mmu.c 129.1 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
44
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
45

46 47 48 49 50 51 52
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
53
bool tdp_enabled = false;
54

55 56 57 58
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
59 60 61
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
62
};
63

64
#undef MMU_DEBUG
65 66

#ifdef MMU_DEBUG
67 68
static bool dbg = 0;
module_param(dbg, bool, 0644);
69 70 71

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72
#define MMU_WARN_ON(x) WARN_ON(x)
73 74 75
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
76
#define MMU_WARN_ON(x) do { } while (0)
77
#endif
A
Avi Kivity 已提交
78

79 80
#define PTE_PREFETCH_NUM		8

81
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
82 83 84 85 86
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
87
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
88 89 90 91 92 93 94 95

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
96
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
97

98 99 100
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
101 102 103 104 105

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


106
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
107 108
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 110 111 112 113 114
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
115 116 117 118

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 120 121
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122

123 124
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
125

126 127 128 129 130
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

131 132
#include <trace/events/kvm.h>

133 134 135
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

136 137
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138

139 140
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

141 142 143
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

144 145 146
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
147 148
};

149 150 151 152
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
153
	int level;
154 155 156 157 158 159 160 161
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

162 163 164 165 166 167
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

168
static struct kmem_cache *pte_list_desc_cache;
169
static struct kmem_cache *mmu_page_header_cache;
170
static struct percpu_counter kvm_total_used_mmu_pages;
171

S
Sheng Yang 已提交
172 173 174 175 176
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
177 178 179
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
180
static void mmu_free_roots(struct kvm_vcpu *vcpu);
181 182 183 184 185 186 187

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

188
/*
189 190 191 192 193 194 195
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
196
 */
197
#define MMIO_SPTE_GEN_LOW_SHIFT		2
198 199
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

200 201 202
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
203
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
204 205 206 207 208

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
209
	WARN_ON(gen & ~MMIO_GEN_MASK);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

227
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228
{
229
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 231
}

232
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233
			   unsigned access)
234
{
235
	unsigned int gen = kvm_current_mmio_generation(vcpu);
236
	u64 mask = generation_mmio_spte_mask(gen);
237

238
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 240
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

241
	trace_mark_mmio_spte(sptep, gfn, access, gen);
242
	mmu_spte_set(sptep, mask);
243 244 245 246 247 248 249 250 251
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
252
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253
	return (spte & ~mask) >> PAGE_SHIFT;
254 255 256 257
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
258
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259
	return (spte & ~mask) & ~PAGE_MASK;
260 261
}

262
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
263
			  kvm_pfn_t pfn, unsigned access)
264 265
{
	if (unlikely(is_noslot_pfn(pfn))) {
266
		mark_mmio_spte(vcpu, sptep, gfn, access);
267 268 269 270 271
		return true;
	}

	return false;
}
272

273
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274
{
275 276
	unsigned int kvm_gen, spte_gen;

277
	kvm_gen = kvm_current_mmio_generation(vcpu);
278 279 280 281
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
282 283
}

S
Sheng Yang 已提交
284
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
286 287 288 289 290 291 292 293 294
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
295 296 297 298 299
static int is_cpuid_PSE36(void)
{
	return 1;
}

300 301
static int is_nx(struct kvm_vcpu *vcpu)
{
302
	return vcpu->arch.efer & EFER_NX;
303 304
}

305 306
static int is_shadow_present_pte(u64 pte)
{
307
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 309
}

M
Marcelo Tosatti 已提交
310 311 312 313 314
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

315 316 317 318
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
319
	if (is_large_pte(pte))
320 321 322 323
		return 1;
	return 0;
}

D
Dan Williams 已提交
324
static kvm_pfn_t spte_to_pfn(u64 pte)
325
{
326
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 328
}

329 330 331 332 333 334 335
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

336
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
	WRITE_ONCE(*sptep, spte);
340 341
}

342
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343
{
344
	WRITE_ONCE(*sptep, spte);
345 346 347 348 349 350
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
351 352 353 354 355

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
356
#else
357 358 359 360 361 362 363
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
364

365 366 367 368 369 370 371 372 373 374 375 376
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

377 378 379
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
380

381 382 383 384 385 386 387 388 389 390 391 392
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

393
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 395
}

396 397 398 399 400 401 402
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

403
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404 405 406 407 408 409 410 411

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
412
	count_spte_clear(sptep, spte);
413 414 415 416 417 418 419 420 421 422 423
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 425
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429

	return orig.spte;
}
430 431 432 433

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
471 472
#endif

473 474
static bool spte_is_locklessly_modifiable(u64 spte)
{
475 476
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 478
}

479 480
static bool spte_has_volatile_bits(u64 spte)
{
481
	/*
482
	 * Always atomically update spte if it can be updated
483 484 485 486 487 488 489
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

490 491 492 493 494 495
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

496 497
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 499 500 501 502
		return false;

	return true;
}

503 504 505 506 507
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

508 509 510 511 512
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
527 528 529 530 531 532
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
533
 */
534
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535
{
536
	u64 old_spte = *sptep;
537
	bool ret = false;
538

539
	WARN_ON(!is_shadow_present_pte(new_spte));
540

541 542 543 544
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
545

546
	if (!spte_has_volatile_bits(old_spte))
547
		__update_clear_spte_fast(sptep, new_spte);
548
	else
549
		old_spte = __update_clear_spte_slow(sptep, new_spte);
550

551 552
	/*
	 * For the spte updated out of mmu-lock is safe, since
553
	 * we always atomically update it, see the comments in
554 555
	 * spte_has_volatile_bits().
	 */
556 557
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
558 559
		ret = true;

560 561 562 563 564 565 566
	if (!shadow_accessed_mask) {
		/*
		 * We don't set page dirty when dropping non-writable spte.
		 * So do it now if the new spte is becoming non-writable.
		 */
		if (ret)
			kvm_set_pfn_dirty(spte_to_pfn(old_spte));
567
		return ret;
568
	}
569

570 571 572 573 574 575 576 577
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

578 579 580 581
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
582 583

	return ret;
584 585
}

586 587 588 589 590 591 592
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
593
	kvm_pfn_t pfn;
594 595 596
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
597
		__update_clear_spte_fast(sptep, 0ull);
598
	else
599
		old_spte = __update_clear_spte_slow(sptep, 0ull);
600

601
	if (!is_shadow_present_pte(old_spte))
602 603 604
		return 0;

	pfn = spte_to_pfn(old_spte);
605 606 607 608 609 610

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
611
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
612

613 614
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
615 616
	if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
					    PT_WRITABLE_MASK))
617 618 619 620 621 622 623 624 625 626 627
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
628
	__update_clear_spte_fast(sptep, 0ull);
629 630
}

631 632 633 634 635 636 637
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
638 639 640 641 642
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
643

644 645 646 647
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
648
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
649 650 651 652
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
653 654 655 656 657
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
658
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
659
	local_irq_enable();
660 661
}

662
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
663
				  struct kmem_cache *base_cache, int min)
664 665 666 667
{
	void *obj;

	if (cache->nobjs >= min)
668
		return 0;
669
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
670
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
671
		if (!obj)
672
			return -ENOMEM;
673 674
		cache->objects[cache->nobjs++] = obj;
	}
675
	return 0;
676 677
}

678 679 680 681 682
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

683 684
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
685 686
{
	while (mc->nobjs)
687
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
688 689
}

A
Avi Kivity 已提交
690
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
691
				       int min)
A
Avi Kivity 已提交
692
{
693
	void *page;
A
Avi Kivity 已提交
694 695 696 697

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
699 700
		if (!page)
			return -ENOMEM;
701
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
702 703 704 705 706 707 708
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
709
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
710 711
}

712
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
713
{
714 715
	int r;

716
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
718 719
	if (r)
		goto out;
720
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
721 722
	if (r)
		goto out;
723
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
724
				   mmu_page_header_cache, 4);
725 726
out:
	return r;
727 728 729 730
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
731 732
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
733
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
734 735
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
736 737
}

738
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
739 740 741 742 743 744 745 746
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

747
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
748
{
749
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
750 751
}

752
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
753
{
754
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
773
/*
774 775
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
776
 */
777 778 779
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
780 781 782
{
	unsigned long idx;

783
	idx = gfn_to_index(gfn, slot->base_gfn, level);
784
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
785 786
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

810
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
811
{
812
	struct kvm_memslots *slots;
813
	struct kvm_memory_slot *slot;
814
	gfn_t gfn;
M
Marcelo Tosatti 已提交
815

816
	kvm->arch.indirect_shadow_pages++;
817
	gfn = sp->gfn;
818 819
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
820 821 822 823 824 825

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

826
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
827 828
}

829
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
830
{
831
	struct kvm_memslots *slots;
832
	struct kvm_memory_slot *slot;
833
	gfn_t gfn;
M
Marcelo Tosatti 已提交
834

835
	kvm->arch.indirect_shadow_pages--;
836
	gfn = sp->gfn;
837 838
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
839 840 841 842
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

843
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
844 845
}

846 847
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
848
{
849
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
850 851

	if (slot) {
852
		linfo = lpage_info_slot(gfn, slot, level);
853
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
854 855
	}

856
	return true;
M
Marcelo Tosatti 已提交
857 858
}

859 860
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
861 862 863 864
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
865
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
866 867
}

868
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
869
{
J
Joerg Roedel 已提交
870
	unsigned long page_size;
871
	int i, ret = 0;
M
Marcelo Tosatti 已提交
872

J
Joerg Roedel 已提交
873
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
874

875
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
876 877 878 879 880 881
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

882
	return ret;
M
Marcelo Tosatti 已提交
883 884
}

885 886 887 888 889 890 891 892 893 894 895
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

896 897 898
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
899 900
{
	struct kvm_memory_slot *slot;
901

902
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
903
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
904 905 906 907 908
		slot = NULL;

	return slot;
}

909 910
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
911 912
{
	int host_level, level, max_level;
913 914
	struct kvm_memory_slot *slot;

915 916
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
917

918 919
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
920 921 922
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

923 924 925 926 927
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
928
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
929 930

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
931
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
932 933 934
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
935 936
}

937
/*
938
 * About rmap_head encoding:
939
 *
940 941
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
942
 * pte_list_desc containing more mappings.
943 944 945 946
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
947
 */
948
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
949
			struct kvm_rmap_head *rmap_head)
950
{
951
	struct pte_list_desc *desc;
952
	int i, count = 0;
953

954
	if (!rmap_head->val) {
955
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
956 957
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
958 959
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
960
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
961
		desc->sptes[1] = spte;
962
		rmap_head->val = (unsigned long)desc | 1;
963
		++count;
964
	} else {
965
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
966
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
967
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
968
			desc = desc->more;
969
			count += PTE_LIST_EXT;
970
		}
971 972
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
973 974
			desc = desc->more;
		}
A
Avi Kivity 已提交
975
		for (i = 0; desc->sptes[i]; ++i)
976
			++count;
A
Avi Kivity 已提交
977
		desc->sptes[i] = spte;
978
	}
979
	return count;
980 981
}

982
static void
983 984 985
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
986 987 988
{
	int j;

989
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
990
		;
A
Avi Kivity 已提交
991 992
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
993 994 995
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
996
		rmap_head->val = (unsigned long)desc->sptes[0];
997 998 999 1000
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1001
			rmap_head->val = (unsigned long)desc->more | 1;
1002
	mmu_free_pte_list_desc(desc);
1003 1004
}

1005
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1006
{
1007 1008
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1009 1010
	int i;

1011
	if (!rmap_head->val) {
1012
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1013
		BUG();
1014
	} else if (!(rmap_head->val & 1)) {
1015
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1016
		if ((u64 *)rmap_head->val != spte) {
1017
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1018 1019
			BUG();
		}
1020
		rmap_head->val = 0;
1021
	} else {
1022
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1023
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 1025
		prev_desc = NULL;
		while (desc) {
1026
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1027
				if (desc->sptes[i] == spte) {
1028 1029
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1030 1031
					return;
				}
1032
			}
1033 1034 1035
			prev_desc = desc;
			desc = desc->more;
		}
1036
		pr_err("pte_list_remove: %p many->many\n", spte);
1037 1038 1039 1040
		BUG();
	}
}

1041 1042
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1043
{
1044
	unsigned long idx;
1045

1046
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1047
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1048 1049
}

1050 1051
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1052
{
1053
	struct kvm_memslots *slots;
1054 1055
	struct kvm_memory_slot *slot;

1056 1057
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1058
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1069 1070 1071
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1072
	struct kvm_rmap_head *rmap_head;
1073 1074 1075

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1076 1077
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1078 1079 1080 1081 1082 1083
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1084
	struct kvm_rmap_head *rmap_head;
1085 1086 1087

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088 1089
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1109 1110
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1111
{
1112 1113
	u64 *sptep;

1114
	if (!rmap_head->val)
1115 1116
		return NULL;

1117
	if (!(rmap_head->val & 1)) {
1118
		iter->desc = NULL;
1119 1120
		sptep = (u64 *)rmap_head->val;
		goto out;
1121 1122
	}

1123
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1124
	iter->pos = 0;
1125 1126 1127 1128
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1129 1130 1131 1132 1133 1134 1135 1136 1137
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1138 1139
	u64 *sptep;

1140 1141 1142 1143 1144
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1145
				goto out;
1146 1147 1148 1149 1150 1151 1152
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1153 1154
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1155 1156 1157 1158
		}
	}

	return NULL;
1159 1160 1161
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1162 1163
}

1164 1165
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1166
	     _spte_; _spte_ = rmap_get_next(_iter_))
1167

1168
static void drop_spte(struct kvm *kvm, u64 *sptep)
1169
{
1170
	if (mmu_spte_clear_track_bits(sptep))
1171
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1172 1173
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1195
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1196
 * spte write-protection is caused by protecting shadow page table.
1197
 *
T
Tiejun Chen 已提交
1198
 * Note: write protection is difference between dirty logging and spte
1199 1200 1201 1202 1203
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1204
 *
1205
 * Return true if tlb need be flushed.
1206
 */
1207
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1208 1209 1210
{
	u64 spte = *sptep;

1211 1212
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1213 1214 1215 1216
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1217 1218
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1219
	spte = spte & ~PT_WRITABLE_MASK;
1220

1221
	return mmu_spte_update(sptep, spte);
1222 1223
}

1224 1225
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1226
				 bool pt_protect)
1227
{
1228 1229
	u64 *sptep;
	struct rmap_iterator iter;
1230
	bool flush = false;
1231

1232
	for_each_rmap_spte(rmap_head, &iter, sptep)
1233
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1234

1235
	return flush;
1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1249
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1250 1251 1252 1253 1254
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1255
	for_each_rmap_spte(rmap_head, &iter, sptep)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1272
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1273 1274 1275 1276 1277
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1278
	for_each_rmap_spte(rmap_head, &iter, sptep)
1279 1280 1281 1282 1283
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1284
/**
1285
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1286 1287 1288 1289 1290 1291 1292 1293
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1294
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1295 1296
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1297
{
1298
	struct kvm_rmap_head *rmap_head;
1299

1300
	while (mask) {
1301 1302 1303
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1304

1305 1306 1307
		/* clear the first set bit */
		mask &= mask - 1;
	}
1308 1309
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1323
	struct kvm_rmap_head *rmap_head;
1324 1325

	while (mask) {
1326 1327 1328
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1329 1330 1331 1332 1333 1334 1335

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1350 1351 1352 1353 1354
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1355 1356
}

1357 1358
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1359
{
1360
	struct kvm_rmap_head *rmap_head;
1361
	int i;
1362
	bool write_protected = false;
1363

1364
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1365
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1366
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1367 1368 1369
	}

	return write_protected;
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1380
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1381
{
1382 1383
	u64 *sptep;
	struct rmap_iterator iter;
1384
	bool flush = false;
1385

1386
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1388 1389

		drop_spte(kvm, sptep);
1390
		flush = true;
1391
	}
1392

1393 1394 1395
	return flush;
}

1396
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 1398 1399
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1400
	return kvm_zap_rmapp(kvm, rmap_head);
1401 1402
}

1403
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404 1405
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1406
{
1407 1408
	u64 *sptep;
	struct rmap_iterator iter;
1409
	int need_flush = 0;
1410
	u64 new_spte;
1411
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1412
	kvm_pfn_t new_pfn;
1413 1414 1415

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1416

1417
restart:
1418
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1419 1420
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1421

1422
		need_flush = 1;
1423

1424
		if (pte_write(*ptep)) {
1425
			drop_spte(kvm, sptep);
1426
			goto restart;
1427
		} else {
1428
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1429 1430 1431 1432
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1433
			new_spte &= ~shadow_accessed_mask;
1434 1435 1436

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1437 1438
		}
	}
1439

1440 1441 1442 1443 1444 1445
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1456
	struct kvm_rmap_head *rmap;
1457 1458 1459
	int level;

	/* private field. */
1460
	struct kvm_rmap_head *end_rmap;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1514 1515 1516 1517 1518
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1519
					       struct kvm_rmap_head *rmap_head,
1520
					       struct kvm_memory_slot *slot,
1521 1522
					       gfn_t gfn,
					       int level,
1523
					       unsigned long data))
1524
{
1525
	struct kvm_memslots *slots;
1526
	struct kvm_memory_slot *memslot;
1527 1528
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1529
	int i;
1530

1531 1532 1533 1534 1535
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1556 1557
	}

1558
	return ret;
1559 1560
}

1561 1562
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1563 1564
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1565
					 struct kvm_memory_slot *slot,
1566
					 gfn_t gfn, int level,
1567 1568 1569
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1570 1571 1572 1573
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1574 1575 1576
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1577 1578 1579 1580 1581
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1582 1583
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1584
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1585 1586
}

1587
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1588 1589
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1590
{
1591
	u64 *sptep;
1592
	struct rmap_iterator uninitialized_var(iter);
1593 1594
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1595
	BUG_ON(!shadow_accessed_mask);
1596

1597
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1598
		if (*sptep & shadow_accessed_mask) {
1599
			young = 1;
1600 1601
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1602
		}
1603
	}
1604

1605
	trace_kvm_age_page(gfn, level, slot, young);
1606 1607 1608
	return young;
}

1609
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1610 1611
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1612
{
1613 1614
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1625
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1626
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1627 1628 1629
			young = 1;
			break;
		}
1630
	}
A
Andrea Arcangeli 已提交
1631 1632 1633 1634
out:
	return young;
}

1635 1636
#define RMAP_RECYCLE_THRESHOLD 1000

1637
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1638
{
1639
	struct kvm_rmap_head *rmap_head;
1640 1641 1642
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1643

1644
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1645

1646
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1647 1648 1649
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1650
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1651
{
A
Andres Lagar-Cavilla 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1673 1674
}

A
Andrea Arcangeli 已提交
1675 1676 1677 1678 1679
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1680
#ifdef MMU_DEBUG
1681
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1682
{
1683 1684 1685
	u64 *pos;
	u64 *end;

1686
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1687
		if (is_shadow_present_pte(*pos)) {
1688
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1689
			       pos, *pos);
A
Avi Kivity 已提交
1690
			return 0;
1691
		}
A
Avi Kivity 已提交
1692 1693
	return 1;
}
1694
#endif
A
Avi Kivity 已提交
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1708
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1709
{
1710
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1711
	hlist_del(&sp->hash_link);
1712 1713
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1714 1715
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1716
	kmem_cache_free(mmu_page_header_cache, sp);
1717 1718
}

1719 1720
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1721
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1722 1723
}

1724
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1725
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1726 1727 1728 1729
{
	if (!parent_pte)
		return;

1730
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1731 1732
}

1733
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1734 1735
				       u64 *parent_pte)
{
1736
	pte_list_remove(parent_pte, &sp->parent_ptes);
1737 1738
}

1739 1740 1741 1742
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1743
	mmu_spte_clear_no_track(parent_pte);
1744 1745
}

1746
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1747
{
1748
	struct kvm_mmu_page *sp;
1749

1750 1751
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1752
	if (!direct)
1753
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1755 1756 1757 1758 1759 1760

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1761 1762 1763
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1764 1765
}

1766
static void mark_unsync(u64 *spte);
1767
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1768
{
1769 1770 1771 1772 1773 1774
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1775 1776
}

1777
static void mark_unsync(u64 *spte)
1778
{
1779
	struct kvm_mmu_page *sp;
1780
	unsigned int index;
1781

1782
	sp = page_header(__pa(spte));
1783 1784
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1785
		return;
1786
	if (sp->unsync_children++)
1787
		return;
1788
	kvm_mmu_mark_parents_unsync(sp);
1789 1790
}

1791
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1792
			       struct kvm_mmu_page *sp)
1793
{
1794
	return 0;
1795 1796
}

M
Marcelo Tosatti 已提交
1797 1798 1799 1800
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1801 1802
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1803
				 const void *pte)
1804 1805 1806 1807
{
	WARN_ON(1);
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1818 1819
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1820
{
1821
	int i;
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1834 1835 1836 1837 1838 1839 1840
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1841 1842 1843 1844
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1845

1846
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1847
		struct kvm_mmu_page *child;
1848 1849
		u64 ent = sp->spt[i];

1850 1851 1852 1853
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1854 1855 1856 1857 1858 1859 1860 1861

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1862 1863 1864 1865
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1866
				nr_unsync_leaf += ret;
1867
			} else
1868 1869 1870 1871 1872 1873
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1874
			clear_unsync_child_bit(sp, i);
1875 1876
	}

1877 1878 1879
	return nr_unsync_leaf;
}

1880 1881
#define INVALID_INDEX (-1)

1882 1883 1884
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1885
	pvec->nr = 0;
1886 1887 1888
	if (!sp->unsync_children)
		return 0;

1889
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1890
	return __mmu_unsync_walk(sp, pvec);
1891 1892 1893 1894 1895
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1896
	trace_kvm_mmu_sync_page(sp);
1897 1898 1899 1900
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1901 1902 1903 1904
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1905

1906 1907 1908 1909 1910 1911
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
1912
 * for_each_gfn_valid_sp() has skipped that kind of pages.
1913
 */
1914
#define for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
1915 1916
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1917 1918
		if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
			|| (_sp)->role.invalid) {} else
1919 1920

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1921 1922
	for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct) {} else
1923

1924
/* @sp->gfn should be write-protected at the call site */
1925 1926
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1927
{
1928
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1929
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1930
		return false;
1931 1932
	}

1933
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1934
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1935
		return false;
1936 1937
	}

1938
	return true;
1939 1940
}

1941 1942 1943
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1944
{
1945 1946 1947 1948
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
1949

1950 1951 1952 1953
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1954 1955
}

1956 1957 1958 1959 1960 1961 1962
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1963 1964 1965 1966 1967
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1968
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1969
			 struct list_head *invalid_list)
1970
{
1971 1972
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1973 1974
}

1975
/* @gfn should be write-protected at the call site */
1976 1977
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1978 1979
{
	struct kvm_mmu_page *s;
1980
	bool ret = false;
1981

1982
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1983
		if (!s->unsync)
1984 1985 1986
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1987
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1988 1989
	}

1990
	return ret;
1991 1992
}

1993
struct mmu_page_path {
P
Paolo Bonzini 已提交
1994 1995
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
1996 1997
};

1998
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1999
		for (i = mmu_pages_first(&pvec, &parents);	\
2000 2001 2002
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2003 2004 2005
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2006 2007 2008 2009 2010
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2011 2012
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2013

P
Paolo Bonzini 已提交
2014 2015 2016
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2017

P
Paolo Bonzini 已提交
2018
		parents->parent[level-2] = sp;
2019 2020 2021 2022 2023
	}

	return n;
}

P
Paolo Bonzini 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2033 2034
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2048
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2049
{
2050 2051 2052 2053 2054 2055 2056 2057 2058
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2059
		WARN_ON(idx == INVALID_INDEX);
2060
		clear_unsync_child_bit(sp, idx);
2061
		level++;
P
Paolo Bonzini 已提交
2062
	} while (!sp->unsync_children);
2063
}
2064

2065 2066 2067 2068 2069 2070 2071
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2072
	LIST_HEAD(invalid_list);
2073
	bool flush = false;
2074 2075

	while (mmu_unsync_walk(parent, &pages)) {
2076
		bool protected = false;
2077 2078

		for_each_sp(pages, sp, parents, i)
2079
			protected |= rmap_write_protect(vcpu, sp->gfn);
2080

2081
		if (protected) {
2082
			kvm_flush_remote_tlbs(vcpu->kvm);
2083 2084
			flush = false;
		}
2085

2086
		for_each_sp(pages, sp, parents, i) {
2087
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2088 2089
			mmu_pages_clear_parents(&parents);
		}
2090 2091 2092 2093 2094
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2095
	}
2096 2097

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2098 2099
}

2100 2101
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2102
	atomic_set(&sp->write_flooding_count,  0);
2103 2104 2105 2106 2107 2108 2109 2110 2111
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2112 2113 2114 2115
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2116
					     int direct,
2117
					     unsigned access)
2118 2119 2120
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2121 2122
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2123 2124
	bool flush = false;
	LIST_HEAD(invalid_list);
2125

2126
	role = vcpu->arch.mmu.base_role;
2127
	role.level = level;
2128
	role.direct = direct;
2129
	if (role.direct)
2130
		role.cr4_pae = 0;
2131
	role.access = access;
2132 2133
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2134 2135 2136 2137
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2138
	for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2139 2140
		if (!need_sync && sp->unsync)
			need_sync = true;
2141

2142 2143
		if (sp->role.word != role.word)
			continue;
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2155

2156
		if (sp->unsync_children)
2157
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2158

2159
		__clear_sp_write_flooding_count(sp);
2160 2161 2162
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
2163

A
Avi Kivity 已提交
2164
	++vcpu->kvm->stat.mmu_cache_miss;
2165 2166 2167

	sp = kvm_mmu_alloc_page(vcpu, direct);

2168 2169
	sp->gfn = gfn;
	sp->role = role;
2170 2171
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2172
	if (!direct) {
2173 2174 2175 2176 2177 2178 2179 2180
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2181
			kvm_flush_remote_tlbs(vcpu->kvm);
2182 2183

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2184
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2185
	}
2186
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2187
	clear_page(sp->spt);
A
Avi Kivity 已提交
2188
	trace_kvm_mmu_get_page(sp, true);
2189 2190

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2191
	return sp;
2192 2193
}

2194 2195 2196 2197 2198 2199
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2200 2201 2202 2203 2204 2205

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2220

2221 2222 2223 2224 2225
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2226 2227
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2228
{
2229
	if (is_last_spte(spte, iterator->level)) {
2230 2231 2232 2233
		iterator->level = 0;
		return;
	}

2234
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2235 2236 2237
	--iterator->level;
}

2238 2239 2240 2241 2242
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2243 2244
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2245 2246 2247
{
	u64 spte;

2248 2249 2250
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2251
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2252
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2253

2254
	mmu_spte_set(sptep, spte);
2255 2256 2257 2258 2259

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2260 2261
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2279
		drop_parent_pte(child, sptep);
2280 2281 2282 2283
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2284
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2285 2286 2287 2288 2289 2290 2291
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2292
		if (is_last_spte(pte, sp->role.level)) {
2293
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2294 2295 2296
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2297
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2298
			drop_parent_pte(child, spte);
2299
		}
X
Xiao Guangrong 已提交
2300 2301 2302 2303
		return true;
	}

	if (is_mmio_spte(pte))
2304
		mmu_spte_clear_no_track(spte);
2305

X
Xiao Guangrong 已提交
2306
	return false;
2307 2308
}

2309
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2310
					 struct kvm_mmu_page *sp)
2311
{
2312 2313
	unsigned i;

2314 2315
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2316 2317
}

2318
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2319
{
2320 2321
	u64 *sptep;
	struct rmap_iterator iter;
2322

2323
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2324
		drop_parent_pte(sp, sptep);
2325 2326
}

2327
static int mmu_zap_unsync_children(struct kvm *kvm,
2328 2329
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2330
{
2331 2332 2333
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2334

2335
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2336
		return 0;
2337 2338 2339 2340 2341

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2342
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2343
			mmu_pages_clear_parents(&parents);
2344
			zapped++;
2345 2346 2347 2348
		}
	}

	return zapped;
2349 2350
}

2351 2352
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2353
{
2354
	int ret;
A
Avi Kivity 已提交
2355

2356
	trace_kvm_mmu_prepare_zap_page(sp);
2357
	++kvm->stat.mmu_shadow_zapped;
2358
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2359
	kvm_mmu_page_unlink_children(kvm, sp);
2360
	kvm_mmu_unlink_parents(kvm, sp);
2361

2362
	if (!sp->role.invalid && !sp->role.direct)
2363
		unaccount_shadowed(kvm, sp);
2364

2365 2366
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2367
	if (!sp->root_count) {
2368 2369
		/* Count self */
		ret++;
2370
		list_move(&sp->link, invalid_list);
2371
		kvm_mod_used_mmu_pages(kvm, -1);
2372
	} else {
A
Avi Kivity 已提交
2373
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2374 2375 2376 2377 2378 2379 2380

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2381
	}
2382 2383

	sp->role.invalid = 1;
2384
	return ret;
2385 2386
}

2387 2388 2389
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2390
	struct kvm_mmu_page *sp, *nsp;
2391 2392 2393 2394

	if (list_empty(invalid_list))
		return;

2395
	/*
2396 2397 2398 2399 2400 2401 2402
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2403 2404
	 */
	kvm_flush_remote_tlbs(kvm);
2405

2406
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2407
		WARN_ON(!sp->role.invalid || sp->root_count);
2408
		kvm_mmu_free_page(sp);
2409
	}
2410 2411
}

2412 2413 2414 2415 2416 2417 2418 2419
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2420 2421
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2422 2423 2424 2425 2426
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2427 2428
/*
 * Changing the number of mmu pages allocated to the vm
2429
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2430
 */
2431
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2432
{
2433
	LIST_HEAD(invalid_list);
2434

2435 2436
	spin_lock(&kvm->mmu_lock);

2437
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2438 2439 2440 2441
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2442

2443
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2444
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2445 2446
	}

2447
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2448 2449

	spin_unlock(&kvm->mmu_lock);
2450 2451
}

2452
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2453
{
2454
	struct kvm_mmu_page *sp;
2455
	LIST_HEAD(invalid_list);
2456 2457
	int r;

2458
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2459
	r = 0;
2460
	spin_lock(&kvm->mmu_lock);
2461
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2462
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2463 2464
			 sp->role.word);
		r = 1;
2465
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2466
	}
2467
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2468 2469
	spin_unlock(&kvm->mmu_lock);

2470
	return r;
2471
}
2472
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2473

2474
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2475 2476 2477 2478 2479 2480 2481 2482
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2483 2484
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2485
{
2486
	struct kvm_mmu_page *sp;
2487

2488 2489
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2490

2491
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2492
		if (!can_unsync)
2493
			return true;
2494

2495 2496
		if (sp->unsync)
			continue;
2497

2498 2499
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2500
	}
2501 2502

	return false;
2503 2504
}

D
Dan Williams 已提交
2505
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2506 2507 2508 2509 2510 2511 2512
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2513
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2514
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2515
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2516
		    bool can_unsync, bool host_writable)
2517
{
2518
	u64 spte;
M
Marcelo Tosatti 已提交
2519
	int ret = 0;
S
Sheng Yang 已提交
2520

2521
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2522 2523
		return 0;

2524
	spte = PT_PRESENT_MASK;
2525
	if (!speculative)
2526
		spte |= shadow_accessed_mask;
2527

S
Sheng Yang 已提交
2528 2529 2530 2531
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2532

2533
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2534
		spte |= shadow_user_mask;
2535

2536
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2537
		spte |= PT_PAGE_SIZE_MASK;
2538
	if (tdp_enabled)
2539
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2540
			kvm_is_mmio_pfn(pfn));
2541

2542
	if (host_writable)
2543
		spte |= SPTE_HOST_WRITEABLE;
2544 2545
	else
		pte_access &= ~ACC_WRITE_MASK;
2546

2547
	spte |= (u64)pfn << PAGE_SHIFT;
2548

2549
	if (pte_access & ACC_WRITE_MASK) {
2550

X
Xiao Guangrong 已提交
2551
		/*
2552 2553 2554 2555
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2556
		 */
2557
		if (level > PT_PAGE_TABLE_LEVEL &&
2558
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2559
			goto done;
2560

2561
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2562

2563 2564 2565 2566 2567 2568
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2569
		if (!can_unsync && is_writable_pte(*sptep))
2570 2571
			goto set_pte;

2572
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2573
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2574
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2575
			ret = 1;
2576
			pte_access &= ~ACC_WRITE_MASK;
2577
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2578 2579 2580
		}
	}

2581
	if (pte_access & ACC_WRITE_MASK) {
2582
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2583 2584
		spte |= shadow_dirty_mask;
	}
2585

2586
set_pte:
2587
	if (mmu_spte_update(sptep, spte))
2588
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2589
done:
M
Marcelo Tosatti 已提交
2590 2591 2592
	return ret;
}

2593
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2594
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2595
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2596 2597
{
	int was_rmapped = 0;
2598
	int rmap_count;
2599
	bool emulate = false;
M
Marcelo Tosatti 已提交
2600

2601 2602
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2603

2604
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2605 2606 2607 2608
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2609 2610
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2611
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2612
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2613 2614

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2615
			drop_parent_pte(child, sptep);
2616
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2617
		} else if (pfn != spte_to_pfn(*sptep)) {
2618
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2619
				 spte_to_pfn(*sptep), pfn);
2620
			drop_spte(vcpu->kvm, sptep);
2621
			kvm_flush_remote_tlbs(vcpu->kvm);
2622 2623
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2624
	}
2625

2626 2627
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2628
		if (write_fault)
2629
			emulate = true;
2630
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2631
	}
M
Marcelo Tosatti 已提交
2632

2633 2634
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2635

A
Avi Kivity 已提交
2636
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2637
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2638
		 is_large_pte(*sptep)? "2MB" : "4kB",
2639 2640
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2641
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2642 2643
		++vcpu->kvm->stat.lpages;

2644 2645 2646 2647 2648 2649
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2650
	}
2651

X
Xiao Guangrong 已提交
2652
	kvm_release_pfn_clean(pfn);
2653 2654

	return emulate;
2655 2656
}

D
Dan Williams 已提交
2657
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2658 2659 2660 2661
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2662
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2663
	if (!slot)
2664
		return KVM_PFN_ERR_FAULT;
2665

2666
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2667 2668 2669 2670 2671 2672 2673
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2674
	struct kvm_memory_slot *slot;
2675 2676 2677 2678 2679
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2680 2681
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2682 2683
		return -1;

2684
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2685 2686 2687 2688
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2689 2690
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2707
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2738
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2739
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2740
{
2741
	struct kvm_shadow_walk_iterator iterator;
2742
	struct kvm_mmu_page *sp;
2743
	int emulate = 0;
2744
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2745

2746 2747 2748
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2749
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2750
		if (iterator.level == level) {
2751 2752 2753
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2754
			direct_pte_prefetch(vcpu, iterator.sptep);
2755 2756
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2757 2758
		}

2759
		drop_large_spte(vcpu, iterator.sptep);
2760
		if (!is_shadow_present_pte(*iterator.sptep)) {
2761 2762 2763 2764
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2765
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2766
					      iterator.level - 1, 1, ACC_ALL);
2767

2768
			link_shadow_page(vcpu, iterator.sptep, sp);
2769 2770
		}
	}
2771
	return emulate;
A
Avi Kivity 已提交
2772 2773
}

H
Huang Ying 已提交
2774
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2775
{
H
Huang Ying 已提交
2776 2777 2778 2779 2780 2781 2782
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2783

H
Huang Ying 已提交
2784
	send_sig_info(SIGBUS, &info, tsk);
2785 2786
}

D
Dan Williams 已提交
2787
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2788
{
X
Xiao Guangrong 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2798
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2799
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2800
		return 0;
2801
	}
2802

2803
	return -EFAULT;
2804 2805
}

2806
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2807 2808
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2809
{
D
Dan Williams 已提交
2810
	kvm_pfn_t pfn = *pfnp;
2811 2812 2813 2814 2815 2816 2817 2818 2819
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2820
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2821
	    level == PT_PAGE_TABLE_LEVEL &&
2822
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
2823
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2842
			kvm_get_pfn(pfn);
2843 2844 2845 2846 2847
			*pfnp = pfn;
		}
	}
}

2848
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2849
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2850 2851
{
	/* The pfn is invalid, report the error! */
2852
	if (unlikely(is_error_pfn(pfn))) {
2853
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2854
		return true;
2855 2856
	}

2857
	if (unlikely(is_noslot_pfn(pfn)))
2858 2859
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

2860
	return false;
2861 2862
}

2863
static bool page_fault_can_be_fast(u32 error_code)
2864
{
2865 2866 2867 2868 2869 2870 2871
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2885 2886
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2910
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2911
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2925
	struct kvm_mmu_page *sp;
2926 2927 2928
	bool ret = false;
	u64 spte = 0ull;

2929 2930 2931
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2932
	if (!page_fault_can_be_fast(error_code))
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
2944
	if (!is_shadow_present_pte(spte)) {
2945 2946 2947 2948
		ret = true;
		goto exit;
	}

2949 2950
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2984 2985 2986 2987 2988
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2989
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2990
exit:
X
Xiao Guangrong 已提交
2991 2992
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2993 2994 2995 2996 2997
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2998
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
2999
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3000
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3001

3002 3003
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3004 3005
{
	int r;
3006
	int level;
3007
	bool force_pt_level = false;
D
Dan Williams 已提交
3008
	kvm_pfn_t pfn;
3009
	unsigned long mmu_seq;
3010
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3011

3012
	level = mapping_level(vcpu, gfn, &force_pt_level);
3013 3014 3015 3016 3017 3018 3019 3020
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3021

3022
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3023
	}
M
Marcelo Tosatti 已提交
3024

3025 3026 3027
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3028
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3029
	smp_rmb();
3030

3031
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3032
		return 0;
3033

3034 3035
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3036

3037
	spin_lock(&vcpu->kvm->mmu_lock);
3038
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3039
		goto out_unlock;
3040
	make_mmu_pages_available(vcpu);
3041 3042
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3043
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3044 3045
	spin_unlock(&vcpu->kvm->mmu_lock);

3046
	return r;
3047 3048 3049 3050 3051

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3052 3053 3054
}


3055 3056 3057
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3058
	struct kvm_mmu_page *sp;
3059
	LIST_HEAD(invalid_list);
3060

3061
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3062
		return;
3063

3064 3065 3066
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3067
		hpa_t root = vcpu->arch.mmu.root_hpa;
3068

3069
		spin_lock(&vcpu->kvm->mmu_lock);
3070 3071
		sp = page_header(root);
		--sp->root_count;
3072 3073 3074 3075
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3076
		spin_unlock(&vcpu->kvm->mmu_lock);
3077
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078 3079
		return;
	}
3080 3081

	spin_lock(&vcpu->kvm->mmu_lock);
3082
	for (i = 0; i < 4; ++i) {
3083
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3084

A
Avi Kivity 已提交
3085 3086
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3087 3088
			sp = page_header(root);
			--sp->root_count;
3089
			if (!sp->root_count && sp->role.invalid)
3090 3091
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3092
		}
3093
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3094
	}
3095
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3096
	spin_unlock(&vcpu->kvm->mmu_lock);
3097
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3098 3099
}

3100 3101 3102 3103 3104
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3105
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3106 3107 3108 3109 3110 3111
		ret = 1;
	}

	return ret;
}

3112 3113 3114
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3115
	unsigned i;
3116 3117 3118

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3119
		make_mmu_pages_available(vcpu);
3120
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3121 3122 3123 3124 3125 3126 3127
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3128
			MMU_WARN_ON(VALID_PAGE(root));
3129
			spin_lock(&vcpu->kvm->mmu_lock);
3130
			make_mmu_pages_available(vcpu);
3131
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3132
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3133 3134 3135 3136 3137
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3138
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3139 3140 3141 3142 3143 3144 3145
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3146
{
3147
	struct kvm_mmu_page *sp;
3148 3149 3150
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3151

3152
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3153

3154 3155 3156 3157 3158 3159 3160 3161
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3162
		hpa_t root = vcpu->arch.mmu.root_hpa;
3163

3164
		MMU_WARN_ON(VALID_PAGE(root));
3165

3166
		spin_lock(&vcpu->kvm->mmu_lock);
3167
		make_mmu_pages_available(vcpu);
3168
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3169
				      0, ACC_ALL);
3170 3171
		root = __pa(sp->spt);
		++sp->root_count;
3172
		spin_unlock(&vcpu->kvm->mmu_lock);
3173
		vcpu->arch.mmu.root_hpa = root;
3174
		return 0;
3175
	}
3176

3177 3178
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3179 3180
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3181
	 */
3182 3183 3184 3185
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3186
	for (i = 0; i < 4; ++i) {
3187
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3188

3189
		MMU_WARN_ON(VALID_PAGE(root));
3190
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3191
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3192
			if (!is_present_gpte(pdptr)) {
3193
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3194 3195
				continue;
			}
A
Avi Kivity 已提交
3196
			root_gfn = pdptr >> PAGE_SHIFT;
3197 3198
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3199
		}
3200
		spin_lock(&vcpu->kvm->mmu_lock);
3201
		make_mmu_pages_available(vcpu);
3202 3203
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3204 3205
		root = __pa(sp->spt);
		++sp->root_count;
3206 3207
		spin_unlock(&vcpu->kvm->mmu_lock);

3208
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3209
	}
3210
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3237
	return 0;
3238 3239
}

3240 3241 3242 3243 3244 3245 3246 3247
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3248 3249 3250 3251 3252
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3253 3254 3255
	if (vcpu->arch.mmu.direct_map)
		return;

3256 3257
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3258

3259
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3260
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3261
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3262 3263 3264
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3265
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3266 3267 3268 3269 3270
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3271
		if (root && VALID_PAGE(root)) {
3272 3273 3274 3275 3276
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3277
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3278 3279 3280 3281 3282 3283
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3284
	spin_unlock(&vcpu->kvm->mmu_lock);
3285
}
N
Nadav Har'El 已提交
3286
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3287

3288
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3289
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3290
{
3291 3292
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3293 3294 3295
	return vaddr;
}

3296
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3297 3298
					 u32 access,
					 struct x86_exception *exception)
3299
{
3300 3301
	if (exception)
		exception->error_code = 0;
3302
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3303 3304
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3324
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3325 3326 3327 3328 3329 3330 3331
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3332 3333 3334
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3335 3336
{
	struct kvm_shadow_walk_iterator iterator;
3337 3338 3339
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3340

3341
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3342
		goto exit;
3343

3344
	walk_shadow_page_lockless_begin(vcpu);
3345

3346 3347
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3348 3349 3350 3351 3352
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3353
		leaf--;
3354

3355 3356
		if (!is_shadow_present_pte(spte))
			break;
3357 3358

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3359
						    iterator.level);
3360 3361
	}

3362 3363
	walk_shadow_page_lockless_end(vcpu);

3364 3365 3366
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3367
		while (root > leaf) {
3368 3369 3370 3371 3372 3373 3374 3375
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3376 3377
}

3378
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3379 3380
{
	u64 spte;
3381
	bool reserved;
3382

3383
	if (mmio_info_in_cache(vcpu, addr, direct))
3384
		return RET_MMIO_PF_EMULATE;
3385

3386
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3387
	if (WARN_ON(reserved))
3388
		return RET_MMIO_PF_BUG;
3389 3390 3391 3392 3393

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3394
		if (!check_mmio_spte(vcpu, spte))
3395 3396
			return RET_MMIO_PF_INVALID;

3397 3398
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3399 3400

		trace_handle_mmio_page_fault(addr, gfn, access);
3401
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3402
		return RET_MMIO_PF_EMULATE;
3403 3404 3405 3406 3407 3408
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3409
	return RET_MMIO_PF_RETRY;
3410
}
3411
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3450
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3451
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3452
{
3453
	gfn_t gfn = gva >> PAGE_SHIFT;
3454
	int r;
A
Avi Kivity 已提交
3455

3456
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3457

3458 3459
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3460

3461 3462 3463
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3464

3465
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3466 3467


3468
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3469
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3470 3471
}

3472
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3473 3474
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3475

3476
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3477
	arch.gfn = gfn;
3478
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3479
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3480

3481
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3482 3483 3484 3485
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3486
	if (unlikely(!lapic_in_kernel(vcpu) ||
3487 3488 3489 3490 3491 3492
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3493
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3494
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3495
{
3496
	struct kvm_memory_slot *slot;
3497 3498
	bool async;

3499
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3500 3501
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3502 3503 3504
	if (!async)
		return false; /* *pfn has correct page already */

3505
	if (!prefault && can_do_async_pf(vcpu)) {
3506
		trace_kvm_try_async_get_page(gva, gfn);
3507 3508 3509 3510 3511 3512 3513 3514
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3515
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3516 3517 3518
	return false;
}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3529
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3530
			  bool prefault)
3531
{
D
Dan Williams 已提交
3532
	kvm_pfn_t pfn;
3533
	int r;
3534
	int level;
3535
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3536
	gfn_t gfn = gpa >> PAGE_SHIFT;
3537
	unsigned long mmu_seq;
3538 3539
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3540

3541
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3542

3543 3544
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3545

3546 3547 3548 3549
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3550 3551 3552
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3553
	if (likely(!force_pt_level)) {
3554 3555 3556
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3557
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3558
	}
3559

3560 3561 3562
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3563
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3564
	smp_rmb();
3565

3566
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3567 3568
		return 0;

3569 3570 3571
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3572
	spin_lock(&vcpu->kvm->mmu_lock);
3573
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3574
		goto out_unlock;
3575
	make_mmu_pages_available(vcpu);
3576 3577
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3578
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3579 3580 3581
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3582 3583 3584 3585 3586

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3587 3588
}

3589 3590
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3591 3592 3593
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3594
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3595
	context->invlpg = nonpaging_invlpg;
3596
	context->update_pte = nonpaging_update_pte;
3597
	context->root_level = 0;
A
Avi Kivity 已提交
3598
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3599
	context->root_hpa = INVALID_PAGE;
3600
	context->direct_map = true;
3601
	context->nx = false;
A
Avi Kivity 已提交
3602 3603
}

3604
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3605
{
3606
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3607 3608
}

3609 3610
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3611
	return kvm_read_cr3(vcpu);
3612 3613
}

3614 3615
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3616
{
3617
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3618 3619
}

3620
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3621
			   unsigned access, int *nr_present)
3622 3623 3624 3625 3626 3627 3628 3629
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3630
		mark_mmio_spte(vcpu, sptep, gfn, access);
3631 3632 3633 3634 3635 3636
		return true;
	}

	return false;
}

3637 3638
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3639
{
3640 3641 3642 3643 3644 3645
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
A
Avi Kivity 已提交
3646

3647 3648 3649 3650 3651 3652 3653 3654
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3655 3656
}

3657 3658 3659 3660 3661
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3662 3663 3664 3665 3666 3667 3668 3669
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3670 3671 3672 3673
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3674
			bool pse, bool amd)
3675 3676
{
	u64 exb_bit_rsvd = 0;
3677
	u64 gbpages_bit_rsvd = 0;
3678
	u64 nonleaf_bit8_rsvd = 0;
3679

3680
	rsvd_check->bad_mt_xwr = 0;
3681

3682
	if (!nx)
3683
		exb_bit_rsvd = rsvd_bits(63, 63);
3684
	if (!gbpages)
3685
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3686 3687 3688 3689 3690

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3691
	if (amd)
3692 3693
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3694
	switch (level) {
3695 3696
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3697 3698 3699 3700
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3701

3702
		if (!pse) {
3703
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3704 3705 3706
			break;
		}

3707 3708
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3709
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3710 3711
		else
			/* 32 bits PSE 4MB page */
3712
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3713 3714
		break;
	case PT32E_ROOT_LEVEL:
3715
		rsvd_check->rsvd_bits_mask[0][2] =
3716
			rsvd_bits(maxphyaddr, 63) |
3717
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3718
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3719
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3720
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3721
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3722
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3723 3724
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3725 3726
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3727 3728
		break;
	case PT64_ROOT_LEVEL:
3729 3730
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3731
			rsvd_bits(maxphyaddr, 51);
3732 3733
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3734
			rsvd_bits(maxphyaddr, 51);
3735 3736 3737 3738 3739 3740 3741
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3742
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3743
			rsvd_bits(13, 29);
3744
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3745 3746
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3747 3748
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3749 3750 3751 3752
		break;
	}
}

3753 3754 3755 3756 3757 3758
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3759
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3760 3761
}

3762 3763 3764
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3765
{
3766
	u64 bad_mt_xwr;
3767

3768
	rsvd_check->rsvd_bits_mask[0][3] =
3769
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3770
	rsvd_check->rsvd_bits_mask[0][2] =
3771
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3772
	rsvd_check->rsvd_bits_mask[0][1] =
3773
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3774
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3775 3776

	/* large page */
3777 3778
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3779
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3780
	rsvd_check->rsvd_bits_mask[1][1] =
3781
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3782
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3783

3784 3785 3786 3787 3788 3789 3790 3791
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3792
	}
3793
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3794 3795
}

3796 3797 3798 3799 3800 3801 3802
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3803 3804 3805 3806 3807 3808 3809 3810
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3811 3812
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;

3813 3814 3815 3816
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3817 3818
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
3819
				context->shadow_root_level, uses_nx,
3820 3821
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3822 3823 3824
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3825 3826 3827 3828 3829 3830
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3831 3832 3833 3834 3835 3836 3837 3838
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3839
	if (boot_cpu_is_amd())
3840 3841 3842
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3843 3844
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3864 3865
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3866 3867 3868
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3869
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3870

F
Feng Wu 已提交
3871
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3872
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3873 3874 3875 3876 3877 3878
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3879 3880 3881 3882 3883 3884
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3885 3886 3887 3888 3889
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3890 3891 3892 3893 3894 3895
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3896
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3917 3918 3919
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3920

F
Feng Wu 已提交
3921 3922
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3923 3924 3925 3926 3927 3928
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4004
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4005
{
4006 4007 4008 4009 4010
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4011 4012
}

4013 4014 4015
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4016
{
4017
	context->nx = is_nx(vcpu);
4018
	context->root_level = level;
4019

4020
	reset_rsvds_bits_mask(vcpu, context);
4021
	update_permission_bitmask(vcpu, context, false);
4022
	update_pkru_bitmask(vcpu, context, false);
4023
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4024

4025
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4026 4027
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4028
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4029
	context->invlpg = paging64_invlpg;
4030
	context->update_pte = paging64_update_pte;
4031
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4032
	context->root_hpa = INVALID_PAGE;
4033
	context->direct_map = false;
A
Avi Kivity 已提交
4034 4035
}

4036 4037
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4038
{
4039
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4040 4041
}

4042 4043
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4044
{
4045
	context->nx = false;
4046
	context->root_level = PT32_ROOT_LEVEL;
4047

4048
	reset_rsvds_bits_mask(vcpu, context);
4049
	update_permission_bitmask(vcpu, context, false);
4050
	update_pkru_bitmask(vcpu, context, false);
4051
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4052 4053 4054

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4055
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4056
	context->invlpg = paging32_invlpg;
4057
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4058
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4059
	context->root_hpa = INVALID_PAGE;
4060
	context->direct_map = false;
A
Avi Kivity 已提交
4061 4062
}

4063 4064
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4065
{
4066
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4067 4068
}

4069
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4070
{
4071
	struct kvm_mmu *context = &vcpu->arch.mmu;
4072

4073
	context->base_role.word = 0;
4074
	context->base_role.smm = is_smm(vcpu);
4075
	context->page_fault = tdp_page_fault;
4076
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4077
	context->invlpg = nonpaging_invlpg;
4078
	context->update_pte = nonpaging_update_pte;
4079
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4080
	context->root_hpa = INVALID_PAGE;
4081
	context->direct_map = true;
4082
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4083
	context->get_cr3 = get_cr3;
4084
	context->get_pdptr = kvm_pdptr_read;
4085
	context->inject_page_fault = kvm_inject_page_fault;
4086 4087

	if (!is_paging(vcpu)) {
4088
		context->nx = false;
4089 4090 4091
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4092
		context->nx = is_nx(vcpu);
4093
		context->root_level = PT64_ROOT_LEVEL;
4094 4095
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4096
	} else if (is_pae(vcpu)) {
4097
		context->nx = is_nx(vcpu);
4098
		context->root_level = PT32E_ROOT_LEVEL;
4099 4100
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4101
	} else {
4102
		context->nx = false;
4103
		context->root_level = PT32_ROOT_LEVEL;
4104 4105
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4106 4107
	}

4108
	update_permission_bitmask(vcpu, context, false);
4109
	update_pkru_bitmask(vcpu, context, false);
4110
	update_last_nonleaf_level(vcpu, context);
4111
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4112 4113
}

4114
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4115
{
4116
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4117
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4118 4119
	struct kvm_mmu *context = &vcpu->arch.mmu;

4120
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4121 4122

	if (!is_paging(vcpu))
4123
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4124
	else if (is_long_mode(vcpu))
4125
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4126
	else if (is_pae(vcpu))
4127
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4128
	else
4129
		paging32_init_context(vcpu, context);
4130

4131 4132 4133 4134
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4135
		= smep && !is_write_protection(vcpu);
4136 4137
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4138
	context->base_role.smm = is_smm(vcpu);
4139
	reset_shadow_zero_bits_mask(vcpu, context);
4140 4141 4142
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4143
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4144
{
4145 4146
	struct kvm_mmu *context = &vcpu->arch.mmu;

4147
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
4162
	update_pkru_bitmask(vcpu, context, true);
N
Nadav Har'El 已提交
4163
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4164
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4165 4166 4167
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4168
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4169
{
4170 4171 4172 4173 4174 4175 4176
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4177 4178
}

4179
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4180 4181 4182 4183
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4184
	g_context->get_pdptr         = kvm_pdptr_read;
4185 4186 4187
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4188 4189 4190 4191 4192 4193
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4194 4195
	 */
	if (!is_paging(vcpu)) {
4196
		g_context->nx = false;
4197 4198 4199
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4200
		g_context->nx = is_nx(vcpu);
4201
		g_context->root_level = PT64_ROOT_LEVEL;
4202
		reset_rsvds_bits_mask(vcpu, g_context);
4203 4204
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4205
		g_context->nx = is_nx(vcpu);
4206
		g_context->root_level = PT32E_ROOT_LEVEL;
4207
		reset_rsvds_bits_mask(vcpu, g_context);
4208 4209
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4210
		g_context->nx = false;
4211
		g_context->root_level = PT32_ROOT_LEVEL;
4212
		reset_rsvds_bits_mask(vcpu, g_context);
4213 4214 4215
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4216
	update_permission_bitmask(vcpu, g_context, false);
4217
	update_pkru_bitmask(vcpu, g_context, false);
4218
	update_last_nonleaf_level(vcpu, g_context);
4219 4220
}

4221
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4222
{
4223
	if (mmu_is_nested(vcpu))
4224
		init_kvm_nested_mmu(vcpu);
4225
	else if (tdp_enabled)
4226
		init_kvm_tdp_mmu(vcpu);
4227
	else
4228
		init_kvm_softmmu(vcpu);
4229 4230
}

4231
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4232
{
4233
	kvm_mmu_unload(vcpu);
4234
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4235
}
4236
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4237 4238

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4239
{
4240 4241
	int r;

4242
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4243 4244
	if (r)
		goto out;
4245
	r = mmu_alloc_roots(vcpu);
4246
	kvm_mmu_sync_roots(vcpu);
4247 4248
	if (r)
		goto out;
4249
	/* set_cr3() should ensure TLB has been flushed */
4250
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4251 4252
out:
	return r;
A
Avi Kivity 已提交
4253
}
A
Avi Kivity 已提交
4254 4255 4256 4257 4258
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4259
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4260
}
4261
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4262

4263
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4264 4265
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4266
{
4267
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4268 4269
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4270
        }
4271

A
Avi Kivity 已提交
4272
	++vcpu->kvm->stat.mmu_pte_updated;
4273
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4274 4275
}

4276 4277 4278 4279 4280 4281 4282 4283
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4284 4285
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4286 4287 4288
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4289 4290
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4291
{
4292 4293
	u64 gentry;
	int r;
4294 4295 4296

	/*
	 * Assume that the pte write on a page table of the same type
4297 4298
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4299
	 */
4300
	if (is_pae(vcpu) && *bytes == 4) {
4301
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4302 4303
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4304
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4305 4306
		if (r)
			gentry = 0;
4307 4308 4309
		new = (const u8 *)&gentry;
	}

4310
	switch (*bytes) {
4311 4312 4313 4314 4315 4316 4317 4318 4319
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4320 4321
	}

4322 4323 4324 4325 4326 4327 4328
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4329
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4330
{
4331 4332 4333 4334
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4335
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4336
		return false;
4337

4338 4339
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4356 4357 4358 4359 4360 4361 4362 4363

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4401 4402
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
			      const u8 *new, int bytes)
4403 4404 4405 4406 4407 4408
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4409
	bool remote_flush, local_flush;
4410 4411 4412 4413 4414 4415 4416
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4417
	mask.smm = 1;
4418 4419 4420 4421 4422 4423 4424 4425

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4426
	remote_flush = local_flush = false;
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4441
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4442

4443
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4444
		if (detect_write_misaligned(sp, gpa, bytes) ||
4445
		      detect_write_flooding(sp)) {
4446
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4447
			++vcpu->kvm->stat.mmu_flooded;
4448 4449
			continue;
		}
4450 4451 4452 4453 4454

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4455
		local_flush = true;
4456
		while (npte--) {
4457
			entry = *spte;
4458
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4459 4460
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4461
			      & mask.word) && rmap_can_add(vcpu))
4462
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4463
			if (need_remote_flush(entry, *spte))
4464
				remote_flush = true;
4465
			++spte;
4466 4467
		}
	}
4468
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4469
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4470
	spin_unlock(&vcpu->kvm->mmu_lock);
4471 4472
}

4473 4474
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4475 4476
	gpa_t gpa;
	int r;
4477

4478
	if (vcpu->arch.mmu.direct_map)
4479 4480
		return 0;

4481
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4482 4483

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4484

4485
	return r;
4486
}
4487
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4488

4489
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4490
{
4491
	LIST_HEAD(invalid_list);
4492

4493 4494 4495
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4496 4497 4498
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4499

A
Avi Kivity 已提交
4500
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4501
	}
4502
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4503 4504
}

4505 4506
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4507
{
4508
	int r, emulation_type = EMULTYPE_RETRY;
4509
	enum emulation_result er;
4510
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}
4523

G
Gleb Natapov 已提交
4524
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4525
	if (r < 0)
4526 4527 4528
		return r;
	if (!r)
		return 1;
4529

4530
	if (mmio_info_in_cache(vcpu, cr2, direct))
4531
		emulation_type = 0;
4532
emulate:
4533
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4534 4535 4536 4537

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4538
	case EMULATE_USER_EXIT:
4539
		++vcpu->stat.mmio_exits;
4540
		/* fall through */
4541
	case EMULATE_FAIL:
4542
		return 0;
4543 4544 4545 4546 4547 4548
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4549 4550 4551
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4552
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4553 4554 4555 4556
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4557 4558 4559 4560 4561 4562
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4563 4564 4565 4566 4567 4568
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4569 4570
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4571
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4572 4573
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4574 4575 4576 4577
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4578
	struct page *page;
A
Avi Kivity 已提交
4579 4580
	int i;

4581 4582 4583 4584 4585 4586 4587
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4588 4589
		return -ENOMEM;

4590
	vcpu->arch.mmu.pae_root = page_address(page);
4591
	for (i = 0; i < 4; ++i)
4592
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4593

A
Avi Kivity 已提交
4594 4595 4596
	return 0;
}

4597
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4598
{
4599 4600 4601 4602
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4603

4604 4605
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4606

4607
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4608
{
4609
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4610

4611
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4612 4613
}

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4629
/* The return value indicates if tlb flush on all vcpus is needed. */
4630
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4698 4699 4700 4701
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4702
	int i;
X
Xiao Guangrong 已提交
4703 4704

	spin_lock(&kvm->mmu_lock);
4705 4706 4707 4708 4709 4710 4711 4712 4713
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4714

4715 4716 4717 4718
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4719 4720 4721 4722 4723
	}

	spin_unlock(&kvm->mmu_lock);
}

4724 4725
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4726
{
4727
	return __rmap_write_protect(kvm, rmap_head, false);
4728 4729
}

4730 4731
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4732
{
4733
	bool flush;
A
Avi Kivity 已提交
4734

4735
	spin_lock(&kvm->mmu_lock);
4736 4737
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4738
	spin_unlock(&kvm->mmu_lock);
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4758 4759
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4760
}
4761

4762
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4763
					 struct kvm_rmap_head *rmap_head)
4764 4765 4766 4767
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4768
	kvm_pfn_t pfn;
4769 4770
	struct kvm_mmu_page *sp;

4771
restart:
4772
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4773 4774 4775 4776
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4777 4778 4779 4780 4781
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4782 4783 4784
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
4785
			PageTransCompoundMap(pfn_to_page(pfn))) {
4786 4787
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4788 4789
			goto restart;
		}
4790 4791 4792 4793 4794 4795
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4796
				   const struct kvm_memory_slot *memslot)
4797
{
4798
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4799
	spin_lock(&kvm->mmu_lock);
4800 4801
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4802 4803 4804
	spin_unlock(&kvm->mmu_lock);
}

4805 4806 4807
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4808
	bool flush;
4809 4810

	spin_lock(&kvm->mmu_lock);
4811
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4830
	bool flush;
4831 4832

	spin_lock(&kvm->mmu_lock);
4833 4834
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4848
	bool flush;
4849 4850

	spin_lock(&kvm->mmu_lock);
4851
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4862
#define BATCH_ZAP_PAGES	10
4863 4864 4865
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4866
	int batch = 0;
4867 4868 4869 4870

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4871 4872
		int ret;

4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4888 4889 4890 4891
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4892
		if (batch >= BATCH_ZAP_PAGES &&
4893
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4894
			batch = 0;
4895 4896 4897
			goto restart;
		}

4898 4899
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4900 4901 4902
		batch += ret;

		if (ret)
4903 4904 4905
			goto restart;
	}

4906 4907 4908 4909
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4910
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4925
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4926 4927
	kvm->arch.mmu_valid_gen++;

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4939 4940 4941 4942
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4943 4944 4945 4946 4947
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4948
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4949 4950 4951 4952 4953
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4954
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4955
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4956
		kvm_mmu_invalidate_zap_all_pages(kvm);
4957
	}
4958 4959
}

4960 4961
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4962 4963
{
	struct kvm *kvm;
4964
	int nr_to_scan = sc->nr_to_scan;
4965
	unsigned long freed = 0;
4966

4967
	spin_lock(&kvm_lock);
4968 4969

	list_for_each_entry(kvm, &vm_list, vm_list) {
4970
		int idx;
4971
		LIST_HEAD(invalid_list);
4972

4973 4974 4975 4976 4977 4978 4979 4980
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4981 4982 4983 4984 4985 4986
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4987 4988
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4989 4990
			continue;

4991
		idx = srcu_read_lock(&kvm->srcu);
4992 4993
		spin_lock(&kvm->mmu_lock);

4994 4995 4996 4997 4998 4999
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5000 5001
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5002
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5003

5004
unlock:
5005
		spin_unlock(&kvm->mmu_lock);
5006
		srcu_read_unlock(&kvm->srcu, idx);
5007

5008 5009 5010 5011 5012
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5013 5014
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5015 5016
	}

5017
	spin_unlock(&kvm_lock);
5018 5019 5020 5021 5022 5023
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5024
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5025 5026 5027
}

static struct shrinker mmu_shrinker = {
5028 5029
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5030 5031 5032
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5033
static void mmu_destroy_caches(void)
5034
{
5035 5036
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5037 5038
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5039 5040 5041 5042
}

int kvm_mmu_module_init(void)
{
5043 5044
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5045
					    0, 0, NULL);
5046
	if (!pte_list_desc_cache)
5047 5048
		goto nomem;

5049 5050
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5051
						  0, 0, NULL);
5052 5053 5054
	if (!mmu_page_header_cache)
		goto nomem;

5055
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5056 5057
		goto nomem;

5058 5059
	register_shrinker(&mmu_shrinker);

5060 5061 5062
	return 0;

nomem:
5063
	mmu_destroy_caches();
5064 5065 5066
	return -ENOMEM;
}

5067 5068 5069 5070 5071 5072 5073
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5074
	struct kvm_memslots *slots;
5075
	struct kvm_memory_slot *memslot;
5076
	int i;
5077

5078 5079
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5080

5081 5082 5083
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5084 5085 5086

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5087
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5088 5089 5090 5091

	return nr_mmu_pages;
}

5092 5093
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5094
	kvm_mmu_unload(vcpu);
5095 5096
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5097 5098 5099 5100 5101 5102 5103
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5104 5105
	mmu_audit_disable();
}