4712 4713 4714 4715 4716 4717 4718 4719
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4720

4721 4722 4723 4724
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4725 4726 4727 4728 4729
	}

	spin_unlock(&kvm->mmu_lock);
}

4730 4731
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4732
{
4733
	return __rmap_write_protect(kvm, rmap_head, false);
4734 4735
}

4736 4737
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4738
{
4739
	bool flush;
A
Avi Kivity 已提交
4740

4741
	spin_lock(&kvm->mmu_lock);
4742 4743
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4744
	spin_unlock(&kvm->mmu_lock);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4764 4765
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4766
}
4767

4768
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4769
					 struct kvm_rmap_head *rmap_head)
4770 4771 4772 4773
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4774
	kvm_pfn_t pfn;
4775 4776
	struct kvm_mmu_page *sp;

4777
restart:
4778
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4779 4780 4781 4782
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4783 4784 4785 4786 4787
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4788 4789 4790
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
4791
			PageTransCompoundMap(pfn_to_page(pfn))) {
4792 4793
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4794 4795
			goto restart;
		}
4796 4797 4798 4799 4800 4801
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4802
				   const struct kvm_memory_slot *memslot)
4803
{
4804
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4805
	spin_lock(&kvm->mmu_lock);
4806 4807
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4808 4809 4810
	spin_unlock(&kvm->mmu_lock);
}

4811 4812 4813
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4814
	bool flush;
4815 4816

	spin_lock(&kvm->mmu_lock);
4817
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4836
	bool flush;
4837 4838

	spin_lock(&kvm->mmu_lock);
4839 4840
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4854
	bool flush;
4855 4856

	spin_lock(&kvm->mmu_lock);
4857
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4868
#define BATCH_ZAP_PAGES	10
4869 4870 4871
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4872
	int batch = 0;
4873 4874 4875 4876

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4877 4878
		int ret;

4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4894 4895 4896 4897
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4898
		if (batch >= BATCH_ZAP_PAGES &&
4899
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4900
			batch = 0;
4901 4902 4903
			goto restart;
		}

4904 4905
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4906 4907 4908
		batch += ret;

		if (ret)
4909 4910 4911
			goto restart;
	}

4912 4913 4914 4915
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4916
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4931
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4932 4933
	kvm->arch.mmu_valid_gen++;

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4945 4946 4947 4948
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4949 4950 4951 4952 4953
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4954
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4955 4956 4957 4958 4959
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4960
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4961
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4962
		kvm_mmu_invalidate_zap_all_pages(kvm);
4963
	}
4964 4965
}

4966 4967
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4968 4969
{
	struct kvm *kvm;
4970
	int nr_to_scan = sc->nr_to_scan;
4971
	unsigned long freed = 0;
4972

4973
	spin_lock(&kvm_lock);
4974 4975

	list_for_each_entry(kvm, &vm_list, vm_list) {
4976
		int idx;
4977
		LIST_HEAD(invalid_list);
4978

4979 4980 4981 4982 4983 4984 4985 4986
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4987 4988 4989 4990 4991 4992
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4993 4994
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4995 4996
			continue;

4997
		idx = srcu_read_lock(&kvm->srcu);
4998 4999
		spin_lock(&kvm->mmu_lock);

5000 5001 5002 5003 5004 5005
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5006 5007
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5008
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5009

5010
unlock:
5011
		spin_unlock(&kvm->mmu_lock);
5012
		srcu_read_unlock(&kvm->srcu, idx);
5013

5014 5015 5016 5017 5018
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5019 5020
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5021 5022
	}

5023
	spin_unlock(&kvm_lock);
5024 5025 5026 5027 5028 5029
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5030
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5031 5032 5033
}

static struct shrinker mmu_shrinker = {
5034 5035
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5036 5037 5038
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5039
static void mmu_destroy_caches(void)
5040
{
5041 5042
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5043 5044
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5045 5046 5047 5048
}

int kvm_mmu_module_init(void)
{
5049 5050
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5051
					    0, 0, NULL);
5052
	if (!pte_list_desc_cache)
5053 5054
		goto nomem;

5055 5056
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5057
						  0, 0, NULL);
5058 5059 5060
	if (!mmu_page_header_cache)
		goto nomem;

5061
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5062 5063
		goto nomem;

5064 5065
	register_shrinker(&mmu_shrinker);

5066 5067 5068
	return 0;

nomem:
5069
	mmu_destroy_caches();
5070 5071 5072
	return -ENOMEM;
}

5073 5074 5075 5076 5077 5078 5079
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5080
	struct kvm_memslots *slots;
5081
	struct kvm_memory_slot *memslot;
5082
	int i;
5083

5084 5085
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5086

5087 5088 5089
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5090 5091 5092

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5093
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5094 5095 5096 5097

	return nr_mmu_pages;
}

5098 5099
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5100
	kvm_mmu_unload(vcpu);
5101 5102
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5103 5104 5105 5106 5107 5108 5109
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5110 5111
	mmu_audit_disable();
}