nfp_net_common.c 84.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (C) 2015 Netronome Systems, Inc.
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bpf.h>
45 46 47 48 49 50 51 52 53
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
54
#include <linux/page_ref.h>
55 56 57 58 59 60 61 62 63 64
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

65
#include <net/pkt_cls.h>
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#include <net/vxlan.h>

#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static dma_addr_t
nfp_net_dma_map_rx(struct nfp_net *nn, void *frag, unsigned int bufsz,
		   int direction)
{
	return dma_map_single(&nn->pdev->dev, frag + NFP_NET_RX_BUF_HEADROOM,
			      bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

static void
nfp_net_dma_unmap_rx(struct nfp_net *nn, dma_addr_t dma_addr,
		     unsigned int bufsz, int direction)
{
	dma_unmap_single(&nn->pdev->dev, dma_addr,
			 bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
224 225 226
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
227 228 229

	spin_lock_bh(&nn->reconfig_lock);

230
	nn->reconfig_sync_present = true;
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
249 250
	}

251 252 253 254 255 256 257 258 259 260
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

261
	spin_unlock_bh(&nn->reconfig_lock);
262

263 264 265 266 267 268 269 270 271 272 273
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
274
 * Clear the ICR for the IRQ entry.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
 * nfp_net_msix_alloc() - Try to allocate MSI-X irqs
 * @nn:       NFP Network structure
 * @nr_vecs:  Number of MSI-X vectors to allocate
 *
 * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors.
 *
 * Return: Number of MSI-X vectors obtained or 0 on error.
 */
static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs)
{
	struct pci_dev *pdev = nn->pdev;
	int nvecs;
	int i;

	for (i = 0; i < nr_vecs; i++)
		nn->irq_entries[i].entry = i;

	nvecs = pci_enable_msix_range(pdev, nn->irq_entries,
				      NFP_NET_NON_Q_VECTORS + 1, nr_vecs);
	if (nvecs < 0) {
		nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n",
			NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs);
		return 0;
	}

	return nvecs;
}

/**
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @nn:       NFP Network structure
 *
 * Return: Number of irqs obtained or 0 on error.
 */
int nfp_net_irqs_alloc(struct nfp_net *nn)
{
	int wanted_irqs;
320
	unsigned int n;
321

J
Jakub Kicinski 已提交
322
	wanted_irqs = nn->num_r_vecs + NFP_NET_NON_Q_VECTORS;
323

324 325
	n = nfp_net_msix_alloc(nn, wanted_irqs);
	if (n == 0) {
326 327 328 329
		nn_err(nn, "Failed to allocate MSI-X IRQs\n");
		return 0;
	}

330 331
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
	nn->num_r_vecs = nn->max_r_vecs;
332

333
	if (n < wanted_irqs)
334
		nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n",
335
			wanted_irqs, n);
336

337
	return n;
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
 * @nn:       NFP Network structure
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
void nfp_net_irqs_disable(struct nfp_net *nn)
{
	pci_disable_msix(nn->pdev);
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
		netif_carrier_on(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Up\n");
	} else {
		netif_carrier_off(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Down\n");
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;

	nfp_net_read_link_status(nn);

	nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX);

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
439 440
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
441
 */
442 443 444
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
445 446 447
{
	struct nfp_net *nn = r_vec->nfp_net;

448 449 450
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

451 452 453 454 455 456 457
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
458 459
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
460
 */
461 462 463
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
464 465 466
{
	struct nfp_net *nn = r_vec->nfp_net;

467 468 469
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
 * nfp_net_irqs_assign() - Assign IRQs and setup rvecs.
 * @netdev:   netdev structure
 */
static void nfp_net_irqs_assign(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

487 488 489 490 491 492 493
	if (nn->num_rx_rings > nn->num_r_vecs ||
	    nn->num_tx_rings > nn->num_r_vecs)
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
			nn->num_rx_rings, nn->num_tx_rings, nn->num_r_vecs);

	nn->num_rx_rings = min(nn->num_r_vecs, nn->num_rx_rings);
	nn->num_tx_rings = min(nn->num_r_vecs, nn->num_tx_rings);
494
	nn->num_stack_tx_rings = nn->num_tx_rings;
495 496 497 498

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

499
	for (r = 0; r < nn->max_r_vecs; r++) {
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
		r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r;

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

	snprintf(name, name_sz, format, netdev_name(nn->netdev));
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
	nn_writeb(nn, ctrl_offset, vector_idx);

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
578
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
		nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
				  iph->version);
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
		nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
				  l4_hdr);
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

718 719 720 721 722 723 724
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_ring *tx_ring;
	struct netdev_queue *nd_q;
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

	qidx = skb_get_queue_mapping(skb);
	tx_ring = &nn->tx_rings[qidx];
	r_vec = tx_ring->r_vec;
	nd_q = netdev_get_tx_queue(nn->netdev, qidx);

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
		nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
				  qidx, tx_ring->wr_p, tx_ring->rd_p);
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
	dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb),
				  DMA_TO_DEVICE);
	if (dma_mapping_error(&nn->pdev->dev, dma_addr))
		goto err_free;

770
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);

	nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);

	if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

			dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0,
						    fsize, DMA_TO_DEVICE);
			if (dma_mapping_error(&nn->pdev->dev, dma_addr))
				goto err_unmap;

814
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
839 840
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
		dma_unmap_page(&nn->pdev->dev,
			       tx_ring->txbufs[wr_idx].dma_addr,
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
	dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr,
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
	nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
905
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
			dma_unmap_single(&nn->pdev->dev,
					 tx_ring->txbufs[idx].dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
			dma_unmap_page(&nn->pdev->dev,
				       tx_ring->txbufs[idx].dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

		nfp_net_dma_unmap_rx(nn, tx_ring->txbufs[idx].dma_addr,
				     nn->fl_bufsz, DMA_BIDIRECTIONAL);
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1012
/**
1013 1014 1015
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
 * @nn:		NFP Net device
 * @tx_ring:	TX ring structure
1016 1017 1018
 *
 * Assumes that the device is stopped
 */
1019 1020
static void
nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
1021
{
1022
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1023
	const struct skb_frag_struct *frag;
1024
	struct pci_dev *pdev = nn->pdev;
1025
	struct netdev_queue *nd_q;
1026 1027

	while (tx_ring->rd_p != tx_ring->wr_p) {
1028 1029
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1030

1031
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1032
		tx_buf = &tx_ring->txbufs[idx];
1033

1034 1035 1036 1037
		if (tx_ring == r_vec->xdp_ring) {
			nfp_net_dma_unmap_rx(nn, tx_buf->dma_addr,
					     nn->fl_bufsz, DMA_BIDIRECTIONAL);
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1038
		} else {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
				dma_unmap_single(&pdev->dev, tx_buf->dma_addr,
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
				dma_unmap_page(&pdev->dev, tx_buf->dma_addr,
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1054

1055 1056 1057 1058
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1059

1060 1061 1062
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1063 1064 1065 1066 1067

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1068 1069 1070 1071 1072 1073
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1074 1075 1076
	if (tx_ring == r_vec->xdp_ring)
		return;

1077 1078 1079 1080 1081 1082 1083 1084 1085
	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1086
	for (i = 0; i < nn->netdev->real_num_tx_queues; i++) {
1087 1088 1089 1090 1091 1092 1093 1094 1095
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1096 1097 1098 1099 1100
static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net *nn, unsigned int mtu)
{
	unsigned int fl_bufsz;

1101
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1102
	if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1103
		fl_bufsz += NFP_NET_MAX_PREPEND;
1104
	else
1105
		fl_bufsz += nn->rx_offset;
1106 1107
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + mtu;

1108 1109 1110
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1111 1112
	return fl_bufsz;
}
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1123
/**
1124
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1125 1126
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
1127
 * @fl_bufsz:	size of freelist buffers
1128
 * @xdp:	Whether XDP is enabled
1129
 *
1130
 * This function will allcate a new page frag, map it for DMA.
1131
 *
1132
 * Return: allocated page frag or NULL on failure.
1133
 */
1134
static void *
1135
nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1136
		     unsigned int fl_bufsz, bool xdp)
1137 1138
{
	struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1139
	int direction;
1140
	void *frag;
1141

1142 1143 1144 1145
	if (!xdp)
		frag = netdev_alloc_frag(fl_bufsz);
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1146 1147
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
1148 1149 1150
		return NULL;
	}

1151 1152 1153
	direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;

	*dma_addr = nfp_net_dma_map_rx(nn, frag, fl_bufsz, direction);
1154
	if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1155
		nfp_net_free_frag(frag, xdp);
1156 1157 1158 1159
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

1160
	return frag;
1161 1162
}

1163 1164
static void *
nfp_net_napi_alloc_one(struct nfp_net *nn, int direction, dma_addr_t *dma_addr)
1165 1166 1167
{
	void *frag;

1168 1169 1170 1171
	if (!nn->xdp_prog)
		frag = napi_alloc_frag(nn->fl_bufsz);
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1172 1173 1174 1175 1176
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
		return NULL;
	}

1177
	*dma_addr = nfp_net_dma_map_rx(nn, frag, nn->fl_bufsz, direction);
1178
	if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1179
		nfp_net_free_frag(frag, nn->xdp_prog);
1180 1181 1182 1183 1184 1185 1186
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

	return frag;
}

1187 1188 1189
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1190
 * @frag:	page fragment buffer
1191 1192 1193
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1194
				void *frag, dma_addr_t dma_addr)
1195 1196 1197
{
	unsigned int wr_idx;

1198
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1199 1200

	/* Stash SKB and DMA address away */
1201
	rx_ring->rxbufs[wr_idx].frag = frag;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1222 1223
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1224
 *
1225 1226
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1227
 */
1228
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1229
{
1230
	unsigned int wr_idx, last_idx;
1231

1232
	/* Move the empty entry to the end of the list */
1233
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1234 1235
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1236
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1237
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1238
	rx_ring->rxbufs[last_idx].frag = NULL;
1239

1240 1241 1242 1243 1244
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1245

1246 1247 1248 1249
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1250
 * @xdp:	Whether XDP is enabled
1251 1252 1253 1254 1255 1256
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1257 1258
nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
			  bool xdp)
1259
{
1260
	int direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1261
	unsigned int i;
1262

1263 1264 1265 1266 1267
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1268
		if (!rx_ring->rxbufs[i].frag)
1269 1270
			continue;

1271
		nfp_net_dma_unmap_rx(nn, rx_ring->rxbufs[i].dma_addr,
1272 1273
				     rx_ring->bufsz, direction);
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, xdp);
1274
		rx_ring->rxbufs[i].dma_addr = 0;
1275
		rx_ring->rxbufs[i].frag = NULL;
1276 1277 1278 1279
	}
}

/**
1280 1281 1282
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1283
 * @xdp:	Whether XDP is enabled
1284
 */
1285
static int
1286 1287
nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
			   bool xdp)
1288
{
1289 1290 1291 1292
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1293

1294
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1295
		rxbufs[i].frag =
1296
			nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
1297
					     rx_ring->bufsz, xdp);
1298
		if (!rxbufs[i].frag) {
1299
			nfp_net_rx_ring_bufs_free(nn, rx_ring, xdp);
1300 1301 1302 1303 1304 1305 1306
			return -ENOMEM;
		}
	}

	return 0;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1316
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1317 1318 1319
				    rx_ring->rxbufs[i].dma_addr);
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	if (!(nn->netdev->features & NETIF_F_RXCSUM))
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1378
			     unsigned int type, __be32 *hash)
1379
{
1380
	if (!(netdev->features & NETIF_F_RXHASH))
1381 1382
		return;

1383
	switch (type) {
1384 1385 1386
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1387
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1388 1389
		break;
	default:
1390
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1391 1392 1393 1394
		break;
	}
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
		      struct nfp_net_rx_desc *rxd)
{
	struct nfp_net_rx_hash *rx_hash;

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
		   int meta_len)
{
	u8 *data = skb->data - meta_len;
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1443 1444 1445 1446 1447 1448 1449 1450
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1451 1452 1453 1454 1455
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1456
	if (rxbuf)
1457
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1458 1459 1460 1461
	if (skb)
		dev_kfree_skb_any(skb);
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static void
nfp_net_tx_xdp_buf(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
		   struct nfp_net_tx_ring *tx_ring,
		   struct nfp_net_rx_buf *rxbuf, unsigned int pkt_off,
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
		return;
	}

	new_frag = nfp_net_napi_alloc_one(nn, DMA_BIDIRECTIONAL, &new_dma_addr);
	if (unlikely(!new_frag)) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
		return;
	}
	nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

	dma_sync_single_for_device(&nn->pdev->dev, rxbuf->dma_addr + pkt_off,
				   pkt_len, DMA_TO_DEVICE);

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + pkt_off);
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
}

static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
{
	struct xdp_buff xdp;

	xdp.data = data;
	xdp.data_end = data + len;

	return BPF_PROG_RUN(prog, (void *)&xdp);
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
1539 1540 1541
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1542
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1543
	int pkts_polled = 0;
1544
	int rx_dma_map_dir;
1545 1546
	int idx;

1547 1548 1549 1550 1551 1552
	rcu_read_lock();
	xdp_prog = READ_ONCE(nn->xdp_prog);
	rx_dma_map_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
	true_bufsz = xdp_prog ? PAGE_SIZE : nn->fl_bufsz;
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1553
	while (pkts_polled < budget) {
1554 1555 1556 1557 1558 1559
		unsigned int meta_len, data_len, data_off, pkt_len, pkt_off;
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;

1560
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1561 1562

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1563
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1564
			break;
J
Jakub Kicinski 已提交
1565

1566 1567 1568 1569 1570 1571 1572 1573
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1574
		rxbuf =	&rx_ring->rxbufs[idx];
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1587 1588
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1589
		pkt_len = data_len - meta_len;
1590

1591
		if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1592
			pkt_off = meta_len;
1593
		else
1594 1595
			pkt_off = nn->rx_offset;
		data_off = NFP_NET_RX_BUF_HEADROOM + pkt_off;
1596 1597 1598 1599

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1600
		r_vec->rx_bytes += pkt_len;
1601 1602
		u64_stats_update_end(&r_vec->rx_sync);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		if (xdp_prog) {
			int act;

			dma_sync_single_for_cpu(&nn->pdev->dev,
						rxbuf->dma_addr + pkt_off,
						pkt_len, DMA_FROM_DEVICE);
			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
					      pkt_len);
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
				nfp_net_tx_xdp_buf(nn, rx_ring, tx_ring, rxbuf,
						   pkt_off, pkt_len);
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
			case XDP_DROP:
				nfp_net_rx_give_one(rx_ring, rxbuf->frag,
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1629 1630 1631 1632
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1633 1634
		new_frag = nfp_net_napi_alloc_one(nn, rx_dma_map_dir,
						  &new_dma_addr);
1635 1636 1637 1638 1639
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
			continue;
		}

1640 1641
		nfp_net_dma_unmap_rx(nn, rxbuf->dma_addr, nn->fl_bufsz,
				     rx_dma_map_dir);
1642 1643 1644 1645 1646 1647

		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1648 1649 1650 1651 1652 1653 1654 1655
		if (nn->fw_ver.major <= 3) {
			nfp_net_set_hash_desc(nn->netdev, skb, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(nn->netdev, skb, meta_len);
			if (unlikely(end != skb->data)) {
				nn_warn_ratelimit(nn, "invalid RX packet metadata\n");
1656
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1657 1658 1659 1660
				continue;
			}
		}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		skb_record_rx_queue(skb, rx_ring->idx);
		skb->protocol = eth_type_trans(skb, nn->netdev);

		nfp_net_rx_csum(nn, r_vec, rxd, skb);

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1673 1674 1675 1676
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1691
	unsigned int pkts_polled = 0;
1692

1693 1694
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1695
	if (r_vec->rx_ring) {
1696
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1697 1698 1699
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1700 1701 1702

	if (pkts_polled < budget) {
		napi_complete_done(napi, pkts_polled);
J
Jakub Kicinski 已提交
1703
		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_idx);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	}

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
		dma_free_coherent(&pdev->dev, tx_ring->size,
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
 * @tx_ring:   TX Ring structure to allocate
1738
 * @cnt:       Ring buffer count
1739
 * @is_xdp:    True if ring will be used for XDP
1740 1741 1742
 *
 * Return: 0 on success, negative errno otherwise.
 */
1743 1744
static int
nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt, bool is_xdp)
1745 1746 1747 1748 1749 1750
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;
	int sz;

1751
	tx_ring->cnt = cnt;
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
	tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size,
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1764 1765 1766
	if (!is_xdp)
		netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask,
				    tx_ring->idx);
1767

1768
	nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p %s\n",
1769
	       tx_ring->idx, tx_ring->qcidx,
1770 1771
	       tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds,
	       is_xdp ? "XDP" : "");
1772 1773 1774 1775 1776 1777 1778 1779

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1780
static struct nfp_net_tx_ring *
1781 1782
nfp_net_tx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
			    unsigned int num_stack_tx_rings)
1783 1784 1785 1786
{
	struct nfp_net_tx_ring *rings;
	unsigned int r;

1787
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1788 1789 1790
	if (!rings)
		return NULL;

1791
	for (r = 0; r < s->n_rings; r++) {
1792 1793 1794 1795
		int bias = 0;

		if (r >= num_stack_tx_rings)
			bias = num_stack_tx_rings;
1796

1797 1798 1799
		nfp_net_tx_ring_init(&rings[r], &nn->r_vecs[r - bias], r);

		if (nfp_net_tx_ring_alloc(&rings[r], s->dcnt, bias))
1800 1801 1802
			goto err_free_prev;
	}

1803
	return s->rings = rings;
1804 1805 1806 1807 1808 1809 1810 1811

err_free_prev:
	while (r--)
		nfp_net_tx_ring_free(&rings[r]);
	kfree(rings);
	return NULL;
}

1812
static void
1813
nfp_net_tx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1814
{
1815
	struct nfp_net_ring_set new = *s;
1816

1817 1818
	s->dcnt = nn->txd_cnt;
	s->rings = nn->tx_rings;
1819
	s->n_rings = nn->num_tx_rings;
1820 1821 1822

	nn->txd_cnt = new.dcnt;
	nn->tx_rings = new.rings;
1823
	nn->num_tx_rings = new.n_rings;
1824 1825 1826
}

static void
1827
nfp_net_tx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s)
1828
{
1829
	struct nfp_net_tx_ring *rings = s->rings;
1830 1831
	unsigned int r;

1832
	for (r = 0; r < s->n_rings; r++)
1833 1834 1835 1836 1837
		nfp_net_tx_ring_free(&rings[r]);

	kfree(rings);
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
		dma_free_coherent(&pdev->dev, rx_ring->size,
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
 * @rx_ring:  RX ring to allocate
1864
 * @fl_bufsz: Size of buffers to allocate
1865
 * @cnt:      Ring buffer count
1866 1867 1868
 *
 * Return: 0 on success, negative errno otherwise.
 */
1869
static int
1870 1871
nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
		      u32 cnt)
1872 1873 1874 1875 1876 1877
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;
	int sz;

1878
	rx_ring->cnt = cnt;
1879
	rx_ring->bufsz = fl_bufsz;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
	rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size,
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n",
	       rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx,
	       rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds);

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1903
static struct nfp_net_rx_ring *
1904 1905
nfp_net_rx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
			    bool xdp)
1906
{
1907
	unsigned int fl_bufsz =	nfp_net_calc_fl_bufsz(nn, s->mtu);
1908 1909 1910
	struct nfp_net_rx_ring *rings;
	unsigned int r;

1911
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1912 1913 1914
	if (!rings)
		return NULL;

1915 1916
	for (r = 0; r < s->n_rings; r++) {
		nfp_net_rx_ring_init(&rings[r], &nn->r_vecs[r], r);
1917

1918
		if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, s->dcnt))
1919 1920
			goto err_free_prev;

1921
		if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r], xdp))
1922 1923 1924
			goto err_free_ring;
	}

1925
	return s->rings = rings;
1926 1927 1928

err_free_prev:
	while (r--) {
1929
		nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1930 1931 1932 1933 1934 1935 1936
err_free_ring:
		nfp_net_rx_ring_free(&rings[r]);
	}
	kfree(rings);
	return NULL;
}

1937
static void
1938
nfp_net_rx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1939
{
1940
	struct nfp_net_ring_set new = *s;
1941

1942 1943 1944
	s->mtu = nn->netdev->mtu;
	s->dcnt = nn->rxd_cnt;
	s->rings = nn->rx_rings;
1945
	s->n_rings = nn->num_rx_rings;
1946 1947 1948 1949 1950

	nn->netdev->mtu = new.mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, new.mtu);
	nn->rxd_cnt = new.dcnt;
	nn->rx_rings = new.rings;
1951
	nn->num_rx_rings = new.n_rings;
1952 1953 1954
}

static void
1955 1956
nfp_net_rx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s,
			 bool xdp)
1957
{
1958
	struct nfp_net_rx_ring *rings = s->rings;
1959 1960
	unsigned int r;

1961
	for (r = 0; r < s->n_rings; r++) {
1962
		nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1963 1964 1965 1966 1967 1968
		nfp_net_rx_ring_free(&rings[r]);
	}

	kfree(rings);
}

1969 1970 1971 1972 1973
static void
nfp_net_vector_assign_rings(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    int idx)
{
	r_vec->rx_ring = idx < nn->num_rx_rings ? &nn->rx_rings[idx] : NULL;
1974 1975 1976 1977 1978
	r_vec->tx_ring =
		idx < nn->num_stack_tx_rings ? &nn->tx_rings[idx] : NULL;

	r_vec->xdp_ring = idx < nn->num_tx_rings - nn->num_stack_tx_rings ?
		&nn->tx_rings[nn->num_stack_tx_rings + idx] : NULL;
1979 1980
}

1981 1982 1983
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1984
{
1985 1986
	struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
	int err;
1987

1988 1989 1990 1991
	/* Setup NAPI */
	netif_napi_add(nn->netdev, &r_vec->napi,
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1992 1993 1994 1995
	snprintf(r_vec->name, sizeof(r_vec->name),
		 "%s-rxtx-%d", nn->netdev->name, idx);
	err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec);
	if (err) {
1996
		netif_napi_del(&r_vec->napi);
1997 1998 1999
		nn_err(nn, "Error requesting IRQ %d\n", entry->vector);
		return err;
	}
2000
	disable_irq(entry->vector);
2001

2002
	irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask);
2003

2004
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry);
2005

2006
	return 0;
2007 2008
}

2009 2010
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2011
{
2012
	struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
2013 2014 2015

	irq_set_affinity_hint(entry->vector, NULL);
	netif_napi_del(&r_vec->napi);
2016
	free_irq(entry->vector, r_vec);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2064
	for (i = 0; i < nn->num_rx_rings; i++)
2065 2066 2067 2068 2069
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2070
	for (i = 0; i < nn->num_tx_rings; i++)
2071 2072 2073 2074
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2075
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2076 2077
 * @nn:      NFP Net device to reconfigure
 *
2078 2079 2080
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2081
 */
2082
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2083 2084 2085
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
		  get_unaligned_be32(nn->netdev->dev_addr));
J
Jakub Kicinski 已提交
2086 2087
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
		  get_unaligned_be16(nn->netdev->dev_addr + 4));
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2101 2102 2103 2104 2105 2106 2107
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2108
	unsigned int r;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	int err;

	new_ctrl = nn->ctrl;
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2125
	if (err)
2126 2127
		nn_err(nn, "Could not disable device: %d\n", err);

2128
	for (r = 0; r < nn->num_rx_rings; r++)
2129
		nfp_net_rx_ring_reset(&nn->rx_rings[r]);
2130
	for (r = 0; r < nn->num_tx_rings; r++)
2131
		nfp_net_tx_ring_reset(nn, &nn->tx_rings[r]);
2132
	for (r = 0; r < nn->num_r_vecs; r++)
2133 2134
		nfp_net_vec_clear_ring_data(nn, r);

2135 2136 2137
	nn->ctrl = new_ctrl;
}

2138
static void
2139 2140
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2141 2142
{
	/* Write the DMA address, size and MSI-X info to the device */
2143 2144 2145 2146
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_idx);
}
2147

2148 2149 2150 2151 2152 2153 2154
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_idx);
2155 2156
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

	new_ctrl = nn->ctrl;

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2179 2180 2181 2182
	for (r = 0; r < nn->num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->tx_rings[r], r);
	for (r = 0; r < nn->num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->rx_rings[r], r);
2183 2184 2185 2186 2187 2188 2189

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);

	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);

2190
	nfp_net_write_mac_addr(nn);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

	nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz);

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

	nn->ctrl = new_ctrl;

2208
	for (r = 0; r < nn->num_rx_rings; r++)
2209
		nfp_net_rx_ring_fill_freelist(&nn->rx_rings[r]);
2210

2211 2212 2213 2214 2215 2216
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
	if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2217
		udp_tunnel_get_rx_info(nn->netdev);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2246 2247 2248 2249
	for (r = 0; r < nn->num_r_vecs; r++) {
		napi_enable(&nn->r_vecs[r].napi);
		enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
	}
2250 2251 2252

	netif_tx_wake_all_queues(nn->netdev);

2253
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2254 2255 2256
	nfp_net_read_link_status(nn);
}

2257 2258 2259
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
2260
	struct nfp_net_ring_set rx = {
2261
		.n_rings = nn->num_rx_rings,
2262 2263 2264 2265
		.mtu = nn->netdev->mtu,
		.dcnt = nn->rxd_cnt,
	};
	struct nfp_net_ring_set tx = {
2266
		.n_rings = nn->num_tx_rings,
2267 2268
		.dcnt = nn->txd_cnt,
	};
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	int err, r;

	if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2286 2287 2288 2289 2290
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2291
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2292

2293 2294 2295
	for (r = 0; r < nn->num_r_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2296 2297
			goto err_cleanup_vec_p;
	}
2298

2299
	nn->rx_rings = nfp_net_rx_ring_set_prepare(nn, &rx, nn->xdp_prog);
2300 2301 2302
	if (!nn->rx_rings) {
		err = -ENOMEM;
		goto err_cleanup_vec;
2303
	}
2304

2305 2306
	nn->tx_rings = nfp_net_tx_ring_set_prepare(nn, &tx,
						   nn->num_stack_tx_rings);
2307 2308 2309
	if (!nn->tx_rings) {
		err = -ENOMEM;
		goto err_free_rx_rings;
2310
	}
2311

2312 2313 2314
	for (r = 0; r < nn->max_r_vecs; r++)
		nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);

2315
	err = netif_set_real_num_tx_queues(netdev, nn->num_stack_tx_rings);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	if (err)
		goto err_free_rings;

	err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2330
	err = nfp_net_set_config_and_enable(nn);
2331
	if (err)
2332
		goto err_free_rings;
2333 2334 2335 2336 2337 2338 2339

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2340
	nfp_net_open_stack(nn);
2341 2342 2343 2344

	return 0;

err_free_rings:
2345 2346
	nfp_net_tx_ring_set_free(nn, &tx);
err_free_rx_rings:
2347
	nfp_net_rx_ring_set_free(nn, &rx, nn->xdp_prog);
2348
err_cleanup_vec:
2349
	r = nn->num_r_vecs;
2350
err_cleanup_vec_p:
2351
	while (r--)
2352
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2353
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2354 2355 2356 2357 2358 2359
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2360 2361
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2362
 */
2363
static void nfp_net_close_stack(struct nfp_net *nn)
2364
{
2365
	unsigned int r;
2366

2367
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2368
	netif_carrier_off(nn->netdev);
2369 2370
	nn->link_up = false;

2371 2372
	for (r = 0; r < nn->num_r_vecs; r++) {
		disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
2373
		napi_disable(&nn->r_vecs[r].napi);
2374
	}
2375

2376 2377
	netif_tx_disable(nn->netdev);
}
2378

2379 2380 2381 2382 2383 2384 2385
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2386

2387
	for (r = 0; r < nn->num_rx_rings; r++) {
2388
		nfp_net_rx_ring_bufs_free(nn, &nn->rx_rings[r], nn->xdp_prog);
2389
		nfp_net_rx_ring_free(&nn->rx_rings[r]);
2390 2391
	}
	for (r = 0; r < nn->num_tx_rings; r++)
2392
		nfp_net_tx_ring_free(&nn->tx_rings[r]);
2393
	for (r = 0; r < nn->num_r_vecs; r++)
2394
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2395

2396 2397 2398
	kfree(nn->rx_rings);
	kfree(nn->tx_rings);

2399
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2400
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

	new_ctrl = nn->ctrl;

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

	if (new_ctrl == nn->ctrl)
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2452
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2453 2454 2455 2456

	nn->ctrl = new_ctrl;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
			ethtool_rxfh_indir_default(i, nn->num_rx_rings);
}

2466
static int
2467
nfp_net_ring_swap_enable(struct nfp_net *nn, unsigned int *num_vecs,
2468 2469
			 unsigned int *stack_tx_rings,
			 struct bpf_prog **xdp_prog,
2470 2471
			 struct nfp_net_ring_set *rx,
			 struct nfp_net_ring_set *tx)
2472
{
2473
	unsigned int r;
2474
	int err;
2475

2476
	if (rx)
2477
		nfp_net_rx_ring_set_swap(nn, rx);
2478
	if (tx)
2479
		nfp_net_tx_ring_set_swap(nn, tx);
2480

2481
	swap(*num_vecs, nn->num_r_vecs);
2482 2483
	swap(*stack_tx_rings, nn->num_stack_tx_rings);
	*xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2484

2485 2486 2487
	for (r = 0; r <	nn->max_r_vecs; r++)
		nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	if (nn->netdev->real_num_rx_queues != nn->num_rx_rings) {
		if (!netif_is_rxfh_configured(nn->netdev))
			nfp_net_rss_init_itbl(nn);

		err = netif_set_real_num_rx_queues(nn->netdev,
						   nn->num_rx_rings);
		if (err)
			return err;
	}

2498
	if (nn->netdev->real_num_tx_queues != nn->num_stack_tx_rings) {
2499
		err = netif_set_real_num_tx_queues(nn->netdev,
2500
						   nn->num_stack_tx_rings);
2501 2502 2503 2504
		if (err)
			return err;
	}

2505 2506
	return __nfp_net_set_config_and_enable(nn);
}
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
static int
nfp_net_check_config(struct nfp_net *nn, struct bpf_prog *xdp_prog,
		     struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
{
	/* XDP-enabled tests */
	if (!xdp_prog)
		return 0;
	if (rx && nfp_net_calc_fl_bufsz(nn, rx->mtu) > PAGE_SIZE) {
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
	if (tx && tx->n_rings > nn->max_tx_rings) {
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2527
static void
2528
nfp_net_ring_reconfig_down(struct nfp_net *nn, struct bpf_prog **xdp_prog,
2529
			   struct nfp_net_ring_set *rx,
2530
			   struct nfp_net_ring_set *tx,
2531
			   unsigned int stack_tx_rings, unsigned int num_vecs)
2532 2533 2534 2535 2536
{
	nn->netdev->mtu = rx ? rx->mtu : nn->netdev->mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, nn->netdev->mtu);
	nn->rxd_cnt = rx ? rx->dcnt : nn->rxd_cnt;
	nn->txd_cnt = tx ? tx->dcnt : nn->txd_cnt;
2537 2538
	nn->num_rx_rings = rx ? rx->n_rings : nn->num_rx_rings;
	nn->num_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
2539
	nn->num_stack_tx_rings = stack_tx_rings;
2540
	nn->num_r_vecs = num_vecs;
2541
	*xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2542 2543 2544

	if (!netif_is_rxfh_configured(nn->netdev))
		nfp_net_rss_init_itbl(nn);
2545 2546
}

2547
int
2548 2549
nfp_net_ring_reconfig(struct nfp_net *nn, struct bpf_prog **xdp_prog,
		      struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
2550
{
2551
	unsigned int stack_tx_rings, num_vecs, r;
2552 2553
	int err;

2554 2555 2556 2557 2558 2559 2560 2561 2562
	stack_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
	if (*xdp_prog)
		stack_tx_rings -= rx ? rx->n_rings : nn->num_rx_rings;

	num_vecs = max(rx ? rx->n_rings : nn->num_rx_rings, stack_tx_rings);

	err = nfp_net_check_config(nn, *xdp_prog, rx, tx);
	if (err)
		return err;
2563

2564
	if (!netif_running(nn->netdev)) {
2565 2566
		nfp_net_ring_reconfig_down(nn, xdp_prog, rx, tx,
					   stack_tx_rings, num_vecs);
2567 2568 2569 2570
		return 0;
	}

	/* Prepare new rings */
2571 2572 2573 2574 2575 2576 2577
	for (r = nn->num_r_vecs; r < num_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
			num_vecs = r;
			goto err_cleanup_vecs;
		}
	}
2578
	if (rx) {
2579
		if (!nfp_net_rx_ring_set_prepare(nn, rx, *xdp_prog)) {
2580 2581 2582
			err = -ENOMEM;
			goto err_cleanup_vecs;
		}
2583
	}
2584
	if (tx) {
2585
		if (!nfp_net_tx_ring_set_prepare(nn, tx, stack_tx_rings)) {
2586 2587
			err = -ENOMEM;
			goto err_free_rx;
2588 2589 2590 2591 2592 2593 2594
		}
	}

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2595 2596
	err = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
				       xdp_prog, rx, tx);
2597
	if (err) {
2598
		int err2;
2599

2600
		nfp_net_clear_config_and_disable(nn);
2601

2602
		/* Try with old configuration and old rings */
2603 2604
		err2 = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
						xdp_prog, rx, tx);
2605
		if (err2)
2606
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2607
			       err, err2);
2608
	}
2609 2610
	for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2611

2612
	if (rx)
2613
		nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2614
	if (tx)
2615
		nfp_net_tx_ring_set_free(nn, tx);
2616 2617 2618 2619

	nfp_net_open_stack(nn);

	return err;
2620 2621 2622

err_free_rx:
	if (rx)
2623
		nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2624 2625 2626
err_cleanup_vecs:
	for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2627 2628 2629 2630 2631 2632 2633
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_ring_set rx = {
2634
		.n_rings = nn->num_rx_rings,
2635 2636 2637 2638
		.mtu = new_mtu,
		.dcnt = nn->rxd_cnt,
	};

2639
	return nfp_net_ring_reconfig(nn, &nn->xdp_prog, &rx, NULL);
2640 2641
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev,
						struct rtnl_link_stats64 *stats)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

	for (r = 0; r < nn->num_r_vecs; r++) {
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}

	return stats;
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn))
2697
		return nfp_net_bpf_offload(nn, tc->cls_bpf);
2698 2699 2700 2701

	return -EINVAL;
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

	new_ctrl = nn->ctrl;

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2756 2757 2758 2759 2760
	if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

	if (new_ctrl == nn->ctrl)
		return 0;

	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	nn->ctrl = new_ctrl;

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2810
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2811 2812 2813 2814 2815 2816 2817 2818
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2819
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	return features;
}

/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2845
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2872
				   struct udp_tunnel_info *ti)
2873 2874 2875 2876
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2877 2878 2879 2880
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2881 2882 2883 2884
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2885
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2886 2887 2888
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2889
				   struct udp_tunnel_info *ti)
2890 2891 2892 2893
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2894 2895 2896 2897
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2898
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2899 2900 2901 2902 2903 2904
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct nfp_net_ring_set rx = {
		.n_rings = nn->num_rx_rings,
		.mtu = nn->netdev->mtu,
		.dcnt = nn->rxd_cnt,
	};
	struct nfp_net_ring_set tx = {
		.n_rings = nn->num_tx_rings,
		.dcnt = nn->txd_cnt,
	};
	int err;

	if (!prog && !nn->xdp_prog)
		return 0;
	if (prog && nn->xdp_prog) {
		prog = xchg(&nn->xdp_prog, prog);
		bpf_prog_put(prog);
		return 0;
	}

	tx.n_rings += prog ? nn->num_rx_rings : -nn->num_rx_rings;

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
	err = nfp_net_ring_reconfig(nn, &prog, &rx, &tx);
	if (err)
		return err;

	/* @prog got swapped and is now the old one */
	if (prog)
		bpf_prog_put(prog);

	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
		xdp->prog_attached = !!nn->xdp_prog;
		return 0;
	default:
		return -EINVAL;
	}
}

2955 2956 2957 2958 2959
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2960
	.ndo_setup_tc		= nfp_net_setup_tc,
2961 2962 2963 2964 2965 2966
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
2967 2968
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2969
	.ndo_xdp		= nfp_net_xdp,
2970 2971 2972 2973 2974 2975 2976 2977
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
2978
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2979 2980 2981 2982 2983 2984 2985
		nn->is_vf ? "VF " : "",
		nn->num_tx_rings, nn->max_tx_rings,
		nn->num_rx_rings, nn->max_rx_rings);
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
2986
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3003 3004
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3019 3020
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

	nn->netdev = netdev;
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3039 3040 3041
	nn->num_tx_rings = min_t(unsigned int, max_tx_rings, num_online_cpus());
	nn->num_rx_rings = min_t(unsigned int, max_rx_rings,
				 netif_get_num_default_rss_queues());
3042

J
Jakub Kicinski 已提交
3043 3044 3045
	nn->num_r_vecs = max(nn->num_tx_rings, nn->num_rx_rings);
	nn->num_r_vecs = min_t(unsigned int, nn->num_r_vecs, num_online_cpus());

3046 3047 3048 3049
	nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;

	spin_lock_init(&nn->reconfig_lock);
3050
	spin_lock_init(&nn->rx_filter_lock);
3051 3052
	spin_lock_init(&nn->link_status_lock);

3053 3054
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3055 3056
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3057

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
	free_netdev(nn->netdev);
}

/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
	netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ);

3078
	nfp_net_rss_init_itbl(nn);
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
		      NFP_NET_CFG_RSS_TOEPLITZ |
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3114
	nfp_net_write_mac_addr(nn);
3115

3116 3117 3118 3119 3120 3121
	/* Determine RX packet/metadata boundary offset */
	if (nn->fw_ver.major >= 2)
		nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
	else
		nn->rx_offset = NFP_NET_RX_OFFSET;

3122 3123 3124 3125 3126
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3127
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, netdev->mtu);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
		nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
		nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
		nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
	}

	netdev->features = netdev->hw_features;

3180 3181 3182
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3213 3214 3215 3216 3217

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3218
	netif_carrier_off(netdev);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	nfp_net_set_ethtool_ops(netdev);
	nfp_net_irqs_assign(netdev);

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3232 3233 3234 3235 3236
	struct nfp_net *nn = netdev_priv(netdev);

	if (nn->xdp_prog)
		bpf_prog_put(nn->xdp_prog);
	unregister_netdev(nn->netdev);
3237
}