nfp_net_common.c 86.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
89
{
90 91 92 93 94 95 96 97 98 99 100
	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
{
	dma_sync_single_for_device(dp->dev, dma_addr,
				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				   dp->rx_dma_dir);
101 102
}

103
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
104
{
105 106 107 108 109 110 111 112 113 114
	dma_unmap_single_attrs(dp->dev, dma_addr,
			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
				    unsigned int len)
{
	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
				len, dp->rx_dma_dir);
115 116
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

227 228 229 230 231 232 233 234 235 236 237 238 239
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
240 241 242
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
243 244 245

	spin_lock_bh(&nn->reconfig_lock);

246
	nn->reconfig_sync_present = true;
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
265 266
	}

267 268 269 270 271 272 273 274 275 276
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

277
	spin_unlock_bh(&nn->reconfig_lock);
278

279 280 281 282 283 284 285 286 287 288 289
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
290
 * Clear the ICR for the IRQ entry.
291 292 293 294 295 296 297 298
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
299 300 301 302 303
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
304
 *
305
 * Return: Number of irqs obtained or 0 on error.
306
 */
307 308 309
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
310
{
311 312
	unsigned int i;
	int got_irqs;
313

314 315
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
316

317 318 319 320 321
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
322 323 324
		return 0;
	}

325 326 327 328 329
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
330 331 332
}

/**
333 334 335 336
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
337
 *
338 339
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
340
 */
341 342 343
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
344
{
345 346
	struct nfp_net_dp *dp = &nn->dp;

347
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
348
	dp->num_r_vecs = nn->max_r_vecs;
349

350
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
351

352 353
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
354 355 356
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
357

358 359 360
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
361 362 363 364
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
365
 * @pdev:        PCI device structure
366 367 368
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
369
void nfp_net_irqs_disable(struct pci_dev *pdev)
370
{
371
	pci_disable_msix(pdev);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

J
Jakub Kicinski 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
bool nfp_net_link_changed_read_clear(struct nfp_net *nn)
{
	unsigned long flags;
	bool ret;

	spin_lock_irqsave(&nn->link_status_lock, flags);
	ret = nn->link_changed;
	nn->link_changed = false;
	spin_unlock_irqrestore(&nn->link_status_lock, flags);

	return ret;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;
J
Jakub Kicinski 已提交
426
	nn->link_changed = true;
427 428

	if (nn->link_up) {
429 430
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
431
	} else {
432 433
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
449 450 451
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
452 453 454

	nfp_net_read_link_status(nn);

455
	nfp_net_irq_unmask(nn, entry->entry);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
479 480
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
481
 * @is_xdp:   Is this an XDP TX ring?
482
 */
483 484
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
485 486
		     struct nfp_net_r_vector *r_vec, unsigned int idx,
		     bool is_xdp)
487 488 489
{
	struct nfp_net *nn = r_vec->nfp_net;

490 491
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;
492
	tx_ring->is_xdp = is_xdp;
493

494 495 496 497 498 499 500
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
501 502
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
503
 */
504 505 506
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
507 508 509
{
	struct nfp_net *nn = r_vec->nfp_net;

510 511 512
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

513 514 515 516 517
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
518
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
519 520
 * @netdev:   netdev structure
 */
521
static void nfp_net_vecs_init(struct net_device *netdev)
522 523 524 525 526 527 528 529
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

530
	for (r = 0; r < nn->max_r_vecs; r++) {
531 532 533 534
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

535 536 537
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
538 539
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

565
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
566 567 568 569 570 571
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
572
	nn_writeb(nn, ctrl_offset, entry->entry);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
614
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
660
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
661 662 663 664 665 666 667 668 669
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

E
Edwin Peer 已提交
670 671 672
	if (!skb->encapsulation) {
		txd->l3_offset = skb_network_offset(skb);
		txd->l4_offset = skb_transport_offset(skb);
673
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
E
Edwin Peer 已提交
674 675 676
	} else {
		txd->l3_offset = skb_inner_network_offset(skb);
		txd->l4_offset = skb_inner_transport_offset(skb);
677 678
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);
E
Edwin Peer 已提交
679
	}
680 681 682 683 684

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
685
	txd->lso_hdrlen = hdrlen;
686 687 688 689 690 691 692 693 694 695
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
696
 * @dp:  NFP Net data path struct
697 698 699 700 701 702 703 704
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
705 706
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
707 708 709 710 711 712 713
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

714
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
733
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
734 735 736 737 738 739 740 741 742 743 744
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
745
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
746 747 748 749 750 751 752 753 754 755 756
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

757 758 759 760 761 762 763
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

764 765 766 767 768 769 770 771 772 773 774 775 776
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
777 778
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
779
	struct netdev_queue *nd_q;
780
	struct nfp_net_dp *dp;
781 782 783 784 785 786
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

787
	dp = &nn->dp;
788
	qidx = skb_get_queue_mapping(skb);
789
	tx_ring = &dp->tx_rings[qidx];
790
	r_vec = tx_ring->r_vec;
791
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
792 793 794 795

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
796 797
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
798
		netif_tx_stop_queue(nd_q);
799
		nfp_net_tx_xmit_more_flush(tx_ring);
800 801 802 803 804 805 806
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
807
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
808
				  DMA_TO_DEVICE);
809
	if (dma_mapping_error(dp->dev, dma_addr))
810 811
		goto err_free;

812
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
831
	txd->lso_hdrlen = 0;
832

E
Edwin Peer 已提交
833
	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
834 835 836
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
837 838 839 840 841 842 843 844 845 846 847 848 849
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

850
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
851
						    fsize, DMA_TO_DEVICE);
852
			if (dma_mapping_error(dp->dev, dma_addr))
853 854
				goto err_unmap;

855
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
880 881
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
882 883 884 885 886 887 888 889 890

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
891
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
892 893 894 895 896 897 898 899
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
900
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
901 902 903 904 905
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
906
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
907
	nfp_net_tx_xmit_more_flush(tx_ring);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
924
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
925 926 927 928 929 930 931 932 933
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

934 935 936
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

937 938 939 940 941 942 943 944 945 946 947 948
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
949
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
950 951 952 953 954 955 956 957 958 959 960
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
961
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
962 963 964 965 966 967 968
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
969
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

989
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1004 1005 1006 1007 1008 1009 1010
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

1011 1012 1013
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

1025
	done_pkts = todo;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		done_bytes += tx_ring->txbufs[idx].real_len;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1045
/**
1046
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1047
 * @dp:		NFP Net data path struct
1048
 * @tx_ring:	TX ring structure
1049 1050 1051
 *
 * Assumes that the device is stopped
 */
1052
static void
1053
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1054 1055
{
	const struct skb_frag_struct *frag;
1056
	struct netdev_queue *nd_q;
1057

1058
	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1059
		struct nfp_net_tx_buf *tx_buf;
1060 1061
		struct sk_buff *skb;
		int idx, nr_frags;
1062

1063
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1064
		tx_buf = &tx_ring->txbufs[idx];
1065

1066 1067
		skb = tx_ring->txbufs[idx].skb;
		nr_frags = skb_shinfo(skb)->nr_frags;
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077
		if (tx_buf->fidx == -1) {
			/* unmap head */
			dma_unmap_single(dp->dev, tx_buf->dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
			dma_unmap_page(dp->dev, tx_buf->dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
1078
		}
1079

1080 1081 1082 1083
		/* check for last gather fragment */
		if (tx_buf->fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

1084 1085 1086
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1087 1088 1089 1090 1091

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1092 1093 1094 1095 1096 1097
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1098
	if (tx_ring->is_xdp)
1099 1100
		return;

1101
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1102 1103 1104 1105 1106 1107 1108 1109
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1110
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1111 1112 1113 1114 1115 1116 1117 1118 1119
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1120
static unsigned int
1121
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1122 1123 1124
{
	unsigned int fl_bufsz;

1125
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1126
	fl_bufsz += dp->rx_dma_off;
1127
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1128
		fl_bufsz += NFP_NET_MAX_PREPEND;
1129
	else
1130
		fl_bufsz += dp->rx_offset;
1131
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1132

1133 1134 1135
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1136 1137
	return fl_bufsz;
}
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1148
/**
1149
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1150
 * @dp:		NFP Net data path struct
1151 1152
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1153
 * This function will allcate a new page frag, map it for DMA.
1154
 *
1155
 * Return: allocated page frag or NULL on failure.
1156
 */
1157
static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1158
{
1159
	void *frag;
1160

1161
	if (!dp->xdp_prog)
1162
		frag = netdev_alloc_frag(dp->fl_bufsz);
1163 1164
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1165
	if (!frag) {
1166
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1167 1168 1169
		return NULL;
	}

1170
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1171
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1172
		nfp_net_free_frag(frag, dp->xdp_prog);
1173
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1174 1175 1176
		return NULL;
	}

1177
	return frag;
1178 1179
}

1180
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1181 1182 1183
{
	void *frag;

1184 1185
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1186 1187
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1188
	if (!frag) {
1189
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1190 1191 1192
		return NULL;
	}

1193
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1194 1195 1196
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1197 1198 1199 1200 1201 1202
		return NULL;
	}

	return frag;
}

1203 1204
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1205
 * @dp:		NFP Net data path struct
1206
 * @rx_ring:	RX ring structure
1207
 * @frag:	page fragment buffer
1208 1209
 * @dma_addr:	DMA address of skb mapping
 */
1210 1211
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1212
				void *frag, dma_addr_t dma_addr)
1213 1214 1215
{
	unsigned int wr_idx;

1216
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1217

1218 1219
	nfp_net_dma_sync_dev_rx(dp, dma_addr);

1220
	/* Stash SKB and DMA address away */
1221
	rx_ring->rxbufs[wr_idx].frag = frag;
1222 1223 1224 1225 1226
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1227 1228
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1243 1244
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1245
 *
1246 1247
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1248
 */
1249
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1250
{
1251
	unsigned int wr_idx, last_idx;
1252

1253
	/* Move the empty entry to the end of the list */
1254
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1255 1256
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1257
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1258
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1259
	rx_ring->rxbufs[last_idx].frag = NULL;
1260

1261 1262 1263 1264 1265
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1266

1267 1268
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1269
 * @dp:		NFP Net data path struct
1270 1271 1272 1273 1274 1275 1276
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1277
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1278
			  struct nfp_net_rx_ring *rx_ring)
1279 1280
{
	unsigned int i;
1281

1282 1283 1284 1285 1286
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1287
		if (!rx_ring->rxbufs[i].frag)
1288 1289
			continue;

1290
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1291
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1292
		rx_ring->rxbufs[i].dma_addr = 0;
1293
		rx_ring->rxbufs[i].frag = NULL;
1294 1295 1296 1297
	}
}

/**
1298
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1299
 * @dp:		NFP Net data path struct
1300
 * @rx_ring:	RX ring to remove buffers from
1301
 */
1302
static int
1303
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1304
			   struct nfp_net_rx_ring *rx_ring)
1305
{
1306 1307 1308 1309
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1310

1311
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1312
		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1313
		if (!rxbufs[i].frag) {
1314
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1315 1316 1317 1318 1319 1320 1321
			return -ENOMEM;
		}
	}

	return 0;
}

1322 1323
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1324
 * @dp:	     NFP Net data path struct
1325 1326
 * @rx_ring: RX ring to fill
 */
1327 1328 1329
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1330 1331 1332 1333
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1334
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1335 1336 1337
				    rx_ring->rxbufs[i].dma_addr);
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1354
 * @dp:  NFP Net data path struct
1355 1356 1357 1358
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1359 1360
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1361 1362 1363 1364
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1365
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

1396 1397 1398
static void
nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
		 unsigned int type, __be32 *hash)
1399
{
1400
	if (!(netdev->features & NETIF_F_RXHASH))
1401 1402
		return;

1403
	switch (type) {
1404 1405 1406
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1407
		meta->hash_type = PKT_HASH_TYPE_L3;
1408 1409
		break;
	default:
1410
		meta->hash_type = PKT_HASH_TYPE_L4;
1411 1412
		break;
	}
1413 1414

	meta->hash = get_unaligned_be32(hash);
1415 1416
}

1417
static void
1418
nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1419
		      void *data, struct nfp_net_rx_desc *rxd)
1420
{
1421
	struct nfp_net_rx_hash *rx_hash = data;
1422 1423 1424 1425

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

1426
	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1427 1428 1429 1430
			 &rx_hash->hash);
}

static void *
1431
nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1432
		   void *data, int meta_len)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
1443
			nfp_net_set_hash(netdev, meta,
1444 1445 1446 1447 1448
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
1449
			meta->mark = get_unaligned_be32(data);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1462
static void
1463 1464 1465
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1466 1467 1468 1469 1470
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1471 1472 1473 1474 1475
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1476
	if (rxbuf)
1477
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1478 1479 1480 1481
	if (skb)
		dev_kfree_skb_any(skb);
}

1482
static bool
1483
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1484
		   struct nfp_net_tx_ring *tx_ring,
1485
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1486 1487 1488 1489 1490 1491 1492
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1493
		nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL);
1494
		return false;
1495 1496 1497 1498 1499 1500
	}

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
1501 1502 1503

	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);

1504 1505 1506 1507 1508 1509
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1510
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1511
				   pkt_len, DMA_BIDIRECTIONAL);
1512 1513 1514 1515 1516

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1517
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1518 1519 1520 1521
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
1522
	txd->lso_hdrlen = 0;
1523 1524 1525

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1526
	return true;
1527 1528
}

1529 1530
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1531 1532
{
	struct xdp_buff xdp;
1533 1534 1535 1536 1537 1538
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1539

1540 1541
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1542

1543 1544 1545 1546
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1563
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1564 1565 1566
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1567
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1568
	int pkts_polled = 0;
1569 1570
	int idx;

1571
	rcu_read_lock();
1572 1573
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1574 1575
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1576
	while (pkts_polled < budget) {
1577
		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1578 1579
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
1580
		struct nfp_meta_parsed meta;
1581 1582 1583
		dma_addr_t new_dma_addr;
		void *new_frag;

1584
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1585 1586

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1587
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1588
			break;
J
Jakub Kicinski 已提交
1589

1590 1591 1592 1593 1594
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

1595 1596
		memset(&meta, 0, sizeof(meta));

1597 1598 1599
		rx_ring->rd_p++;
		pkts_polled++;

1600
		rxbuf =	&rx_ring->rxbufs[idx];
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1613 1614
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1615
		pkt_len = data_len - meta_len;
1616

1617
		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1618
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1619
			pkt_off += meta_len;
1620
		else
1621 1622
			pkt_off += dp->rx_offset;
		meta_off = pkt_off - meta_len;
1623 1624 1625 1626

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1627
		r_vec->rx_bytes += pkt_len;
1628 1629
		u64_stats_update_end(&r_vec->rx_sync);

1630 1631 1632 1633
		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1634
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1635 1636 1637
			continue;
		}

1638 1639 1640
		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
					data_len);

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, &meta,
					      rxbuf->frag + meta_off, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(dp->netdev, &meta,
						 rxbuf->frag + meta_off,
						 meta_len);
			if (unlikely(end != rxbuf->frag + pkt_off)) {
				nn_dp_warn(dp, "invalid RX packet metadata\n");
				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
						NULL);
				continue;
			}
		}

1658
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1659
				  dp->bpf_offload_xdp)) {
1660
			unsigned int dma_off;
1661
			void *hard_start;
1662 1663
			int act;

1664 1665 1666
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1667
					      &pkt_off, &pkt_len);
1668 1669 1670 1671
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1672
				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1673
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1674
								 tx_ring, rxbuf,
1675
								 dma_off,
1676 1677 1678
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1679 1680 1681 1682
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1683
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1684
			case XDP_DROP:
1685
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1686 1687 1688 1689 1690 1691
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1692
		if (unlikely(!skb)) {
1693
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1694 1695
			continue;
		}
1696
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1697
		if (unlikely(!new_frag)) {
1698
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1699 1700 1701
			continue;
		}

1702
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1703

1704
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1705

1706
		skb_reserve(skb, pkt_off);
1707 1708
		skb_put(skb, pkt_len);

1709 1710
		skb->mark = meta.mark;
		skb_set_hash(skb, meta.hash, meta.hash_type);
1711

1712
		skb_record_rx_queue(skb, rx_ring->idx);
1713
		skb->protocol = eth_type_trans(skb, dp->netdev);
1714

1715
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1716 1717 1718 1719 1720 1721 1722 1723

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1724 1725 1726 1727
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1742
	unsigned int pkts_polled = 0;
1743

1744 1745
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1746
	if (r_vec->rx_ring) {
1747
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1748 1749 1750
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1751

1752 1753 1754
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1769
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1770 1771 1772 1773

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1774
		dma_free_coherent(dp->dev, tx_ring->size,
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1786
 * @dp:        NFP Net data path struct
1787 1788 1789 1790
 * @tx_ring:   TX Ring structure to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1791
static int
1792
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1793 1794 1795 1796
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1797
	tx_ring->cnt = dp->txd_cnt;
1798 1799

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1800
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1801 1802 1803 1804 1805 1806 1807 1808 1809
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1810
	if (!tx_ring->is_xdp)
1811
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1812
				    tx_ring->idx);
1813 1814 1815 1816 1817 1818 1819 1820

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
			  struct nfp_net_tx_ring *tx_ring)
{
	unsigned int i;

	if (!tx_ring->is_xdp)
		return;

	for (i = 0; i < tx_ring->cnt; i++) {
		if (!tx_ring->txbufs[i].frag)
			return;

		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
	}
}

static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
			   struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
	unsigned int i;

	if (!tx_ring->is_xdp)
		return 0;

	for (i = 0; i < tx_ring->cnt; i++) {
		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
		if (!txbufs[i].frag) {
			nfp_net_tx_ring_bufs_free(dp, tx_ring);
			return -ENOMEM;
		}
	}

	return 0;
}

1860
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1861 1862 1863
{
	unsigned int r;

1864 1865 1866 1867
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1868

1869
	for (r = 0; r < dp->num_tx_rings; r++) {
1870 1871
		int bias = 0;

1872 1873
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1874

1875
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
1876
				     r, bias);
1877

1878
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
1879
			goto err_free_prev;
1880 1881 1882

		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
			goto err_free_ring;
1883 1884
	}

1885
	return 0;
1886 1887

err_free_prev:
1888 1889 1890
	while (r--) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
1891
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1892
	}
1893 1894
	kfree(dp->tx_rings);
	return -ENOMEM;
1895 1896
}

1897
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1898 1899 1900
{
	unsigned int r;

1901 1902
	for (r = 0; r < dp->num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
1903
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1904
	}
1905

1906
	kfree(dp->tx_rings);
1907 1908
}

1909 1910 1911 1912 1913 1914 1915
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1916
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1917 1918 1919 1920

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1921
		dma_free_coherent(dp->dev, rx_ring->size,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1933
 * @dp:	      NFP Net data path struct
1934 1935 1936 1937
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1938
static int
1939
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1940 1941 1942
{
	int sz;

1943
	rx_ring->cnt = dp->rxd_cnt;
1944
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1945
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1962
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1963 1964 1965
{
	unsigned int r;

1966 1967 1968 1969
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1970

1971 1972
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1973

1974
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1975 1976
			goto err_free_prev;

1977
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1978 1979 1980
			goto err_free_ring;
	}

1981
	return 0;
1982 1983 1984

err_free_prev:
	while (r--) {
1985
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1986
err_free_ring:
1987
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1988
	}
1989 1990
	kfree(dp->rx_rings);
	return -ENOMEM;
1991 1992
}

1993
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
1994 1995 1996
{
	unsigned int r;

1997 1998 1999
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2000 2001
	}

2002
	kfree(dp->rx_rings);
2003 2004
}

2005
static void
2006 2007
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
2008
{
2009
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2010
	r_vec->tx_ring =
2011
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2012

2013 2014
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2015 2016
}

2017 2018 2019
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
2020
{
2021
	int err;
2022

2023
	/* Setup NAPI */
2024
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
2025 2026
		       nfp_net_poll, NAPI_POLL_WEIGHT);

2027
	snprintf(r_vec->name, sizeof(r_vec->name),
2028
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
2029 2030
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
2031
	if (err) {
2032
		netif_napi_del(&r_vec->napi);
2033
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2034 2035
		return err;
	}
2036
	disable_irq(r_vec->irq_vector);
2037

2038
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2039

2040 2041
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2042

2043
	return 0;
2044 2045
}

2046 2047
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2048
{
2049
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2050
	netif_napi_del(&r_vec->napi);
2051
	free_irq(r_vec->irq_vector, r_vec);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2075
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2099
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2100 2101 2102 2103 2104
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2105
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2106 2107 2108 2109
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2110
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2111 2112
 * @nn:      NFP Net device to reconfigure
 *
2113 2114 2115
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2116
 */
2117
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2118 2119
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2120
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2121
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2122
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2123 2124
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2136 2137 2138 2139 2140 2141 2142
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2143
	unsigned int r;
2144 2145
	int err;

2146
	new_ctrl = nn->dp.ctrl;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2160
	if (err)
2161 2162
		nn_err(nn, "Could not disable device: %d\n", err);

2163 2164 2165 2166 2167
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2168 2169
		nfp_net_vec_clear_ring_data(nn, r);

2170
	nn->dp.ctrl = new_ctrl;
2171 2172
}

2173
static void
2174 2175
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2176 2177
{
	/* Write the DMA address, size and MSI-X info to the device */
2178 2179
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2180
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2181
}
2182

2183 2184 2185 2186 2187 2188
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2189
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2190 2191
}

2192 2193 2194 2195 2196
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2197
{
2198
	u32 bufsz, new_ctrl, update = 0;
2199 2200 2201
	unsigned int r;
	int err;

2202
	new_ctrl = nn->dp.ctrl;
2203

2204
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS) {
2205 2206 2207 2208 2209 2210
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

2211
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2212 2213 2214 2215
		nfp_net_coalesce_write_cfg(nn);
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2216 2217 2218 2219
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2220

2221 2222
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2223

2224 2225
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2226

2227
	nfp_net_write_mac_addr(nn);
2228

2229
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2230 2231 2232

	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2244 2245 2246 2247
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2248

2249
	nn->dp.ctrl = new_ctrl;
2250

2251
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2252
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2253

2254 2255 2256
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2257
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2258 2259
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2260
		udp_tunnel_get_rx_info(nn->dp.netdev);
2261 2262
	}

2263
	return 0;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2274
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2275
		napi_enable(&nn->r_vecs[r].napi);
2276
		enable_irq(nn->r_vecs[r].irq_vector);
2277
	}
2278

2279
	netif_tx_wake_all_queues(nn->dp.netdev);
2280

2281
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2282 2283 2284
	nfp_net_read_link_status(nn);
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2300 2301 2302 2303 2304
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2305
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2306

2307
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2308 2309
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2310 2311
			goto err_cleanup_vec_p;
	}
2312

2313 2314
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2315
		goto err_cleanup_vec;
2316

2317 2318
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2319
		goto err_free_rx_rings;
2320

2321
	for (r = 0; r < nn->max_r_vecs; r++)
2322
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2323

2324
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2325 2326 2327
	if (err)
		goto err_free_rings;

2328
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2339
	err = nfp_net_set_config_and_enable(nn);
2340
	if (err)
2341
		goto err_free_rings;
2342 2343 2344 2345 2346 2347 2348

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2349
	nfp_net_open_stack(nn);
2350 2351 2352 2353

	return 0;

err_free_rings:
2354
	nfp_net_tx_rings_free(&nn->dp);
2355
err_free_rx_rings:
2356
	nfp_net_rx_rings_free(&nn->dp);
2357
err_cleanup_vec:
2358
	r = nn->dp.num_r_vecs;
2359
err_cleanup_vec_p:
2360
	while (r--)
2361
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2362
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2363 2364 2365 2366 2367 2368
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2369 2370
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2371
 */
2372
static void nfp_net_close_stack(struct nfp_net *nn)
2373
{
2374
	unsigned int r;
2375

2376
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2377
	netif_carrier_off(nn->dp.netdev);
2378 2379
	nn->link_up = false;

2380
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2381
		disable_irq(nn->r_vecs[r].irq_vector);
2382
		napi_disable(&nn->r_vecs[r].napi);
2383
	}
2384

2385
	netif_tx_disable(nn->dp.netdev);
2386
}
2387

2388 2389 2390 2391 2392 2393 2394
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2395

2396
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2397
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2398
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2399
	}
2400 2401
	for (r = 0; r < nn->dp.num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(&nn->dp, &nn->dp.tx_rings[r]);
2402
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
2403
	}
2404
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2405
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2406

2407 2408
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2409

2410
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2411
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2443
	new_ctrl = nn->dp.ctrl;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2454
	if (new_ctrl == nn->dp.ctrl)
2455 2456 2457
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2458
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2459

2460
	nn->dp.ctrl = new_ctrl;
2461 2462
}

2463 2464 2465 2466 2467 2468
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2469
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2470 2471
}

2472 2473 2474 2475 2476 2477
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2478 2479

	nn->dp.netdev->mtu = new_dp.mtu;
2480 2481 2482

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2483 2484
}

2485
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2486
{
2487
	unsigned int r;
2488
	int err;
2489

2490
	nfp_net_dp_swap(nn, dp);
2491

2492
	for (r = 0; r <	nn->max_r_vecs; r++)
2493
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2494

2495
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2496 2497
	if (err)
		return err;
2498

2499 2500 2501
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2502 2503 2504 2505
		if (err)
			return err;
	}

2506
	return nfp_net_set_config_and_enable(nn);
2507
}
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2529 2530 2531
static int
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
		     struct netlink_ext_ack *extack)
2532 2533
{
	/* XDP-enabled tests */
2534
	if (!dp->xdp_prog)
2535
		return 0;
2536
	if (dp->fl_bufsz > PAGE_SIZE) {
2537
		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2538 2539
		return -EINVAL;
	}
2540
	if (dp->num_tx_rings > nn->max_tx_rings) {
2541
		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2542 2543 2544 2545 2546 2547
		return -EINVAL;
	}

	return 0;
}

2548 2549
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
			  struct netlink_ext_ack *extack)
2550
{
2551
	int r, err;
2552

2553
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2554

2555
	dp->num_stack_tx_rings = dp->num_tx_rings;
2556
	if (dp->xdp_prog)
2557
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2558

2559
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2560

2561
	err = nfp_net_check_config(nn, dp, extack);
2562
	if (err)
2563
		goto exit_free_dp;
2564

2565
	if (!netif_running(dp->netdev)) {
2566
		nfp_net_dp_swap(nn, dp);
2567 2568
		err = 0;
		goto exit_free_dp;
2569 2570 2571
	}

	/* Prepare new rings */
2572
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2573 2574
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2575
			dp->num_r_vecs = r;
2576 2577 2578
			goto err_cleanup_vecs;
		}
	}
2579 2580 2581 2582 2583 2584 2585 2586

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2587 2588 2589 2590 2591

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2592
	err = nfp_net_dp_swap_enable(nn, dp);
2593
	if (err) {
2594
		int err2;
2595

2596
		nfp_net_clear_config_and_disable(nn);
2597

2598
		/* Try with old configuration and old rings */
2599
		err2 = nfp_net_dp_swap_enable(nn, dp);
2600
		if (err2)
2601
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2602
			       err, err2);
2603
	}
2604
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2605
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2606

2607 2608
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2609 2610

	nfp_net_open_stack(nn);
2611 2612
exit_free_dp:
	kfree(dp);
2613 2614

	return err;
2615 2616

err_free_rx:
2617
	nfp_net_rx_rings_free(dp);
2618
err_cleanup_vecs:
2619
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2620
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2621
	kfree(dp);
2622 2623 2624 2625 2626 2627
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2628 2629 2630 2631 2632
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2633

2634 2635
	dp->mtu = new_mtu;

2636
	return nfp_net_ring_reconfig(nn, dp, NULL);
2637 2638
}

2639 2640
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2641 2642 2643 2644
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2645
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
2687
		return -EOPNOTSUPP;
2688
	if (proto != htons(ETH_P_ALL))
2689
		return -EOPNOTSUPP;
2690

2691
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2692
		if (!nn->dp.bpf_offload_xdp)
2693 2694 2695 2696
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2697 2698 2699 2700

	return -EINVAL;
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2711
	new_ctrl = nn->dp.ctrl;
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
E
Edwin Peer 已提交
2729 2730
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					      NFP_NET_CFG_CTRL_LSO;
2731
		else
E
Edwin Peer 已提交
2732
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2756
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2757 2758 2759 2760
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2761 2762 2763
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2764
	if (new_ctrl == nn->dp.ctrl)
2765 2766
		return 0;

2767
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2768 2769 2770 2771 2772
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2773
	nn->dp.ctrl = new_ctrl;
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2810
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2811 2812 2813 2814 2815 2816 2817 2818
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2819
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2820 2821 2822 2823

	return features;
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2856
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2857 2858 2859 2860 2861 2862 2863 2864
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2865
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2892
				   struct udp_tunnel_info *ti)
2893 2894 2895 2896
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2897 2898 2899 2900
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2901 2902 2903 2904
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2905
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2906 2907 2908
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2909
				   struct udp_tunnel_info *ti)
2910 2911 2912 2913
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2914 2915 2916 2917
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2918
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2919 2920 2921 2922 2923 2924
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2935 2936
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2949
	nn->dp.bpf_offload_xdp = prog && !ret;
2950 2951 2952
	return ret;
}

2953
static int nfp_net_xdp_setup(struct nfp_net *nn, struct netdev_xdp *xdp)
2954
{
2955
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2956
	struct bpf_prog *prog = xdp->prog;
2957
	struct nfp_net_dp *dp;
2958 2959
	int err;

2960
	if (!prog && !nn->dp.xdp_prog)
2961
		return 0;
2962 2963
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2964
		bpf_prog_put(prog);
2965
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2966 2967 2968
		return 0;
	}

2969 2970 2971 2972
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2973
	dp->xdp_prog = prog;
2974
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2975
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2976
	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
2977 2978

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2979
	err = nfp_net_ring_reconfig(nn, dp, xdp->extack);
2980 2981 2982
	if (err)
		return err;

2983 2984
	if (old_prog)
		bpf_prog_put(old_prog);
2985

2986
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
2997
		return nfp_net_xdp_setup(nn, xdp);
2998
	case XDP_QUERY_PROG:
2999
		xdp->prog_attached = !!nn->dp.xdp_prog;
3000 3001 3002 3003 3004 3005
		return 0;
	default:
		return -EINVAL;
	}
}

3006 3007 3008 3009 3010
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3011
	.ndo_setup_tc		= nfp_net_setup_tc,
3012 3013 3014 3015 3016 3017
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
3018
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3019 3020
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3021
	.ndo_xdp		= nfp_net_xdp,
3022 3023 3024 3025 3026 3027 3028 3029
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3030
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3031 3032 3033
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
3034 3035 3036 3037
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
E
Edwin Peer 已提交
3038
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
E
Edwin Peer 已提交
3049 3050
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3051 3052 3053 3054 3055
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3056 3057
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3072 3073
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3086 3087
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3088 3089 3090 3091 3092
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3093 3094 3095
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3096
				 netif_get_num_default_rss_queues());
3097

3098 3099 3100
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3101

3102 3103
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3104 3105

	spin_lock_init(&nn->reconfig_lock);
3106
	spin_lock_init(&nn->rx_filter_lock);
3107 3108
	spin_lock_init(&nn->link_status_lock);

3109 3110
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3111 3112
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3123
	free_netdev(nn->dp.netdev);
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3147 3148 3149 3150 3151 3152
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3165
		dev_warn(nn->dp.dev,
3166 3167 3168 3169 3170 3171
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3172

3173
	nfp_net_rss_init_itbl(nn);
3174 3175 3176 3177

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3178
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3205
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3206

3207 3208
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3209 3210 3211 3212
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3213
	nfp_net_write_mac_addr(nn);
3214

3215
	/* Determine RX packet/metadata boundary offset */
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3226
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3227
	}
3228

3229 3230 3231 3232 3233
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3234 3235
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3246
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3247 3248 3249
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3250
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3251 3252 3253
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3254
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3255
	}
E
Edwin Peer 已提交
3256 3257
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3258
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
E
Edwin Peer 已提交
3259 3260
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					 NFP_NET_CFG_CTRL_LSO;
3261 3262 3263 3264
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3265
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3266 3267 3268 3269 3270 3271
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3272
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3273 3274 3275 3276 3277 3278 3279 3280

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3281
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3282 3283
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
E
Edwin Peer 已提交
3284 3285 3286 3287 3288 3289
		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
		} else {
			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		}
3290 3291 3292 3293
	}

	netdev->features = netdev->hw_features;

3294 3295 3296
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3297 3298
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
E
Edwin Peer 已提交
3299
	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3300 3301 3302

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3303
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3304
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3305
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3306 3307 3308 3309

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3310
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3328 3329 3330 3331 3332

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3333
	netif_carrier_off(netdev);
3334 3335

	nfp_net_set_ethtool_ops(netdev);
3336
	nfp_net_vecs_init(netdev);
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3347 3348
	struct nfp_net *nn = netdev_priv(netdev);

3349
	unregister_netdev(nn->dp.netdev);
3350

3351 3352 3353
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3354
		nfp_net_xdp_offload(nn, NULL);
3355
}