nfp_net_common.c 85.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp_eth.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
89
{
90
	return dma_map_single(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
91
			      dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
92
			      dp->rx_dma_dir);
93 94
}

95
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
96
{
97
	dma_unmap_single(dp->dev, dma_addr,
98 99
			 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			 dp->rx_dma_dir);
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
225 226 227
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
228 229 230

	spin_lock_bh(&nn->reconfig_lock);

231
	nn->reconfig_sync_present = true;
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
250 251
	}

252 253 254 255 256 257 258 259 260 261
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

262
	spin_unlock_bh(&nn->reconfig_lock);
263

264 265 266 267 268 269 270 271 272 273 274
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
275
 * Clear the ICR for the IRQ entry.
276 277 278 279 280 281 282 283
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
284 285 286 287 288
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
289
 *
290
 * Return: Number of irqs obtained or 0 on error.
291
 */
292 293 294
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
295
{
296 297
	unsigned int i;
	int got_irqs;
298

299 300
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
301

302 303 304 305 306
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
307 308 309
		return 0;
	}

310 311 312 313 314
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
315 316 317
}

/**
318 319 320 321
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
322
 *
323 324
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
325
 */
326 327 328
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
329
{
330 331
	struct nfp_net_dp *dp = &nn->dp;

332
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
333
	dp->num_r_vecs = nn->max_r_vecs;
334

335
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
336

337 338
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
339 340 341
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
342

343 344 345
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
346 347 348 349
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
350
 * @pdev:        PCI device structure
351 352 353
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
354
void nfp_net_irqs_disable(struct pci_dev *pdev)
355
{
356
	pci_disable_msix(pdev);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

J
Jakub Kicinski 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
bool nfp_net_link_changed_read_clear(struct nfp_net *nn)
{
	unsigned long flags;
	bool ret;

	spin_lock_irqsave(&nn->link_status_lock, flags);
	ret = nn->link_changed;
	nn->link_changed = false;
	spin_unlock_irqrestore(&nn->link_status_lock, flags);

	return ret;
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;
J
Jakub Kicinski 已提交
411
	nn->link_changed = true;
412 413

	if (nn->link_up) {
414 415
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
416
	} else {
417 418
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
434 435 436
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
437 438 439

	nfp_net_read_link_status(nn);

440
	nfp_net_irq_unmask(nn, entry->entry);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
464 465
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
466
 */
467 468 469
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
470 471 472
{
	struct nfp_net *nn = r_vec->nfp_net;

473 474 475
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

476 477 478 479 480 481 482
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
483 484
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
485
 */
486 487 488
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
489 490 491
{
	struct nfp_net *nn = r_vec->nfp_net;

492 493 494
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

495 496 497 498 499
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
500
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
501 502
 * @netdev:   netdev structure
 */
503
static void nfp_net_vecs_init(struct net_device *netdev)
504 505 506 507 508 509 510 511
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

512
	for (r = 0; r < nn->max_r_vecs; r++) {
513 514 515 516
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

517 518 519
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
520 521
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

547
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
548 549 550 551 552 553
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
554
	nn_writeb(nn, ctrl_offset, entry->entry);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
596
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
642
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
673
 * @dp:  NFP Net data path struct
674 675 676 677 678 679 680 681
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
682 683
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
684 685 686 687 688 689 690
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

691
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
710
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
711 712 713 714 715 716 717 718 719 720 721
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
722
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
723 724 725 726 727 728 729 730 731 732 733
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

734 735 736 737 738 739 740
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

741 742 743 744 745 746 747 748 749 750 751 752 753
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
754 755
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
756
	struct netdev_queue *nd_q;
757
	struct nfp_net_dp *dp;
758 759 760 761 762 763
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

764
	dp = &nn->dp;
765
	qidx = skb_get_queue_mapping(skb);
766
	tx_ring = &dp->tx_rings[qidx];
767
	r_vec = tx_ring->r_vec;
768
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
769 770 771 772

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
773 774
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
775
		netif_tx_stop_queue(nd_q);
776
		nfp_net_tx_xmit_more_flush(tx_ring);
777 778 779 780 781 782 783
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
784
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
785
				  DMA_TO_DEVICE);
786
	if (dma_mapping_error(dp->dev, dma_addr))
787 788
		goto err_free;

789
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

810
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
811

812
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
813

814
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
815 816 817 818 819 820 821 822 823 824 825 826 827
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

828
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
829
						    fsize, DMA_TO_DEVICE);
830
			if (dma_mapping_error(dp->dev, dma_addr))
831 832
				goto err_unmap;

833
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
858 859
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
860 861 862 863 864 865 866 867 868

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
869
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
870 871 872 873 874 875 876 877
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
878
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
879 880 881 882 883
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
884
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
885
	nfp_net_tx_xmit_more_flush(tx_ring);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
902
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
924
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
925 926 927 928 929 930 931 932 933 934 935
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
936
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
937 938 939 940 941 942 943
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
944
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

964
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
965 966 967 968 969 970 971 972 973 974 975 976 977 978
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

979 980 981
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
982
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

1005
		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[idx].dma_addr);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1028
/**
1029
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1030
 * @dp:		NFP Net data path struct
1031
 * @tx_ring:	TX ring structure
1032 1033 1034
 *
 * Assumes that the device is stopped
 */
1035
static void
1036
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1037
{
1038
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1039
	const struct skb_frag_struct *frag;
1040
	struct netdev_queue *nd_q;
1041 1042

	while (tx_ring->rd_p != tx_ring->wr_p) {
1043 1044
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1045

1046
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1047
		tx_buf = &tx_ring->txbufs[idx];
1048

1049
		if (tx_ring == r_vec->xdp_ring) {
1050
			nfp_net_dma_unmap_rx(dp, tx_buf->dma_addr);
1051
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1052
		} else {
1053 1054 1055 1056 1057
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
1058
				dma_unmap_single(dp->dev, tx_buf->dma_addr,
1059 1060 1061 1062 1063
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1064
				dma_unmap_page(dp->dev, tx_buf->dma_addr,
1065 1066 1067
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1068

1069 1070 1071 1072
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1073

1074 1075 1076
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1077 1078 1079 1080 1081

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1082 1083 1084 1085 1086 1087
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1088 1089 1090
	if (tx_ring == r_vec->xdp_ring)
		return;

1091
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1092 1093 1094 1095 1096 1097 1098 1099
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1100
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1101 1102 1103 1104 1105 1106 1107 1108 1109
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1110
static unsigned int
1111
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1112 1113 1114
{
	unsigned int fl_bufsz;

1115
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1116
	fl_bufsz += dp->rx_dma_off;
1117
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1118
		fl_bufsz += NFP_NET_MAX_PREPEND;
1119
	else
1120
		fl_bufsz += dp->rx_offset;
1121
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1122

1123 1124 1125
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1126 1127
	return fl_bufsz;
}
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1138
/**
1139
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1140
 * @dp:		NFP Net data path struct
1141 1142 1143
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1144
 * This function will allcate a new page frag, map it for DMA.
1145
 *
1146
 * Return: allocated page frag or NULL on failure.
1147
 */
1148
static void *
1149 1150
nfp_net_rx_alloc_one(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
		     dma_addr_t *dma_addr)
1151
{
1152
	void *frag;
1153

1154
	if (!dp->xdp_prog)
1155
		frag = netdev_alloc_frag(dp->fl_bufsz);
1156 1157
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1158
	if (!frag) {
1159
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1160 1161 1162
		return NULL;
	}

1163
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1164
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1165
		nfp_net_free_frag(frag, dp->xdp_prog);
1166
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1167 1168 1169
		return NULL;
	}

1170
	return frag;
1171 1172
}

1173
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1174 1175 1176
{
	void *frag;

1177 1178
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1179 1180
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1181
	if (!frag) {
1182
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1183 1184 1185
		return NULL;
	}

1186
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1187 1188 1189
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1190 1191 1192 1193 1194 1195
		return NULL;
	}

	return frag;
}

1196 1197
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1198
 * @dp:		NFP Net data path struct
1199
 * @rx_ring:	RX ring structure
1200
 * @frag:	page fragment buffer
1201 1202
 * @dma_addr:	DMA address of skb mapping
 */
1203 1204
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1205
				void *frag, dma_addr_t dma_addr)
1206 1207 1208
{
	unsigned int wr_idx;

1209
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1210 1211

	/* Stash SKB and DMA address away */
1212
	rx_ring->rxbufs[wr_idx].frag = frag;
1213 1214 1215 1216 1217
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1218 1219
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1234 1235
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1236
 *
1237 1238
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1239
 */
1240
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1241
{
1242
	unsigned int wr_idx, last_idx;
1243

1244
	/* Move the empty entry to the end of the list */
1245
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1246 1247
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1248
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1249
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1250
	rx_ring->rxbufs[last_idx].frag = NULL;
1251

1252 1253 1254 1255 1256
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1257

1258 1259
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1260
 * @dp:		NFP Net data path struct
1261 1262 1263 1264 1265 1266 1267
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1268
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1269
			  struct nfp_net_rx_ring *rx_ring)
1270 1271
{
	unsigned int i;
1272

1273 1274 1275 1276 1277
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1278
		if (!rx_ring->rxbufs[i].frag)
1279 1280
			continue;

1281
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1282
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1283
		rx_ring->rxbufs[i].dma_addr = 0;
1284
		rx_ring->rxbufs[i].frag = NULL;
1285 1286 1287 1288
	}
}

/**
1289
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1290
 * @dp:		NFP Net data path struct
1291
 * @rx_ring:	RX ring to remove buffers from
1292
 */
1293
static int
1294
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1295
			   struct nfp_net_rx_ring *rx_ring)
1296
{
1297 1298 1299 1300
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1301

1302
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1303
		rxbufs[i].frag =
1304
			nfp_net_rx_alloc_one(dp, rx_ring, &rxbufs[i].dma_addr);
1305
		if (!rxbufs[i].frag) {
1306
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1307 1308 1309 1310 1311 1312 1313
			return -ENOMEM;
		}
	}

	return 0;
}

1314 1315
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1316
 * @dp:	     NFP Net data path struct
1317 1318
 * @rx_ring: RX ring to fill
 */
1319 1320 1321
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1322 1323 1324 1325
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1326
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1327 1328 1329
				    rx_ring->rxbufs[i].dma_addr);
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1346
 * @dp:  NFP Net data path struct
1347 1348 1349 1350
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1351 1352
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1353 1354 1355 1356
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1357
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1389
			     unsigned int type, __be32 *hash)
1390
{
1391
	if (!(netdev->features & NETIF_F_RXHASH))
1392 1393
		return;

1394
	switch (type) {
1395 1396 1397
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1398
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1399 1400
		break;
	default:
1401
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1402 1403 1404 1405
		break;
	}
}

1406 1407
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
1408
		      void *data, struct nfp_net_rx_desc *rxd)
1409
{
1410
	struct nfp_net_rx_hash *rx_hash = data;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
1421
		   void *data, int meta_len)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1451
static void
1452 1453 1454
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1455 1456 1457 1458 1459
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1460 1461 1462 1463 1464
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1465
	if (rxbuf)
1466
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1467 1468 1469 1470
	if (skb)
		dev_kfree_skb_any(skb);
}

1471
static bool
1472
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1473
		   struct nfp_net_tx_ring *tx_ring,
1474
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1475 1476 1477 1478 1479 1480 1481 1482 1483
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1484
		nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL);
1485
		return false;
1486 1487
	}

1488
	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1489
	if (unlikely(!new_frag)) {
1490
		nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL);
1491
		return false;
1492
	}
1493
	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1505
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1506
				   pkt_len, DMA_BIDIRECTIONAL);
1507 1508 1509 1510 1511

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1512
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1513 1514 1515 1516 1517 1518 1519 1520
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1521
	return true;
1522 1523
}

1524 1525
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1526 1527
{
	struct xdp_buff xdp;
1528 1529 1530 1531 1532 1533
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1534

1535 1536
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1537

1538 1539 1540 1541
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1558
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1559 1560 1561
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1562
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1563
	int pkts_polled = 0;
1564 1565
	int idx;

1566
	rcu_read_lock();
1567 1568
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1569 1570
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1571
	while (pkts_polled < budget) {
1572
		unsigned int meta_len, data_len, data_off, pkt_len;
1573
		u8 meta_prepend[NFP_NET_MAX_PREPEND];
1574 1575 1576 1577
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;
1578
		u8 *meta;
1579

1580
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1581 1582

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1583
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1584
			break;
J
Jakub Kicinski 已提交
1585

1586 1587 1588 1589 1590 1591 1592 1593
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1594
		rxbuf =	&rx_ring->rxbufs[idx];
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1607 1608
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1609
		pkt_len = data_len - meta_len;
1610

1611
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1612
			data_off = NFP_NET_RX_BUF_HEADROOM + meta_len;
1613
		else
1614
			data_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_offset;
1615
		data_off += dp->rx_dma_off;
1616 1617 1618 1619

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1620
		r_vec->rx_bytes += pkt_len;
1621 1622
		u64_stats_update_end(&r_vec->rx_sync);

1623 1624 1625 1626 1627 1628 1629
		/* Pointer to start of metadata */
		meta = rxbuf->frag + data_off - meta_len;

		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1630
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1631 1632 1633
			continue;
		}

1634
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1635
				  dp->bpf_offload_xdp)) {
1636
			unsigned int dma_off;
1637
			void *hard_start;
1638 1639
			int act;

1640
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1641
			dma_off = data_off - NFP_NET_RX_BUF_HEADROOM;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
			dma_sync_single_for_cpu(dp->dev, rxbuf->dma_addr,
						dma_off + pkt_len,
						DMA_BIDIRECTIONAL);

			/* Move prepend out of the way */
			if (xdp_prog->xdp_adjust_head) {
				memcpy(meta_prepend, meta, meta_len);
				meta = meta_prepend;
			}

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
					      &data_off, &pkt_len);
1654 1655 1656 1657
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1658
				dma_off = data_off - NFP_NET_RX_BUF_HEADROOM;
1659
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1660
								 tx_ring, rxbuf,
1661
								 dma_off,
1662 1663 1664
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1665 1666 1667 1668
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1669
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1670
			case XDP_DROP:
1671
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1672 1673 1674 1675 1676 1677
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1678
		if (unlikely(!skb)) {
1679
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1680 1681
			continue;
		}
1682
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1683
		if (unlikely(!new_frag)) {
1684
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1685 1686 1687
			continue;
		}

1688
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1689

1690
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1691 1692 1693 1694

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1695
		if (!dp->chained_metadata_format) {
1696
			nfp_net_set_hash_desc(dp->netdev, skb, meta, rxd);
1697 1698 1699
		} else if (meta_len) {
			void *end;

1700 1701 1702
			end = nfp_net_parse_meta(dp->netdev, skb, meta,
						 meta_len);
			if (unlikely(end != meta + meta_len)) {
1703
				nn_dp_warn(dp, "invalid RX packet metadata\n");
1704
				nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1705 1706 1707 1708
				continue;
			}
		}

1709
		skb_record_rx_queue(skb, rx_ring->idx);
1710
		skb->protocol = eth_type_trans(skb, dp->netdev);
1711

1712
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1713 1714 1715 1716 1717 1718 1719 1720

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1721 1722 1723 1724
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1739
	unsigned int pkts_polled = 0;
1740

1741 1742
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1743
	if (r_vec->rx_ring) {
1744
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1745 1746 1747
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1748

1749 1750 1751
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1766
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1767 1768 1769 1770

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1771
		dma_free_coherent(dp->dev, tx_ring->size,
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1783
 * @dp:        NFP Net data path struct
1784
 * @tx_ring:   TX Ring structure to allocate
1785
 * @is_xdp:    True if ring will be used for XDP
1786 1787 1788
 *
 * Return: 0 on success, negative errno otherwise.
 */
1789
static int
1790 1791
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring,
		      bool is_xdp)
1792 1793 1794 1795
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1796
	tx_ring->cnt = dp->txd_cnt;
1797 1798

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1799
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1800 1801 1802 1803 1804 1805 1806 1807 1808
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1809
	if (!is_xdp)
1810
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1811
				    tx_ring->idx);
1812 1813 1814 1815 1816 1817 1818 1819

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1820
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1821 1822 1823
{
	unsigned int r;

1824 1825 1826 1827
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1828

1829
	for (r = 0; r < dp->num_tx_rings; r++) {
1830 1831
		int bias = 0;

1832 1833
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1834

1835 1836
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
				     r);
1837

1838
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r], bias))
1839 1840 1841
			goto err_free_prev;
	}

1842
	return 0;
1843 1844 1845

err_free_prev:
	while (r--)
1846 1847 1848
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
	kfree(dp->tx_rings);
	return -ENOMEM;
1849 1850
}

1851
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1852 1853 1854
{
	unsigned int r;

1855 1856
	for (r = 0; r < dp->num_tx_rings; r++)
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1857

1858
	kfree(dp->tx_rings);
1859 1860
}

1861 1862 1863 1864 1865 1866 1867
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1868
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1869 1870 1871 1872

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1873
		dma_free_coherent(dp->dev, rx_ring->size,
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1885
 * @dp:	      NFP Net data path struct
1886 1887 1888 1889
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1890
static int
1891
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1892 1893 1894
{
	int sz;

1895
	rx_ring->cnt = dp->rxd_cnt;
1896
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1897
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1914
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1915 1916 1917
{
	unsigned int r;

1918 1919 1920 1921
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1922

1923 1924
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1925

1926
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1927 1928
			goto err_free_prev;

1929
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1930 1931 1932
			goto err_free_ring;
	}

1933
	return 0;
1934 1935 1936

err_free_prev:
	while (r--) {
1937
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1938
err_free_ring:
1939
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1940
	}
1941 1942
	kfree(dp->rx_rings);
	return -ENOMEM;
1943 1944
}

1945
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
1946 1947 1948
{
	unsigned int r;

1949 1950 1951
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1952 1953
	}

1954
	kfree(dp->rx_rings);
1955 1956
}

1957
static void
1958 1959
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
1960
{
1961
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
1962
	r_vec->tx_ring =
1963
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
1964

1965 1966
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
1967 1968
}

1969 1970 1971
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1972
{
1973
	int err;
1974

1975
	/* Setup NAPI */
1976
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
1977 1978
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1979
	snprintf(r_vec->name, sizeof(r_vec->name),
1980
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
1981 1982
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
1983
	if (err) {
1984
		netif_napi_del(&r_vec->napi);
1985
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
1986 1987
		return err;
	}
1988
	disable_irq(r_vec->irq_vector);
1989

1990
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
1991

1992 1993
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
1994

1995
	return 0;
1996 1997
}

1998 1999
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2000
{
2001
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2002
	netif_napi_del(&r_vec->napi);
2003
	free_irq(r_vec->irq_vector, r_vec);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2027
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2051
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2052 2053 2054 2055 2056
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2057
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2058 2059 2060 2061
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2062
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2063 2064
 * @nn:      NFP Net device to reconfigure
 *
2065 2066 2067
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2068
 */
2069
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2070 2071
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2072
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2073
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2074
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2075 2076
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2088 2089 2090 2091 2092 2093 2094
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2095
	unsigned int r;
2096 2097
	int err;

2098
	new_ctrl = nn->dp.ctrl;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2112
	if (err)
2113 2114
		nn_err(nn, "Could not disable device: %d\n", err);

2115 2116 2117 2118 2119
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2120 2121
		nfp_net_vec_clear_ring_data(nn, r);

2122
	nn->dp.ctrl = new_ctrl;
2123 2124
}

2125
static void
2126 2127
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2128 2129
{
	/* Write the DMA address, size and MSI-X info to the device */
2130 2131
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2132
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2133
}
2134

2135 2136 2137 2138 2139 2140
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2141
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2142 2143
}

2144 2145 2146 2147 2148
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2149 2150 2151 2152 2153
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

2154
	new_ctrl = nn->dp.ctrl;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2170 2171 2172 2173
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2174

2175 2176
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2177

2178 2179
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2180

2181
	nfp_net_write_mac_addr(nn);
2182

2183
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2184
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
2185
		  nn->dp.fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2197 2198 2199 2200
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2201

2202
	nn->dp.ctrl = new_ctrl;
2203

2204
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2205
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2206

2207 2208 2209
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2210
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2211 2212
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2213
		udp_tunnel_get_rx_info(nn->dp.netdev);
2214 2215
	}

2216
	return 0;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2227
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2228
		napi_enable(&nn->r_vecs[r].napi);
2229
		enable_irq(nn->r_vecs[r].irq_vector);
2230
	}
2231

2232
	netif_tx_wake_all_queues(nn->dp.netdev);
2233

2234
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2235 2236 2237
	nfp_net_read_link_status(nn);
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2253 2254 2255 2256 2257
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2258
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2259

2260
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2261 2262
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2263 2264
			goto err_cleanup_vec_p;
	}
2265

2266 2267
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2268
		goto err_cleanup_vec;
2269

2270 2271
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2272
		goto err_free_rx_rings;
2273

2274
	for (r = 0; r < nn->max_r_vecs; r++)
2275
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2276

2277
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2278 2279 2280
	if (err)
		goto err_free_rings;

2281
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2292
	err = nfp_net_set_config_and_enable(nn);
2293
	if (err)
2294
		goto err_free_rings;
2295 2296 2297 2298 2299 2300 2301

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2302
	nfp_net_open_stack(nn);
2303 2304 2305 2306

	return 0;

err_free_rings:
2307
	nfp_net_tx_rings_free(&nn->dp);
2308
err_free_rx_rings:
2309
	nfp_net_rx_rings_free(&nn->dp);
2310
err_cleanup_vec:
2311
	r = nn->dp.num_r_vecs;
2312
err_cleanup_vec_p:
2313
	while (r--)
2314
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2315
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2316 2317 2318 2319 2320 2321
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2322 2323
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2324
 */
2325
static void nfp_net_close_stack(struct nfp_net *nn)
2326
{
2327
	unsigned int r;
2328

2329
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2330
	netif_carrier_off(nn->dp.netdev);
2331 2332
	nn->link_up = false;

2333
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2334
		disable_irq(nn->r_vecs[r].irq_vector);
2335
		napi_disable(&nn->r_vecs[r].napi);
2336
	}
2337

2338
	netif_tx_disable(nn->dp.netdev);
2339
}
2340

2341 2342 2343 2344 2345 2346 2347
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2348

2349
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2350
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2351
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2352
	}
2353 2354 2355
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2356
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2357

2358 2359
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2360

2361
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2362
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2394
	new_ctrl = nn->dp.ctrl;
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2405
	if (new_ctrl == nn->dp.ctrl)
2406 2407 2408
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2409
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2410

2411
	nn->dp.ctrl = new_ctrl;
2412 2413
}

2414 2415 2416 2417 2418 2419
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2420
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2421 2422
}

2423 2424 2425 2426 2427 2428
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2429 2430

	nn->dp.netdev->mtu = new_dp.mtu;
2431 2432 2433

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2434 2435
}

2436
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2437
{
2438
	unsigned int r;
2439
	int err;
2440

2441
	nfp_net_dp_swap(nn, dp);
2442

2443
	for (r = 0; r <	nn->max_r_vecs; r++)
2444
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2445

2446
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2447 2448
	if (err)
		return err;
2449

2450 2451 2452
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2453 2454 2455 2456
		if (err)
			return err;
	}

2457
	return nfp_net_set_config_and_enable(nn);
2458
}
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2480
static int nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp)
2481 2482
{
	/* XDP-enabled tests */
2483
	if (!dp->xdp_prog)
2484
		return 0;
2485
	if (dp->fl_bufsz > PAGE_SIZE) {
2486 2487 2488
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
2489
	if (dp->num_tx_rings > nn->max_tx_rings) {
2490 2491 2492 2493 2494 2495 2496
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2497
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp)
2498
{
2499
	int r, err;
2500

2501
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2502

2503
	dp->num_stack_tx_rings = dp->num_tx_rings;
2504
	if (dp->xdp_prog)
2505
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2506

2507
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2508

2509
	err = nfp_net_check_config(nn, dp);
2510
	if (err)
2511
		goto exit_free_dp;
2512

2513
	if (!netif_running(dp->netdev)) {
2514
		nfp_net_dp_swap(nn, dp);
2515 2516
		err = 0;
		goto exit_free_dp;
2517 2518 2519
	}

	/* Prepare new rings */
2520
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2521 2522
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2523
			dp->num_r_vecs = r;
2524 2525 2526
			goto err_cleanup_vecs;
		}
	}
2527 2528 2529 2530 2531 2532 2533 2534

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2535 2536 2537 2538 2539

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2540
	err = nfp_net_dp_swap_enable(nn, dp);
2541
	if (err) {
2542
		int err2;
2543

2544
		nfp_net_clear_config_and_disable(nn);
2545

2546
		/* Try with old configuration and old rings */
2547
		err2 = nfp_net_dp_swap_enable(nn, dp);
2548
		if (err2)
2549
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2550
			       err, err2);
2551
	}
2552
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2553
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2554

2555 2556
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2557 2558

	nfp_net_open_stack(nn);
2559 2560
exit_free_dp:
	kfree(dp);
2561 2562

	return err;
2563 2564

err_free_rx:
2565
	nfp_net_rx_rings_free(dp);
2566
err_cleanup_vecs:
2567
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2568
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2569
	kfree(dp);
2570 2571 2572 2573 2574 2575
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2576 2577 2578 2579 2580
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2581

2582 2583
	dp->mtu = new_mtu;

2584
	return nfp_net_ring_reconfig(nn, dp);
2585 2586
}

2587 2588
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2589 2590 2591 2592
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2593
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2639
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2640
		if (!nn->dp.bpf_offload_xdp)
2641 2642 2643 2644
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2645 2646 2647 2648

	return -EINVAL;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2659
	new_ctrl = nn->dp.ctrl;
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2703
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2704 2705 2706 2707
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2708 2709 2710
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2711
	if (new_ctrl == nn->dp.ctrl)
2712 2713
		return 0;

2714
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2715 2716 2717 2718 2719
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2720
	nn->dp.ctrl = new_ctrl;
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2757
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2758 2759 2760 2761 2762 2763 2764 2765
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2766
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2767 2768 2769 2770

	return features;
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2803
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2804 2805 2806 2807 2808 2809 2810 2811
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2812
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2839
				   struct udp_tunnel_info *ti)
2840 2841 2842 2843
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2844 2845 2846 2847
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2848 2849 2850 2851
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2852
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2853 2854 2855
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2856
				   struct udp_tunnel_info *ti)
2857 2858 2859 2860
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2861 2862 2863 2864
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2865
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2866 2867 2868 2869 2870 2871
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2882 2883
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2896
	nn->dp.bpf_offload_xdp = prog && !ret;
2897 2898 2899
	return ret;
}

2900 2901
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
2902
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2903
	struct nfp_net_dp *dp;
2904 2905
	int err;

2906
	if (!prog && !nn->dp.xdp_prog)
2907
		return 0;
2908 2909
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2910
		bpf_prog_put(prog);
2911
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2912 2913 2914
		return 0;
	}

2915 2916 2917 2918
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2919
	dp->xdp_prog = prog;
2920
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2921
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2922 2923 2924 2925 2926
	if (prog)
		dp->rx_dma_off = XDP_PACKET_HEADROOM -
			(nn->dp.rx_offset ?: NFP_NET_MAX_PREPEND);
	else
		dp->rx_dma_off = 0;
2927 2928

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2929
	err = nfp_net_ring_reconfig(nn, dp);
2930 2931 2932
	if (err)
		return err;

2933 2934
	if (old_prog)
		bpf_prog_put(old_prog);
2935

2936
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
2949
		xdp->prog_attached = !!nn->dp.xdp_prog;
2950 2951 2952 2953 2954 2955
		return 0;
	default:
		return -EINVAL;
	}
}

2956 2957 2958 2959 2960
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2961
	.ndo_setup_tc		= nfp_net_setup_tc,
2962 2963 2964 2965 2966 2967
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
2968
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
2969 2970
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2971
	.ndo_xdp		= nfp_net_xdp,
2972 2973 2974 2975 2976 2977 2978 2979
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
2980
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2981 2982 2983
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
2984 2985 2986 2987
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
2988
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3005 3006
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3021 3022
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3035 3036
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3037 3038 3039 3040 3041
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3042 3043 3044
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3045
				 netif_get_num_default_rss_queues());
3046

3047 3048 3049
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3050

3051 3052
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3053 3054

	spin_lock_init(&nn->reconfig_lock);
3055
	spin_lock_init(&nn->rx_filter_lock);
3056 3057
	spin_lock_init(&nn->link_status_lock);

3058 3059
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3060 3061
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3072
	free_netdev(nn->dp.netdev);
3073 3074
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3096 3097 3098 3099 3100 3101
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3114
		dev_warn(nn->dp.dev,
3115 3116 3117 3118 3119 3120
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3121

3122
	nfp_net_rss_init_itbl(nn);
3123 3124 3125 3126

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3127
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3154 3155 3156 3157 3158 3159 3160
	/* XDP calls for 256 byte packet headroom which wouldn't fit in a u8.
	 * We, however, reuse the metadata prepend space for XDP buffers which
	 * is at least 1 byte long and as long as XDP headroom doesn't increase
	 * above 256 the *extra* XDP headroom will fit on 8 bits.
	 */
	BUILD_BUG_ON(XDP_PACKET_HEADROOM > 256);

3161
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3162

3163 3164
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3165 3166 3167 3168
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3169
	nfp_net_write_mac_addr(nn);
3170

3171
	/* Determine RX packet/metadata boundary offset */
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3182
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3183
	}
3184

3185 3186 3187 3188 3189
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3190 3191
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3202
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3203 3204 3205
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3206
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3207 3208 3209
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3210
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3211 3212 3213
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3214
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO;
3215 3216 3217 3218
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3219
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3220 3221 3222 3223 3224 3225
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3226
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3227 3228 3229 3230 3231 3232 3233 3234

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3235
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3236 3237 3238
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3239
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3240 3241 3242 3243
	}

	netdev->features = netdev->hw_features;

3244 3245 3246
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3247 3248 3249 3250 3251
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3252
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3253
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3254
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3255 3256 3257 3258

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3259
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3277 3278 3279 3280 3281

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3282
	netif_carrier_off(netdev);
3283 3284

	nfp_net_set_ethtool_ops(netdev);
3285
	nfp_net_vecs_init(netdev);
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3296 3297
	struct nfp_net *nn = netdev_priv(netdev);

3298 3299 3300
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3301
		nfp_net_xdp_offload(nn, NULL);
3302
	unregister_netdev(nn->dp.netdev);
3303
}